
How to make ad-hoc polymorphism less ad hocPhilip Wadler and Stephen BlottUniversity of Glasgow�October 1988AbstractThis paper presents type classes, a new approachto ad-hoc polymorphism. Type classes permit over-loading of arithmetic operators such as multiplica-tion, and generalise the \eqtype variables" of Stan-dard ML. Type classes extend the Hindley/Milnerpolymorphic type system, and provide a new ap-proach to issues that arise in object-oriented pro-gramming, bounded type quanti�cation, and ab-stract data types. This paper provides an informalintroduction to type classes, and de�nes them for-mally by means of type inference rules.1 IntroductionStrachey chose the adjectives ad-hoc and parametricto distinguish two varieties of polymorphism [Str67].Ad-hoc polymorphism occurs when a function isde�ned over several di�erent types, acting in a dif-ferent way for each type. A typical example isoverloaded multiplication: the same symbol may beused to denote multiplication of integers (as in 3*3)and multiplication of oating point values (as in3.14*3.14).Parametric polymorphism occurs when a functionis de�ned over a range of types, acting in the sameway for each type. A typical example is the lengthfunction, which acts in the same way on a list of�Authors' address: Department of Computing Science,University of Glasgow, Glasgow G12 8QQ, Scotland. Elec-tronic mail: wadler, blott@cs.glasgow.ac.uk.Published in: 16'th ACM Symposium on Principles of Pro-gramming Languages, Austin, Texas, January 1989.Permission to copy without fee all or part of this material isgranted provided that the copies are not made or distributedfor direct commercial advantage, the ACM copyright noticeand the title of the publication and its date appear, and no-tice is given that copying is by permission of the Associationfor ComputingMachinery. To copy otherwise, or to republish,requires a fee and/or speci�c permission.

integers and a list of oating point numbers.One widely accepted approach to parametricpolymorphism is the Hindley/Milner type system[Hin69, Mil78, DM82], which is used in StandardML [HMM86, Mil87], Miranda1[Tur85], and otherlanguages. On the other hand, there is no widelyaccepted approach to ad-hoc polymorphism, and soits name is doubly appropriate.This paper presents type classes, which extend theHindley/Milner type system to include certain kindsof overloading, and thus bring together the two sortsof polymorphism that Strachey separated.The type system presented here is a generalisa-tion of the Hindley/Milner type system. As in thatsystem, type declarations can be inferred, so explicittype declarations for functions are not required. Dur-ing the inference process, it is possible to translate aprogram using type classes to an equivalent programthat does not use overloading. The translated pro-grams are typable in the (ungeneralised) Hindley/Milner type system.The body of this paper gives an informal introduc-tion to type classes and the translation rules, whilean appendix gives formal rules for typing and trans-lation, in the form of inference rules (as in [DM82]).The translation rules provide a semantics for typeclasses. They also provide one possible implementa-tion technique: if desired, the new system could beadded to an existing language with Hindley/Milnertypes simply by writing a pre-processor.Two places where the issues of ad-hoc polymor-phism arise are the de�nition of operators for arith-metic and equality. Below we examine the ap-proaches to these three problems adopted by Stan-dard ML and Miranda; not only do the approachesdi�er between the two languages, they also di�erwithin a single language. But as we shall see, typeclasses provide a uniform mechanism that can ad-dress these problems.1Miranda is a trademark of Research Software Limited.1

This work grew out of the e�orts of the Haskellcommittee to design a lazy functional programminglanguage2. One of the goals of the Haskell commit-tee was to adopt \o� the shelf" solutions to problemswherever possible. We were a little surprised to re-alise that arithmetic and equality were areas whereno standard solution was available! Type classeswere developed as an attempt to �nd a better so-lution to these problems; the solution was judgedsuccessful enough to be included in the Haskell de-sign. However, type classes should be judged inde-pendently of Haskell; they could just as well be in-corporated into another language, such as StandardML.Type classes appear to be closely related to issuesthat arise in object-oriented programming, boundedquanti�cation of types, and abstract data types[CW85, MP85, Rey85]. Some of the connections areoutlined below, but more work is required to under-stand these relations fully.A type system very similar to ours has been dis-covered independently by Stefan Kaes [Kae88]. Ourwork improves on Kaes' in several ways, notablyby the introduction of type classes to group re-lated operators, and by providing a better transla-tion method.This paper is divided into two parts: the bodygives an informal introduction to type classes, whilethe appendix gives a more formal description. Sec-tion 2 motivates the new system by describing limi-tations of ad-hoc polymorphism as it is used in Stan-dard ML and Miranda. Section 3 introduces typeclasses by means of a simple example. Section 4illustrates how the example of Section 3 may betranslated into an equivalent program without typeclasses. Section 5 presents a second example, the def-inition of an overloaded equality function. Section 6describes subclasses. Section 7 discusses related workand concludes. Appendix A presents inference rulesfor typing and translation.2 Limitations of ad-hocpolymorphismThis section motivates our treatment of ad-hoc poly-morphism, by examining problems that arise with2The Haskell committee includes: Arvind, Brian Boutel,Jon Fairbairn, Joe Fasel, Paul Hudak, John Hughes, ThomasJohnsson, Dick Kieburtz, Simon Peyton Jones, RishiyurNikhil, Mike Reeve, PhilipWadler, DavidWise, and JonathanYoung.

arithmetic and equality in Standard ML and Mi-randa.Arithmetic. In the simplest approach to overload-ing, basic operations such as addition and multiplica-tion are overloaded, but functions de�ned in terms ofthem are not. For example, although one can write3*3 and 3.14*3.14, one cannot de�nesquare x = x*xand then write terms such assquare 3square 3.14This is the approach taken in Standard ML. (Inci-dentally, it is interesting to note that although Stan-dard ML includes overloading of arithmetic opera-tors, its formal de�nition is deliberately ambiguousabout how this overloading is resolved [HMT88, page71], and di�erent versions of Standard ML resolveoverloading in di�erent ways.)A more general approach is to allow the aboveequation to stand for the de�nition of two over-loaded versions of square, with types Int -> Intand Float -> Float. But consider the function:squares (x, y, z)= (square x, square y, square z)Since each of x, y, and z might, independently, haveeither type Int or type Float, there are eight possi-ble overloaded versions of this function. In general,there may be exponential growth in the number oftranslations, and this is one reason why such solu-tions are not widely used.In Miranda, this problem is side-stepped by notoverloading arithmetic operations. Miranda providesonly the oating point type (named \num"), andthere is no way to use the type system to indicatethat an operation is restricted to integers.Equality. The history of the equality operation ischeckered: it has been treated as overloaded, fullypolymorphic, and partly polymorphic.The �rst approach to equality is to make it over-loaded, just like multiplication. In particular, equal-ity may be overloaded on every monotype that ad-mits equality, i.e., does not contain an abstract typeor a function type. In such a language, one maywrite 3*4 == 12 to denote equality over integers, or'a' == 'b' to denote equality over characters. Butone cannot de�ne a function member by the equationsmember [] y = Falsemember (x:xs) y = (x == y) \/ member xs y2

and then write terms such asmember [1,2,3] 2member "Haskell" 'k'(We abbreviate a list of characters ['a','b','c']as "abc".) This is the approach taken in the �rstversion of Standard ML [Mil84].A second approach is to make equality fully poly-morphic. In this case, its type is(==) :: a -> a -> Boolwhere a is a type variable ranging over every type.The type of the member function is nowmember :: [a] -> a -> Bool(We write [a] for the type \list of a".) This meansthat applying equality to functions or abstract typesdoes not generate a type error. This is the approachtaken in Miranda: if equality is applied on a func-tion type, the result is a run-time error; if equality isapplied on an abstract type, the result is to test therepresentation for equality. This last may be consid-ered a bug, as it violates the principle of abstraction.A third approach is to make equality polymorphicin a limited way. In this case, its type is(==) :: a(==)-> a(==)-> Boolwhere a(==) is a type variable ranging only overtypes that admit equality. The type of the memberfunction is nowmember :: [a(==)] -> a(==)-> BoolApplying equality, or member, on a function type orabstract type is now a type error. This is the ap-proach currently taken in Standard ML, where a(==)is written ''a, and called an \eqtype variable".Polymorphic equality places certain demands uponthe implementor of the run-time system. For in-stance, in Standard ML reference types are testedfor equality di�erently from other types, so it mustbe possible at run-time to distinguish references fromother pointers.Object-oriented programming. It would be niceif polymorphic equality could be extended to includeuser-de�ned equality operations over abstract types.To implement this, we would need to require thatevery object carry with it a pointer to a method, aprocedure for performing the equality test. If we areto have more than one operation with this property,then each object should carry with it a pointer to a

dictionary of appropriate methods. This is exactlythe approach used in object-oriented programming[GR83].In the case of polymorphic equality, this meansthat both arguments of the equality function willcontain a pointer to the same dictionary (since theyare both of the same type). This suggests that per-haps dictionaries should be passed around indepen-dently of objects; now polymorphic equality wouldbe passed one dictionary and two objects (minus dic-tionaries). This is the intuition behind type classesand the translation method described here.3 An introductory exampleWe will now introduce type classes by means of anexample.Say that we wish to overload (+), (*), and negate(unary minus) on types Int and Float. To do so, weintroduce a new type class, called Num, as shown inthe class declaration in Figure 1. This declarationmay be read as stating \a type a belongs to class Numif there are functions named (+), (*), and negate,of the appropriate types, de�ned on it."We may now declare instances of this class, asshown by the two instance declarations in Figure 1.The assertion Num Int may be read \there are func-tions named (+), (*), and negate, of the appropri-ate types, de�ned on Int". The instance declarationjusti�es this assertion by giving appropriate bindingsfor the three functions. The type inference algorithmmust verify that these bindings do have the appropri-ate type, i.e., that addInt has type Int->Int->Int,and similarly for mulInt and negInt. (We assumethat addInt, mulInt, and negInt are de�ned in thestandard prelude.) The instance Num Float is de-clared similarly.A word on notational conventions: Type classnames and type constructor names begin with a capi-tal letter, and type variable names begin with a smallletter. Here, Num is a type class, Int and Float aretype constructors, and a is a type variable.We may now de�nesquare x = x * xThere exists an algorithm that can infer the typeof square from this de�nition (it is outlined in theappendix). It derives the type:square :: Num a => a -> a3

class Num a where(+), (*) :: a -> a -> anegate :: a -> ainstance Num Int where(+) = addInt(*) = mulIntnegate = negIntinstance Num Float where(+) = addFloat(*) = mulFloatnegate = negFloatsquare :: Num a => a -> asquare x = x * xsquares :: Num a, Num b, Num c => (a,b,c) -> (a,b,c)squares (x, y, z) = (square x, square y, square z)Figure 1: De�nition of arithmetic operationsdata NumD a = NumDict (a -> a -> a) (a -> a -> a) (a -> a)add (NumDict a m n) = amul (NumDict a m n) = mneg (NumDict a m n) = nnumDInt :: NumD IntnumDInt = NumDict addInt mulInt negIntnumDFloat :: NumD FloatnumDFloat = NumDict addFloat mulFloat negFloatsquare' :: NumD a -> a -> asquare' numDa x = mul numDa x xsquares' :: (NumD a, NumD b, NumD c) -> (a,b,c) -> (a,b,c)squares' (numDa, numDb, numDc) (x, y, z)= (square' numDa x, square' numDb y, square' numDc z)Figure 2: Translation of arithmetic operations4

This is read, \square has type a -> a, for every asuch that a belongs to class Num (i.e., such that (+),(*), and negate are de�ned on a)." We can nowwrite terms such assquare 3square 3.14and an appropriate type will be derived for each (Intfor the �rst expression, Float for the second). Onthe other hand, writing square 'x' will yield a typeerror at compile time, because Char has not beenasserted (via an instance declaration) to be a numerictype.Finally, if we de�ne the function squares men-tioned previously, then the type given in Figure 1will be inferred. This type may be read, \squareshas the type (a,b,c) -> (a,b,c) for every a, b,and c such that a, b, and c belong to class Num".(We write (a,b,c) for the type that is the cartesianproduct of a, b, and c.) So squares has one type,not eight. Terms such assquares (1, 2, 3.14)are legal, and derive an appropriate type.4 TranslationOne feature of this form of overloading is that itis possible at compile-time to translate any pro-gram containing class and instance declarations toan equivalent program that does not. The equiva-lent program will have a valid Hindley/Milner type.The translation method will be illustrated bymeans of an example. Figure 2 shows the transla-tion of the declarations in Figure 1.For each class declaration we introduce a newtype, corresponding to an appropriate \method dic-tionary" for that class, and functions to access themethods in the dictionary. In this case, correspond-ing to the class Num we introduce the type NumD asshown in Figure 2. The data declaration de�nesNumD to be a type constructor for a new type. Valuesof this type are created using the value constructorNumDict, and have three components of the typesshown. The functions add, mul, and neg take a valueof type NumD and return its �rst, second, and thirdcomponent, respectively.Each instance of the class Num is translated intothe declaration of a value of type NumD. Thus, corre-sponding to the instance Num Int we declare a datastructure of type NumD Int, and similarly for Float.

Each term of the form x+y, x*y, and negate x isnow replaced by a corresponding term, as follows:x+y --> add numD x yx*y --> mul numD x ynegate x --> neg numD xwhere numD is an appropriate dictionary. How is theappropriate dictionary determined? By its type. Forexample, we have the following translations:3 * 3--> mul numDInt 3 33.14 * 3.14--> mul numDFloat 3.14 3.14As an optimisation, it is easy for the compiler toperform beta reductions to transform these intomulInt 3 3 and mulFloat 3.14 3.14, respectively.If the type of a function contains a class, then thisis translated into a dictionary that is passed at run-time. For example, here is the de�nition of squarewith its typesquare :: Num a => a -> asquare x = x * xThis translates tosquare' :: NumD a -> a -> asquare' numD x = mul numD x xEach application of square must be translated topass in the appropriate extra parameter:square 3--> square' numDInt 3square 3.2--> square' numDFloat 3Finally, the translation of squares is also shownin Figure 2. Just as there is one type, rather thaneight, there is only one translation, rather than eight.Exponential growth is avoided.5 A further example: equalityThis section shows how to de�ne equality using classand instance declarations. Type classes serve as astraightforward generalisation of the \eqtype vari-ables" used in Standard ML. Unlike Standard ML,this mechanism allows the user to extend equalityover abstract types in a straightforward way. And,unlike Standard ML, this mechanism can be trans-lated out at compile time, so it places no special de-mands on the implementor of the run-time system.5

class Eq a where(==) :: a -> a -> boolinstance Eq Int where(==) = eqIntinstance Eq Char where(==) = eqCharmember :: Eq a => [a] -> a -> Boolmember [] y = Falsemember (x:xs) y = (x == y) \/ member xs yinstance Eq a, Eq b => Eq (a,b) where(u,v) == (x,y) = (u == x) & (v == y)instance Eq a => Eq [a] where[] == [] = True[] == y:ys = Falsex:xs == [] = Falsex:xs == y:ys = (x == y) & (xs == ys)data Set a = MkSet [a]instance Eq a => Eq (Set a) whereMkSet xs == MkSet ys = and (map (member xs) ys)& and (map (member ys) xs)Figure 3: De�nition of equalityThe de�nition is summarised in Figure 3. We be-gin by declaring a class, Eq, containing a single op-erator, (==), and instances Eq Int and Eq Char ofthis class.We then de�ne the member function in the usualway, as shown in Figure 3. The type of member neednot be given explicitly, as it can be inferred. Theinferred type is:member :: Eq a => [a] -> a -> BoolThis is read \member has type [a] -> a -> Bool,for every type a such that a is in class Eq(i.e., such that equality is de�ned on a)" (Thisis exactly equivalent to the Standard ML type''a list->''a->bool, where ''a is an \eqtypevariable".) We may now write terms such asmember [1,2,3] 2member "Haskell" 'k'which both evaluate to True.Next, we give an instance de�ning equality overpairs. The �rst line of this instance reads, \for every
a and b such that a is in class Eq and b is in class Eq,the pair (a,b) is also in class Eq." In other words,\if equality is de�ned on a and equality is de�ned onb, then equality is de�ned on (a,b)." The instancede�nes equality on pairs in terms of equality on thetwo components, in the usual way.Similarly, it is possible to de�ne equality over lists.The �rst line of this instance reads, \if equality isde�ned on a, then equality is de�ned on type `list ofa'." We may now write terms such as"hello" == "goodbye"[[1,2,3],[4,5,6]] == []member ["Haskell", "Alonzo"] "Moses"which all evaluate to False.The �nal data declaration de�nes a new type con-structor Set and a new value constructor MkSet. Ifa module exports Set but hides MkSet, then out-side of the module the representation of Set will notbe accessible; this is the mechanism used in Haskellto de�ne abstract data types. The �nal instance de-�nes equality over sets. The �rst line of this instancereads, \if equality is de�ned on a, then equality is6

data EqD a = EqDict (a -> a -> Bool)eq (EqDict e) = eeqDInt :: EqD InteqDInt = EqDict eqInteqDChar :: EqD InteqDChar = EqDict eqCharmember' :: EqD a -> [a] -> a -> Boolmember' eqDa [] y = Falsemember' eqDa (x:xs) y = eq eqDa x y \/ member' eqDa xs yeqDPair :: (EqD a, EqD b) -> EqD (a,b)eqDPair (eqDa,eqDb) = EqDict (eqPair (eqDa,eqDb))eqPair :: (EqD a, EqD b) -> (a,b) -> (a,b) -> BooleqPair (eqDa,eqDb) (x,y) (u,v) = eq eqDa x u & eq eqDb y veqDList :: EqD a -> EqD [a]eqDList eqDa = EqDict (eqList eqDa)eqList :: EqD a -> [a] -> [a] -> BooleqList eqDa [] [] = TrueeqList eqDa [] (y:ys) = FalseeqList eqDa (x:xs) [] = FalseeqList eqDa (x:xs) (y:ys) = eq eqDa x y & eq (eqDList eqDa) xs ysFigure 4: Translation of equalityde�ned on type `set of a'." In this case, sets are rep-resented in terms of lists, and two sets are taken tobe equal if every member of the �rst is a memberof the second, and vice-versa. (The de�nition usesstandard functions map, which applies a function toevery element of a list, and and, which returns theconjunction of a list of booleans.) Because set equal-ity is de�ned in terms of member, and member usesoverloaded equality, it is valid to apply equality tosets of integers, sets of lists of integers, and even setsof sets of integers.This last example shows how the type class mech-anism allows overloaded functions to be de�ned overabstract data types in a natural way. In particular,this provides an improvement over the treatment ofequality provided in Standard ML or Miranda.5.1 Translation of equalityWe now consider how the translation mechanism ap-plies to the equality example.Figure 4 shows the translation of the declarations
in Figure 3. The �rst part of the translation intro-duces nothing new, and is similar to the translationin Section 4.We begin by de�ning a dicitionary EqD correspond-ing to the class Eq. In this case, the class containsonly one operation, (==), so the dictionary has onlyone entry. The selector function eq takes a dictio-nary of type EqD a and returns the one entry, oftype a->a->Bool. Corresponding to the instancesEq Int and Eq Char we de�ne two dictionaries oftypes EqD Int and EqD Char, containing the appro-priate equality functions, and the function memberis translated to member' in a straightforward way.Here are three terms and their translations:3*4 == 12--> eq eqDInt (mul numDInt 3 4) 12member [1,2,3] 2--> member' eqDInt [1,2,3] 2member "Haskell" 'k'--> member' eqDChar "Haskell" 'k'The translation of the instance declaration for7

equality over lists is a little trickier. Recall that theinstance declaration beginsinstance Eq a => Eq [a] where...This states that equality is de�ned over type [a] ifequality is de�ned over type a. Corresponding tothis, the instance dictionary for type [a] is param-eterised by a dictionary for type a, and so has thetypeeqDList :: EqD a -> EqD [a]The remainder of the translation is shown in Figure4, as is the translation for equality over pairs. Hereare three terms and their translations:"hello" == "goodbye"--> eq (eqDList eqDChar)"hello""goodbye"[[1,2,3],[4,5,6]] == []--> eq (eqDList (eqDList eqDInt))[[1,2,3],[4,5,6]][]member ["Haskell", "Alonzo"] "Moses"--> member' (eqDList eqDChar)["Haskell", "Alonzo"]"Moses"As an optimisation, it is easy for the compiler to per-form beta reductions to transform terms of the formeq (eqDList eqD) into eqList eqD, where eqD isany dictionary for equality. This optimisation maybe applied to the �rst two examples above, and alsoto the de�nition of eqList itself in Figure 4.It is worthwhile to compare the e�ciency of thistranslation technique with polymorphic equality asfound in Standard ML or Miranda. The individualoperations, such as eqInt are slightly more e�cientthan polymorphic equality, because the type of theargument is known in advance. On the other hand,operations such as member and eqList must explic-itly pass an equality operation around, an overheadthat polymorphic equality avoids. Further experi-ence is needed to asses the trade-o� between thesecosts.6 SubclassesIn the preceeding, Num and Eq were considered ascompletely separate classes. If we want to use both

numerical and equality operations, then these eachappear in the type separately:memsq :: Eq a, Num a => [a]->a->Boolmemsq xs x = member xs (square x)As a practical matter, this seems a bit odd|wewould expect every data type that has (+), (*), andnegate de�ned on it to have (==) de�ned as well; butnot the converse. Thus it seems sensible to make Numa subclass of Eq.We can do this as follows:class Eq a => Num a where(+) :: a -> a -> a(*) :: a -> a -> anegate :: a -> aThis asserts that a may belong to class Num only ifit also belongs to class Eq. In other words, Num is asubclass of Eq, or, equivalently, Eq is a superclass ofNum. The instance declarations remain the same asbefore|but the instance declaration Num Int is onlyvalid if there is also an instance declaration Eq Intactive within the same scope.From this it follows that whenever a type containsNum a it must also contain Eq a; therefore as a con-venient abbreviation we permit Eq a to be omittedfrom a type whenever Num a is present. Thus, forthe type of memsq we could now writememsq :: Num a => [a]->a->BoolThe quali�er Eq a no longer needs to be mentioned,because it is implied by Num a.In general, each class may have any number of subor superclasses. Here is a contrived example:class Top a wherefun1 :: a -> aclass Top a => Left a wherefun2 :: a -> aclass Top a => Right a wherefun3 :: a -> aclass Left a, Right a => Bottom awherefun4 :: a -> aThe relationships among these types can be dia-grammed as follows: Top/ \/ \8

Left Right\ /\ /BottomAlthough multiple superclasses pose some prob-lems for the usual means of implementing object-oriented languages, they pose no problems for thetranslation scheme outlined here. The translationsimply assures that the appropriate dictionaries arepassed at run-time; no special hashing schemes arerequired, as in some object-oriented systems.7 ConclusionIt is natural to think of adding assertions to the classdeclaration, specifying properties that each instancemust satisfy:class Eq a where(==) :: a -> a -> Bool% (==) is an equivalence relationclass Num a wherezero, one :: a(+), (*) :: a -> a -> anegate :: a -> a% (zero, one, (+), (*), negate)% form a ringIt is valid for any proof to rely on these properties, solong as one proves that they hold for each instancedeclaration. Here the assertions have simply beenwritten as comments; a more sophisticated systemcould perhaps verify or use such assertions. This sug-gests a relation between classes and object-orientedprogramming of a di�erent sort, since class declara-tions now begin to resemble object declarations inOBJ [FGJM85].It is possible to have overloaded constants, such aszero and one in the above example. However, unre-stricted overloading of constants leads to situationswhere the overloading cannot be resolved withoutproviding extra type information. For instance, theexpression one * one is meaningless unless it is usedin a context that speci�es whether its result is an Intor a Float. For this reason, we have been careful inthis paper to use constants that are not overloaded:3 has type Int, and 3.14 has type Float. A moregeneral treatment of constants seems to require co-ercion between subtypes.It is reasonable to allow a class to apply to morethan one type variable. For instance, we might have

class Coerce a b wherecoerce :: a -> binstance Coerce Int Float wherecoerce = convertIntToFloatIn this case, the assertion Coerce a b might betaken as equivalent to the assertion that a is a sub-type of b. This suggests a relation between this workand work on bounded quanti�cation and on subtypes(see [CW85, Rey85] for excellent surveys of work inthis area, and [Wan87, Car88] for more recent work).Type classes may be thought of as a kind ofbounded quanti�er, limiting the types that a typevariable may instantiate to. But unlike other ap-proaches to bounded quanti�cation, type classes donot introduce any implicit coercions (such as fromsubtype Int to supertype Float, or from a recordwith �elds x, y, and z to a record with �elds x andy). Further exploration of the relationship betweentype classes and these other approaches is likely tobe fruitful.Type classes also may be thought of as a kindof abstract data type. Each type class speci�esa collection of functions and their types, but nothow they are to be implemented. In a way, eachtype class corresponds to an abstract data type withmany implementations, one for each instance dec-laration. Again, exploration of the relationship be-tween type classes and current work on abstract datatypes [CW85, MP85, Rey85] appears to be called for.We have already referred to the work of Kaes. Oneadvance of our work over his is the conceptual andnotational bene�t of grouping overloaded functionsinto classes. In addition, our system is more gen-eral; Kaes cannot handle overloadings involvingmorethan one type variable, such as the coerce exampleabove. Finally, our translation rules are an improve-ment over his. Kaes outlines two sets of translationrules (which he calls \semantics"), one static and onedynamic. His dynamic semantics is more limited inpower than the language described here; his staticsemantics appears similar in power, but, unlike thetranslation described here, can greatly increase thesize of a program.One drawback of our translation method is thatit introduces new parameters to be passed at run-time, corresponding to method dictionaries. It maybe possible to eliminate some of these costs by us-ing partial evaluation [BEJ88] to generate versionsof functions specialised for certain dictionaries; thiswould reduce run time at the cost of increasing codesize. Further work is needed to assess the trade-o�s9

between our approach (with or without partial eval-uation) and other techniques.It is clear from the above that many issues remainto be explored, and many tradeo�s remain to be as-sessed. We look forward to the practical experiencewith type classes that Haskell will provide.Acknowledgements. The important idea thatoverloading might be reected in the type of a func-tion was suggested (in a rather di�erent form) byJoe Fasel. For discussion and comments, we are alsograteful to: Luca Cardelli, Bob Harper, Paul Hudak,John Hughes, Stefan Kaes, John Launchbury, JohnMitchell, Kevin Mitchell, Nick Rothwell, Mads Tofte,David Watt, the members of the Haskell committee,and the members of IFIP 2.8.A Typing and translationrulesThis appendix presents the formal typing and trans-lation rules, one set of rules performing both typingand translation. The rules are an extension of thosegiven by Damas and Milner [DM82].A.1 LanguageTo present the typing and translation rules for over-loading, it is helpful to use a slightly simpler languagethat captures the essential issues. We will use a lan-guage with the usual constructs (identi�ers, appli-cations, lambda abstractions, and let expressions),plus two new constructs, over and inst expressions,that correspond to class and instance declarations,respectively. The syntax of expressions and types isgiven in Figure 5.An over expressionover x :: � in edeclares x to be an overloaded identi�er. Within thescope of this declaration, there may be one or morecorresponding inst expressionsinst x :: �0 = e0 in e1where the type �0 is an instance of the type � (anotion to be made precise later). Unlike lambdaand let expressions, the bound variables in over andinst expressions may not be redeclared in a smallerscope. Also unlike lambda and let expressions, overand inst expressions must contain explicit types; the

types in other expressions will be inferred by therules given here.As an example, a portion of the de�nition of equal-ity given in Figure 3 is shown in Figure 6. In this�gure, and in the rest of this appendix, we use Eq �as an abbreviation for the type � ! � ! Bool .As a second example, a portion of the de�nitionof arithmetic operators given in Figure 1 is shown inFigure 7. In this �gure we use Num � as an abbrevi-ation for the type(� ! � ! �; � ! � ! �; � ! �)In translating to the formal language, we havegrouped the three operators together into a \dictio-nary". This is straightforward, and independent ofthe central issue: how to resolve overloading.A.2 TypesThe Damas/Milner system distinguishes betweentypes (written �) and type schemes (written �). Oursystem adds a third syntactic group, predicated types.The syntax of these is given in Figure 5.In the full language, we wrote types such asmember :: Eq a => [a] -> a -> BoolIn the simpli�ed language, we write this in the formmember :: 8�: (eq :: Eq �): [�]! �! BoolThe restriction Eq a can be read \equality is de�nedon type a" and the corresponding restriction (eq ::Eq �) can be read \eq must have an instance of typeEq �".In general, we refer to (x :: �): � as a predicatedtype and (x :: �) as a predicate.We will give rules for deriving typings of the formA ` e :: � n eThis can be read as, \under the set of assumptionsA, the expression e has well-typing � with transla-tion e". Each typing also includes a translation, sothe rules derive typingntranslation pairs. It is possi-ble to present the typing rules without reference tothe translation, simply by deleting the `ne' portionfrom all rules. It is not, however, possible to presentthe translation rules independently, since typing con-trols the translation. For example, the introductionand elimination of predicates in types controls theintroduction and elimination of lambda abstractionsin translations.10

Identi�ers xExpressions e ::= xj e0 e1j �x: ej let x = e0 in e1j over x :: � in ej inst x :: � = e0 in e1Type Variables �Type Constructors �Types � ::= (� ! � 0) j � j �(�1 : : : �n)Predicated Types � ::= (x :: �): � j �Type-schemes � ::= 8�: � j �Figure 5: Syntax of expressions and typesover eq :: 8�: Eq � ininst eq :: Eq Int = eqInt ininst eq :: Eq Char = eqChar ininst eq :: 8�:8�:(eq :: Eq �):(eq :: Eq �):Eq (�; �)= �p:�q: eq (fst p) (fst q) ^ eq (snd p) (snd q) ineq (1; `a') (2; `b')Figure 6: De�nition of equality, formalisedover numD :: 8�: Num � ininst numD :: Num Int = (addInt ;mulInt ; negInt) ininst numD :: Num Float = (addFloat ;mulFloat ; negFloat) inlet (+) = fst numD inlet (�) = snd numD inlet negate = thd numD inlet square = �x: x � x insquare 3Figure 7: De�nition of arithmetic operations, formalised11

(eq ::o 8�:Eq �);(eq ::i Eq Int n eq (Eq Int));(eq ::i Eq Char n eq(Eq Char));(eq ::i 8�:8�:(eq :: Eq �):(eq :: Eq �):Eq (�; �) n eq(8�:8�:(eq::Eq �):(eq::Eq �):Eq (�;�)));(eq :: Eq � n eq (Eq �));(eq :: Eq � n eq (Eq �));(p :: (�; �) n p);(q :: (�; �) n q) Figure 8: Some assumptionsTAUT A; (x :: � n x) ` x :: � n xTAUT A; (x ::i � n x) ` x :: � n xA ` e :: 8�: � n eSPEC A ` e :: [� n �]� n eA ` e :: � n e� not free in AGEN A ` e :: 8�: � n eA ` e :: (� 0 ! �) n eA ` e0 :: � 0 n e0COMB A ` (e e0) :: � n (e e0)Ax; (x :: � 0 n x) ` e :: � n eABS A ` (�x: e) :: (� 0 ! �) n (�x: e)A ` e :: � n eAx; (x :: � n x) ` e0 :: � n e0LET A ` (let x = e in e0) :: � n (let x = e in e0)Figure 9: Typing and translation rules, part 112

A.3 AssumptionsTyping is done in the context of a set of assump-tions, A. The assumptions bind typing and transla-tion information to the free identi�ers in an expres-sion. This includes identi�ers bound in lambda andlet expression, and overloaded identi�ers. Althoughwe write them as sequences, assumptions are sets,and therefore the order is irrelevant.There are three forms of binding in an assumptionlist:� (x ::o �) is used for overloaded identi�ers;� (x ::i � n x�) is used for declared instances ofoverloaded identi�ers; and� (x :: � n x) is used for lambda and let boundvariables, and assumed instances of overloadedidenti�ers.In (x :: � n x) and (x ::i � n x), the identi�er x is thetranslation of x. If x is not an overloaded identi�er(that is, if x is bound by a lambda or let expression),then the assumption for x has the form (x :: � n x),so x simply translates as itself.Figure 8 shows the assumptions available when ap-plying the inference rules to the expression�p: �q: eq (fst p) (fstq) ^ eq (snd p) (sndq)in Figure 6. There are three (::i) bindings, corre-sponding to the three instance declarations, and two(::) bindings for the two bound variables, and two(::) bindings corresponding to assumed instances ofequality. (We shall see later how assumed instancesare introduced by the PRED rule.)A.4 InstancesGiven a set of assumptions A, we de�ne an instancerelation between type-schemes,� �A �0:This can be read as \� is more general than �0 underassumptions A". This is the same as the relationshipde�ned by Damas and Milner, but extended to applyto predicated types.Only certain sets of assumptions are valid. Thede�nition of validity depends on the �A relation, sothere is a (well-founded) mutual recursion betweenthe de�nition of valid assumptions and the de�nitionof �A. We give the de�nition of �A in this section,and the de�nition of valid assumptions in the next.

The instance relation� �A �0where � = 8�1 : : :�n: � and �0 = 8�1 : : :�m: �0, isde�ned as follows:� �A �0 i�(1) �i is not free in � and(2) 9�1; : : : ; �n: [�1=�1; : : : ; �n=�n]� �A �0This part is similar to the de�nition in Damas/Milner. The bound variables of � are specialised andthe resulting predicated types are compared.De�ne � �A �0 i� the type part of � equals the typepart of �0 (the same condition as Damas/Milner),and for every predicate (x :: �) in �, either� there is a predicate of the form (x :: �) in �0 (i.e.the predicate appears in both types); or� the predicate can be eliminated under assump-tions A.A predicate (x :: �) can be eliminated under A i�either� (x :: � n x) is in A; or� (x ::i �0 n x) is in A and �0 �A � .For example, if A0 is the set of assumptions inFigure 8, then(8�: (eq :: Eq �): [�]! �! Bool)�A0 ([Int]! Int ! Bool)holds. On the other hand,(8�: (eq :: Eq �): [�]! � ! Bool)�A0 ([Float]! Float ! Bool)does not hold, since A0 contains no binding assertingthat eq has an instance at type Float .Two type-schemes are uni�able if they overlap,that is, if there exists a type that is an instance ofboth under some set of assumptions. We say that �and �0 are uni�able if there exists a type � and validset of assumptions A such that� �A � ^ �0 �A �We write �#�0 if � and �0 are not uni�able.13

A; (x :: � n x�) ` e :: � n ePRED (x ::o �) 2 AA ` e :: (x :: �): � n (�x� : e)A ` e :: (x :: �): � n eA ` x :: � n e0REL (x ::o �) 2 AA ` e :: � n (e e0)Ax; (x ::o �) ` e :: � n eOVER A ` (over x :: � in e) :: � n eA; (x ::i �0 n x�0) ` e0 :: �0 n e0A; (x ::i �0 n x�0) ` e :: � n eINST (x ::o �) 2 AA ` (inst x :: �0 = e0 in e) :: � n (let x�0 = e0 in e)Figure 10: Typing and translation rules, part 2let eq (Eq Int) = eqInt inlet eq (Eq Char) = eqChar inlet eq (8�:8�:(eq::Eq �):(eq::Eq �):Eq (�;�))= �eq (Eq �):�eq(Eq �):�p:�q:eq (Eq �) (fst p) (fst q) ^ eq (Eq �) (snd p) (snd q) ineq (8�:8�:(eq::Eq �):(eq::Eq �):Eq (�;�)) eq (Eq Int) eq (Eq Char) (1; `a') (2; `b')Figure 11: Translation of equality, formalisedA1 : (eq ::o 8�:Eq �)(eqInt :: Eq Int n eqInt)(eqChar :: Eq Int n eqChar)e1 : inst eq :: Eq Int = eqInt ininst eq :: Eq Char = eqChar ineqFigure 12: A problematic expression14

A.5 Valid assumptionsAll sets of assumptions used within proofs must bevalid. The valid sets of assumptions are inductivelyde�ned as follows:� Empty. The empty assumption set, fg, is valid.� Normal identi�er. If A is a valid assumption set,x is an identi�er that does not appear in A, and� is a type scheme, thenA; (x :: � n x)is a valid assumption set.� Overloaded identi�er. If A is a valid assumptionset, x is an identi�er that does not appear in A,� is a type scheme, and �1; : : : ; �m are types and�1; : : : ; �n are types schemes such that{ � �A �i, for i from 1 to n, and{ � �A �i, for i from 1 to m, and{ �i#�j, for distinct i; j from 1 to nthen A; (x ::o �);(x ::i �1 n x�1); : : : ; (x ::i �n n x�n);(x :: �1 n x�1); : : : ; (x :: �m n x�m)is a valid assumption set.For example, the assumptions in Figure 8 are avalid set. However, this set would be invalid if aug-mented with the binding(eq ::i 8:Eq (Char ;) n eq(8:Eq (Char;)))as this instance overlaps with one already in the set.A.6 Inference rulesWe now give inference rules that characterise well-typings of the formA ` e :: � n eThe rules break into two groups, shown in Figures 9and 10. The �rst group is based directly on theDamas/Milner rules (Figure 9). There are two smalldi�erences: translations have been added to each rulein a straightforward way, and there are two TAUTrules instead of one (one rule for (::) bindings andone for (::i) bindings).

For example, let A0 be the set of assumptionsshown in Figure 8, together with assumptions aboutthe types of integer and character constants. Thenthe above rules are su�cient to derive thatA0 ` (eq 1 2) :: Bool n (eq (Eq Int) 1 2)A0 ` (eq `a' `b') :: Bool n (eq(Eq Char) `a' `b')That is, these rules alone are su�cient to resolvesimple overloading.More complicated uses of overloading require theremaining four rules, shown in Figure 10. The �rsttwo deal with the introduction and elimination ofpredicates, and the second two deal with the overand inst constructs.As we have seen, expressions with types that con-tain classes (that is, expressions with predicatedtypes) are translated to lambda abstractions thatrequire a dictionary to be passed at run-time. Thisidea is encapsulated in the PRED (\predicate") andREL (\release") rules. The PRED and REL rulesintroduce and eliminate predicates analogously tothe way that the GEN and SPEC rules introduceand eliminate bound type variables. In particular,the PRED rule adds a predicate to a type (and hasa lambda expression as its translation) and the RELrule removes a predicate from a type (and has an ap-plication as its translation).The OVER rule types over expressions addingthe appropriate (::o) binding to the environment,and the INST rule types inst expressions addingthe appropriate (::i) binding to the environment.The validity condition on sets of assumptions ensuresthat overloaded identi�ers are only instanced at validtypes.Notice that none of the translations contain overor inst expressions, therefore, they contain no over-loading. It is easy to verify that the translations arethemselves well-typed in the Hindley/Milner system.For example, the program in Figure 6 is translatedby these rules into the program in Figure 11. Thereader can easily verify that this corresponds to thetranslation from Figure 3 to Figure 4. We have thusshown how to formalise the typing and transforma-tion ideas that were presented informally in the bodyof the paper.A.7 Principal typingsGiven A and e, we call � a principal type scheme fore under A i�� A ` e :: � n e; and15

� for every �0, if A ` e :: �0 n e0 then � �A �0A key result in the Hindley/Milner system is thatevery expression e that has a well-typing has a prin-cipal type scheme.We conjecture that for every valid set of assump-tions A and every expression e containing no over orinst expressions, if e has a well-typing under A thene has a principal type scheme under A.For example, let A0 be the set of assumptions inFigure 8. Then the typingA0 ` eq :: 8�:Eq � n eq (Eq alpha)is principal. Examples of non-principal typings areA0 ` eq :: Eq Int n eq (Eq Int)A0 ` eq :: Eq Char n eq (Eq Char)Each of these is an instance of the principal typingunder assumptions A0.The existence of principal types is problematic forexpressions that contain over and inst expressions.For example, let A1 and e1 be the assumption setand expression in Figure 12. Then it is possible toderive the typingsA1 ` e1 :: Eq Int n eqIntA1 ` e1 :: Eq Char n eqCharBut there is no principal type! One possible resolu-tion of this is to require that over and inst declara-tions have global scope. It remains an open questionwhether there is some less drastic restriction thatstill ensures the existence of principal types.References[BEJ88] D. Bj�rner, A. Ershov, and N.D. Jones,editors, Partial Evaluation and MixedComputation, North-Holland, 1988 (toappear).[CW85] L. Cardelli and P. Wegner, On under-standing types, data abstraction, andpolymorphism.Computing Surveys 17, 4,December 1985.[Car88] L. Cardelli, Structural subtyping and thenotion of power type. In Proceedings ofthe 15'th Annual Symposium on Prin-ciples of Programming Languages, SanDiego, California, January 1988.

[DM82] L. Damas and R. Milner, Principal typeschemes for functional programs. In Pro-ceedings of the 9'th Annual Symposiumon Principles of Programming Languages,Albuquerque, N.M., January 1982.[FGJM85] K. Futasagi, J.A. Goguen, J.-P. Jouan-naud, and J. Meseguer, Principles ofOBJ2. In Proceedings of the 12'th An-nual Symposium on Principles of Pro-gramming Languages, January 1985.[GR83] A. Goldberg and D. Robson, Smalltalk-80: The Language and Its Implementa-tion. Addison-Wesley, 1983.[Hin69] R. Hindley, The principal type schemeof an object in combinatory logic. Trans.Am. Math. Soc. 146, pp. 29{60, Decem-ber 1969.[HMM86] R. Harper, D. MacQueen, and R. Milner,Standard ML. Report ECS-LFCS-86-2,Edinburgh University, Computer ScienceDept., 1986.[HMT88] R. Harper, R. Milner, and M. Tofte, Thede�nition of Standard ML, version 2. Re-port ECS-LFCS-88-62, Edinburgh Uni-versity, Computer Science Dept., 1988.[Kae88] S. Kaes, Parametric polymorphism. InProceedings of the 2'nd European Sym-posium on Programming, Nancy, France,March 1988. LNCS 300, Springer-Verlag,1988.[Mil78] R. Milner, A theory of type polymor-phism in programming. J. Comput. Syst.Sci. 17, pp. 348{375, 1978.[Mil84] R. Milner, A proposal for Standard ML.In Proceedings of the Symposium on Lispand Functional Programming, Austin,Texas, August 1984.[Mil87] R. Milner, Changes to the Standard MLcore language. Report ECS-LFCS-87-33,Edinburgh University, Computer ScienceDept., 1987.[MP85] J. C. Mitchell and G. D. Plotkin, Ab-stract types have existential type. In Pro-ceedings of the 12'th Annual Symposiumon Principles of Programming Languages,January 1985.16

[Rey85] J. C. Reynolds, Three approaches totype structure. In Mathematical Foun-dations of Software Development, LNCS185, Springer-Verlag, 1985.[Str67] C. Strachey, Fundamental concepts inprogramming languages. Lecture notesfor International Summer School in Com-puter Programming, Copenhagen, Au-gust 1967.[Tur85] D. A. Turner, Miranda: A non-strictfunctional language with polymorphictypes. In Proceedings of the 2'nd Inter-national Conference on Functional Pro-gramming Languages and Computer Ar-chitecture, Nancy, France, September1985. LNCS 201, Springer-Verlag, 1985.[Wan87] M. Wand, Complete type inference forsimple objects. In Proceedings of the Sym-posium on Logic in Computer Science,Ithaca, NY, June 1987. IEEE ComputerSociety Press, 1987.

17

