rogram Analysis
2016-17 It Semester

The Untyped Lambda Calculus

Amey Karkare
karkare@cse.iitk.ac.in
karkare@cse.iitb.ac.in

Department of CSE, IIT Kanpur/Bombay

karkare, CSE, IITK/B CS618 1/24

karkare@cse.iitk.ac.in
karkare@cse.iitb.ac.in

Reference Book

Types and Programming Languages by Benjamin C. Pierce

karkare, CSE, IITK/B CS618 2/24

The Abstract Syntax

t = Xx — Variable

karkare, CSE, lITK/B CS618 3/24

The Abstract Syntax

t = x — Variable
| Ax.t — Abstraction

karkare, CSE, lITK/B CS618 3/24

The Abstract Syntax

t = x — Variable
| Ax.t — Abstraction
|tt — Application

karkare, CSE, IITK/B cs618

3/24

The Abstract Syntax

t = x — Variable
| Ax.t — Abstraction
|tt — Application

Parenthesis, (...), can be used for grouping and scoping.

karkare, CSE, IITK/B cs618 3/24

Conventions

P Ax.titotz is an abbreviation for Ax.(11t2t3), i.e., the scope of
x is as far to the right as possible until it is

karkare, CSE, IITK/B cs618 4/24

Conventions

P Ax.titotz is an abbreviation for Ax.(11t2t3), i.e., the scope of
x is as far to the right as possible until it is

» terminated by a) whose matching (occurs to the left pf A,
OR

karkare, CSE, IITK/B cs618 4/24

Conventions

P Ax.titotz is an abbreviation for Ax.(11t2t3), i.e., the scope of
x is as far to the right as possible until it is

» terminated by a) whose matching (occurs to the left pf A,
OR
» terminated by the end of the term.

karkare, CSE, IITK/B cs618 4/24

Conventions

P Ax.titotz is an abbreviation for Ax.(11t2t3), i.e., the scope of
x is as far to the right as possible until it is
» terminated by a) whose matching (occurs to the left pf A,
OR
» terminated by the end of the term.
» Applications associate to the left: titot3 to be read as
(t1tg)t3 and not as t (tgtg)

karkare, CSE, IITK/B cs618 4/24

4 Conventions

P Ax.titotz is an abbreviation for Ax.(11t2t3), i.e., the scope of
x is as far to the right as possible until it is
» terminated by a) whose matching (occurs to the left pf A,
OR
» terminated by the end of the term.
b Applications associate to the left: t1tot3 to be read as
(t1tg)t3 and not as t (tgtg)
P Axyz.tis an abbreviation for AxAyAz.t which in turn is
abbreviation for Ax.(\y.(Az.t)).

karkare, CSE, IITK/B cs618 4/24

a-renaming

P The name of a bound variable has no meaning except for
its use to identify the bounding .

karkare, CSE, IITK/B cs618 5/24

4 a-renaming

R

P The name of a bound variable has no meaning except for
its use to identify the bounding .

» Renaming a X variable, including all its bound occurrences,
does not change the meaning of an expression. For
example, Ax.x x y is equivalentto \u.uu y

karkare, CSE, IITK/B cs618 5/24

4 a-renaming

R

P The name of a bound variable has no meaning except for
its use to identify the bounding .

» Renaming a X variable, including all its bound occurrences,
does not change the meaning of an expression. For
example, Ax.x x y is equivalentto \u.uu y

p Butitis not same as \x.x x w

karkare, CSE, IITK/B cs618 5/24

4 a-renaming

R

P The name of a bound variable has no meaning except for
its use to identify the bounding .

» Renaming a X variable, including all its bound occurrences,
does not change the meaning of an expression. For
example, Ax.x x y is equivalentto \u.uu y

» Butitis not same as A\x.x x w
» Can not change free variables!

karkare, CSE, IITK/B CS618 5/24

B-reduction (Execution Semantics)

b if an abstraction Ax.ty is applied to a term t, then the result
of the application is

karkare, CSE, IITK/B CS618 6/24

B-reduction (Execution Semantics)

b if an abstraction Ax.ty is applied to a term t, then the result
of the application is

» the body of the abstraction t; with all free occurrences of
the formal parameter x replaced with t,.

karkare, CSE, IITK/B cs618 6/24

B-reduction (Execution Semantics)

b if an abstraction Ax.ty is applied to a term t, then the result
of the application is
» the body of the abstraction t; with all free occurrences of
the formal parameter x replaced with t,.

» For example,

VX (F X)) g -5 Ax.g (g X)

karkare, CSE, IITK/B cs618 6/24

Caution

p During S-reduction, make sure a free variable is not
captured inadvertently.

karkare, CSE, IITK/B cs618 7/24

Caution

p During S-reduction, make sure a free variable is not
captured inadvertently.
» The following reduction is WRONG

(AXAy.x)(Ax.y) N Ay AX.y

karkare, CSE, IITK/B cs618 7/24

Caution

p During S-reduction, make sure a free variable is not
captured inadvertently.
» The following reduction is WRONG

(AXAY.X)(Ax.y) N AYAX.y
» Use a-renaming to avoid variable capture

XAV X)(AX.Y) -5 uAv.u)(Ax.y) -2 Avax.y

karkare, CSE, IITK/B cs618 7/24

Exercise

» Apply 3-reduction as far as possible

1. (Mxyz.xz(yz)(Axy. x)(\y.y)
2. (Ax. x x)(Ax. x x)
3. (Mxyzxz(yz)(xy. x)((Ax. x x)(Ax. x x))

karkare, CSE, IITK/B cs618 8/24

Church-Rosser Theorem

» Multiple ways to apply S-reduction

karkare, CSE, IITK/B CS618 9/24

Church-Rosser Theorem

» Multiple ways to apply S-reduction
P Some may not terminate

karkare, CSE, IITK/B CS618 9/24

Church-Rosser Theorem

» Multiple ways to apply S-reduction

P Some may not terminate

» However, if two different reduction sequences terminate
then they always terminate in the same term

karkare, CSE, IITK/B cs618 9/24

Church-Rosser Theorem

» Multiple ways to apply S-reduction

P Some may not terminate
» However, if two different reduction sequences terminate
then they always terminate in the same term
» Also called the Diamond Property

karkare, CSE, IITK/B cs618 9/24

Church-Rosser Theorem

karkare, CSE, IITK/B

Multiple ways to apply S-reduction

Some may not terminate

However, if two different reduction sequences terminate
then they always terminate in the same term

» Also called the Diamond Property

Leftmost, outermost reduction will find the normal form if it
exists

cs618

9/24

Programming in \ Calculus

b Where is the other stuff?

karkare, CSE, lITK/B CS618 10/24

Programming in \ Calculus

b Where is the other stuff?
p Constants?

karkare, CSE, IITK/B CS618 10/24

Programming in A Calculus

b Where is the other stuff?
» Constants?
» Numbers

karkare, CSE, IITK/B CS618 10/24

Programming in A Calculus

b Where is the other stuff?
» Constants?

» Numbers
» Booleans

karkare, CSE, IITK/B CS618 10/24

Programming in A Calculus

b Where is the other stuff?
» Constants?

» Numbers
» Booleans

» Complex Types?

karkare, CSE, IITK/B CS618 10/24

Programming in A Calculus

> Where is the other stuff?
» Constants?

» Numbers

» Booleans
» Complex Types?

» Lists

karkare, CSE, IITK/B CS618 10/24

Programming in A Calculus

> Where is the other stuff?
» Constants?

» Numbers

» Booleans
» Complex Types?

b Lists
» Arrays

karkare, CSE, IITK/B CS618 10/24

Programming in A Calculus

b Where is the other stuff?
» Constants?

» Numbers
» Booleans

» Complex Types?

b Lists
» Arrays

» Don’'t we need data?

karkare, CSE, IITK/B CS618

10/24

Programming in A Calculus

b Where is the other stuff?
» Constants?

» Numbers
» Booleans

» Complex Types?

b Lists
» Arrays

» Don’'t we need data?

karkare, CSE, IITK/B CS618

10/24

Programming in A Calculus

b Where is the other stuff?
» Constants?

» Numbers
» Booleans

» Complex Types?

b Lists
» Arrays

» Don’'t we need data?

Abstractions act as functions as well as data!

karkare, CSE, IITK/B CS618 10/24

Numbers: Church Numerals

» We need a “Zero”

karkare, CSE, lITK/B CS618 11/24

Numbers: Church Numerals

» We need a “Zero”
» “Absence of item”

karkare, CSE, IITK/B CS618 11/24

Numbers: Church Numerals

» We need a “Zero”
» “Absence of item”
» And something to count

karkare, CSE, IITK/B CS618 11/24

Numbers: Church Numerals

» We need a “Zero”
» “Absence of item”

» And something to count
» “Presence of item”

karkare, CSE, IITK/B CS618 11/24

Numbers: Church Numerals

» We need a “Zero”
» “Absence of item”
» And something to count
» “Presence of item”
» Intuition: Whiteboard and Marker

karkare, CSE, IITK/B CS618 11/24

Numbers: Church Numerals

» We need a “Zero”
» “Absence of item”

» And something to count
» “Presence of item”

» Intuition: Whiteboard and Marker
» Blank board represents Zero

karkare, CSE, IITK/B CS618 11/24

Numbers: Church Numerals

» We need a “Zero”
» “Absence of item”
» And something to count
» “Presence of item”
» Intuition: Whiteboard and Marker

» Blank board represents Zero
» Each mark by marker represents a count.

karkare, CSE, IITK/B CS618 11/24

Numbers: Church Numerals

» We need a “Zero”
» “Absence of item”
» And something to count
» “Presence of item”
» Intuition: Whiteboard and Marker

» Blank board represents Zero
» Each mark by marker represents a count.
» However, other pairs of objects will work as well

karkare, CSE, IITK/B CS618 11/24

Numbers: Church Numerals

» We need a “Zero”
» “Absence of item”
» And something to count
» “Presence of item”
» Intuition: Whiteboard and Marker

» Blank board represents Zero
» Each mark by marker represents a count.
» However, other pairs of objects will work as well

b Lets translate this intuition into A-expressions

karkare, CSE, IITK/B CS618 11/24

Numbers

b Zero= xmw.w

karkare, CSE, lITK/B CS618 12/24

Numbers

b Zero= mw. w
» No mark on the whiteboard

karkare, CSE, IITK/B CS618 12/24

Numbers

b Zero= mw.w
» No mark on the whiteboard
P One=mw.mw

karkare, CSE, IITK/B CS618 12/24

Numbers

b Zero= mw.w

» No mark on the whiteboard
P One=xmw.mw

» One mark on the whiteboard

karkare, CSE, IITK/B CS618 12/24

Numbers

b Zero= mw.w
» No mark on the whiteboard

P One=mw.mw
» One mark on the whiteboard

P Two= xmw.m(mw)

karkare, CSE, IITK/B CS618 12/24

Numbers

b Zero= mw.w

» No mark on the whiteboard
P One=xmw.mw

» One mark on the whiteboard
P Two= xmw.m(mw)

> ...

karkare, CSE, IITK/B CS618 12/24

Numbers

b Zero= mw.w

» No mark on the whiteboard
P One=xmw. mw

» One mark on the whiteboard
P Two= xmw.m(mw)
> ...
» What about operations?

karkare, CSE, IITK/B CS618 12/24

Numbers

b Zero= mw. w
» No mark on the whiteboard
P One=xmw. mw
» One mark on the whiteboard
P Two= xmw.m(mw)
> ...
» What about operations?
» add, multiply, subtract, divide, ...?

karkare, CSE, IITK/B CS618 12/24

Operations on Numbers

b succ=Ax mw.m(x mw)

karkare, CSE, lITK/B CS618 13/24

Operations on Numbers

b succ=Ax mw.m(x mw)
» Verify: succN=N + 1

karkare, CSE, IITK/B CS618 13/24

Operations on Numbers

b succ=Ax mw.m(x mw)
» Verify: succN=N + 1
b add=Xxymw.xm(y mw)

karkare, CSE, IITK/B CS618 13/24

Operations on Numbers

b succ=Ax mw.m(x mw)
» Verify: succN=N + 1

b add=Xxymw.xm(y mw)
» Verify:add MN=M+ N

karkare, CSE, IITK/B CS618 13/24

Operations on Numbers

b succ=Ax mw.m(x mw)
» Verify: succN=N + 1

b add=Xxymw.xm(y mw)
» Verify:add MN=M+ N

P mult=Xxymw.x(y m)w

karkare, CSE, IITK/B CS618 13/24

Operations on Numbers

b succ=Ax mw.m(x mw)
» Verify: succN=N + 1

b add=Xxymw.xm(y mw)
» Verify:add MN=M+ N

P mult=Xxymw.x(y m)w
» Verify: mut MN=M*N

karkare, CSE, IITK/B CS618 13/24

More Operations

P pred=XAx mw. x (Ag h. h(g m))(A\u. w)(\u. u)

karkare, CSE, IITK/B CS618 14/24

More Operations

P pred =X x mw.x (Ag h. h(g m))(A\u. w)(Au. u)
» Verify: pred N =N - 1

karkare, CSE, IITK/B CS618 14/24

More Operations

P pred =X x mw.x (Ag h. h(g m))(A\u. w)(Au. u)
» Verify: pred N =N - 1
P nminus = Ax y. y pred x

karkare, CSE, IITK/B CS618 14/24

More Operations

P pred=Xx mw. x (Ag h. h (g m))(A\u. w)(\u. u)
» Verify: pred N =N - 1
P nminus = Ax y. y pred x
» Verify: nminus M N = max(0, M - N) — natural subtraction

karkare, CSE, IITK/B CS618 14/24

Church Booleans

» True and False

karkare, CSE, lITK/B CS618 15/24

Church Booleans

b True and False
p Intuition: Selection of one out of two (complementary)
choices

karkare, CSE, IITK/B CS618 15/24

Church Booleans

b True and False

p Intuition: Selection of one out of two (complementary)
choices

P True=Axy. x

karkare, CSE, IITK/B CS618 15/24

Church Booleans

» True and False

p Intuition: Selection of one out of two (complementary)
choices

P True=Axy. x
P False=Xxy.y

karkare, CSE, IITK/B CS618 15/24

Church Booleans

» True and False

p Intuition: Selection of one out of two (complementary)
choices

P True=Axy. x
P False=Xxy.y
» Predicate:

karkare, CSE, IITK/B CS618 15/24

Church Booleans

» True and False

p Intuition: Selection of one out of two (complementary)
choices

P True=Axy. x
P False=Xxy.y
» Predicate:
b isZero = Ax. x (Au.False) True

karkare, CSE, IITK/B CS618 15/24

Operations on Booleans

» Logical operations

and = A\pq.pqp
or = Apq.ppq
not = Aptfpft

karkare, CSE, IITK/B CS618

16/24

Operations on Booleans

» Logical operations

and = Apq.pqp
or = Apq.ppq
not = Aptfpft

» The conditional operator if

if = MXceter (ceey)

karkare, CSE, IITK/B CS618

16/24

Operations on Booleans

» Logical operations

and = Apq.pqp
or = Apq.ppq
not = Aptfpft

» The conditional operator if
» if c e; ef reduces to e if ¢ is True, and to ey if ¢ is False

if = MXceter (ceey)

karkare, CSE, IITK/B CS618 16/24

More. . .

b More such types can be found at
https://en.wikipedia.org/wiki/Church_encoding

karkare, CSE, IITK/B CS618 17/24

https://en.wikipedia.org/wiki/Church_encoding

More. . .

b More such types can be found at
https://en.wikipedia.org/wiki/Church_encoding

p ltis fun to come up with your own definitions for constants
and operations over different types

karkare, CSE, IITK/B CS618 17/24

https://en.wikipedia.org/wiki/Church_encoding

More. . .

b More such types can be found at
https://en.wikipedia.org/wiki/Church_encoding

p ltis fun to come up with your own definitions for constants
and operations over different types
p or to develop understanding for existing definitions.

karkare, CSE, IITK/B CS618 17/24

https://en.wikipedia.org/wiki/Church_encoding

We are missing something!!

» The machinery described so far does not allow us to define
Recursive functions

» Factorial, Fibonacci, ...
b There is no concept of “named” functions
» So no way to refer to a function “recursively”!

» Fix-point computation comes to rescue

karkare, CSE, IITK/B CS618 18/24

Fix-point and Y -combinator

b A fix-point of a function f is a value psuchthatf p=p

karkare, CSE, IITK/B CS618 19/24

Fix-point and Y -combinator

b A fix-point of a function f is a value psuchthatf p=p

b Assume existence of a magic expression, called
Y-combinator, that when applied to a A-expression, gives
its fixed point

Yf=f(YT)

karkare, CSE, IITK/B CS618 19/24

Fix-point and Y -combinator

b A fix-point of a function f is a value psuchthatf p=p

b Assume existence of a magic expression, called
Y-combinator, that when applied to a A-expression, gives
its fixed point

Yf=f(YT)

» Y-combinator gives us a way to apply a function
recursively

karkare, CSE, IITK/B CS618 19/24

Recursion Example: Factorial

fact = An. if (isZero n) One (mult n (fact (pred n)))
= (X n. if (isZero n) One (mult n (f (pred n)))) fact

karkare, CSE, IITK/B CS618 20/24

Recursion Example: Factorial

fact = An. if (isZero n) One (mult n (fact (pred n)))
= (X n. if (isZero n) One (mult n (f (pred n)))) fact

fact = gfact

b factis a fixed point of the function

g = (Af n. if (isZero n)One (mult n (f (pred n))))

karkare, CSE, IITK/B CS618 20/24

Recursion Example: Factorial

fact = An. if (isZero n) One (mult n (fact (pred n)))
= (X n. if (isZero n) One (mult n (f (pred n)))) fact

fact = gfact

b factis a fixed point of the function
g = (Af n. if (isZero n)One (mult n (f (pred n))))
» Using Y-combinator,

fact = Yg

karkare, CSE, IITK/B CS618 20/24

Factorial: Verify

fact2 = (Yg)2

karkare, CSE, lITK/B CS618 21/24

Factorial: Verify

fact2 = (Yg)2
= g (Y g)2 - by definition of Y-combinator

karkare, CSE, IITK/B CS618 21/24

Factorial: Verify

fact2 = (Yg)2
= g (Y g)2 - by definition of Y-combinator
= (M. if (isZero n) 1 (mult n (f (pred n)))) (Y g) 2

karkare, CSE, IITK/B CS618 21/24

Factorial: Verify

fact2 = (Yg)2
= g (Y g)2 - by definition of Y-combinator
= (M. if (isZero n) 1 (mult n (f (pred n)))) (Y g) 2
(An. if (isZero n) 1 (mult n ((Y g) (pred n)))) 2

karkare, CSE, IITK/B CS618 21/24

é Factorial: Verify

fact2 = (Yg)2

g (Y g) 2 - by definition of Y-combinator

(Mfn. if (isZero n) 1 (mult n (f (pred n)))) (Y g) 2
= (An.if (isZero n) 1 (mult n ((Y g) (pred n)))) 2
= if (isZero2) 1 (mult 2 ((Y g)(pred2)))

karkare, CSE, IITK/B CS618 21/24

é Factorial: Verify

fact2 = (Yg)2
= g (Y g)2 - by definition of Y-combinator
= (M. if (isZero n) 1 (mult n (f (pred n)))) (Y g) 2
= (An.if (isZero n) 1 (mult n ((Y g) (pred n)))) 2
= If (isZero 2) 1 (mult 2 ((Y g)(pred2)))

= (mult2((Yg)1))

karkare, CSE, IITK/B CS618 21/24

é Factorial: Verify

fact2 = (Yg)2
= g (Y g)2 - by definition of Y-combinator
= (M. if (isZero n) 1 (mult n (f (pred n)))) (Y g) 2
= (An.if (isZero n) 1 (mult n ((Y g) (pred n)))) 2
= If (isZero 2) 1 (mult 2 ((Y g)(pred2)))

= (mult2((Yg)1))

= .(ﬁ;ult 2 (mult 1 (if (isZero 0) 1 (...))))

karkare, CSE, IITK/B CS618 21/24

é Factorial: Verify

fact2 = (Yg)2
= g (Y g)2 - by definition of Y-combinator
= (M. if (isZero n) 1 (mult n (f (pred n)))) (Y g) 2
= (An.if (isZero n) 1 (mult n ((Y g) (pred n)))) 2
= If (isZero 2) 1 (mult 2 ((Y g)(pred2)))

= (mult2((Yg)1))

= .(ﬁ;ult 2 (mult 1 (if (isZero 0) 1 (...))))
= (mult2 (mult11))

é Factorial: Verify

fact2 = (Yg)2
= g (Y g)2 - by definition of Y-combinator
= (M. if (isZero n) 1 (mult n (f (pred n)))) (Y g) 2
= (An.if (isZero n) 1 (mult n ((Y g) (pred n)))) 2
= If (isZero 2) 1 (mult 2 ((Y g)(pred2)))

= (mult2((Yg)1))

= .(ﬁ;ult 2 (mult 1 (if (isZero 0) 1 (...))))
= (mult2 (mult11))
= 2

Recursion and Y -combinator

» Y-combinator allows to unroll the body of loop
once—similar to one unfolding of recursive call

karkare, CSE, IITK/B CS618 22/24

Recursion and Y -combinator

» Y-combinator allows to unroll the body of loop
once—similar to one unfolding of recursive call

» Sequence of Y-combinator applications allow complete
unfolding of recursive calls

karkare, CSE, IITK/B CS618 22/24

Recursion and Y -combinator

» Y-combinator allows to unroll the body of loop
once—similar to one unfolding of recursive call

» Sequence of Y-combinator applications allow complete
unfolding of recursive calls

karkare, CSE, IITK/B CS618 22/24

Recursion and Y -combinator

» Y-combinator allows to unroll the body of loop
once—similar to one unfolding of recursive call

» Sequence of Y-combinator applications allow complete
unfolding of recursive calls

BUT, what about the existence of Y-combinator?

karkare, CSE, IITK/B CS618 22/24

Y -combinators

» Many candidates exist

Yi =M. (Ax. f(x x)) (Ax. f (x X))

karkare, CSE, IITK/B CS618 23/24

Y -combinators

» Many candidates exist

Yi =M. (Ax. f(x x)) (Ax. f (x X))

Y = \abcdefghijklimnopqstuvwxwzr .r(thisisafixedpointcombinator)

karkare, CSE, IITK/B CS618 23/24

Y -combinators

» Many candidates exist

Yi =M. (Ax. f(x x)) (Ax. f (x X))

Y = \abcdefghijklimnopqstuvwxwzr .r(thisisafixedpointcombinator)

Younny = TTTTT TTTTT TTTTT TTTTT TTTTT T

karkare, CSE, IITK/B CS618 23/24

Y -combinators

» Many candidates exist

Yi =M. (Ax. f(x x)) (Ax. f (x X))

Y = \abcdefghijklimnopqstuvwxwzr .r(thisisafixedpointcombinator)

Younny = TTTTT TTTTT TTTTT TTTTT TTTTT T

» Verify that (Y f) = f (Y f) for each

karkare, CSE, IITK/B CS618 23/24

Summary

b A cursory look at A-calculus

karkare, CSE, lITK/B CS618 24/24

Summary

b A cursory look at A-calculus
» Functions are data, and Data are functions!

karkare, CSE, IITK/B CS618 24/24

Summary

b A cursory look at A-calculus
» Functions are data, and Data are functions!

» Not covered but important to know: The power of A
calculus is equivalent to that of Turing Machine (“Church
Turing Thesis”)

karkare, CSE, IITK/B CS618 24/24

