

CS618: Program Analysis 2016-17 Ist Semester

The Untyped Lambda Calculus

Amey Karkare

karkare@cse.iitk.ac.in
karkare@cse.iitb.ac.in

Department of CSE, IIT Kanpur/Bombay

Types and Programming Languages by Benjamin C. Pierce

$$t := x - Variable$$

t :=
$$x$$
 - Variable
| $\lambda x.t$ - Abstraction

karkare, CSE, IITK/B CS618 3/24

karkare, CSE, IITK/B CS618 3/24

$$\begin{array}{ccccc} \mathbf{t} & \coloneqq & \mathbf{x} & & - \text{Variable} \\ & & | \ \lambda \mathbf{x}.\mathbf{t} & & - \text{Abstraction} \\ & & | \ \mathbf{t} \ \mathbf{t} & & - \text{Application} \end{array}$$

Parenthesis, (...), can be used for grouping and scoping.

CS618 karkare, CSE, IITK/B

Conventions

 $\lambda x.t_1t_2t_3$ is an abbreviation for $\lambda x.(t_1t_2t_3)$, i.e., the scope of x is as far to the right as possible until it is

- $\lambda x.t_1t_2t_3$ is an abbreviation for $\lambda x.(t_1t_2t_3)$, i.e., the scope of x is as far to the right as possible until it is
 - \blacktriangleright terminated by a) whose matching (occurs to the left pf $\lambda,$ OR

- $\lambda x.t_1t_2t_3$ is an abbreviation for $\lambda x.(t_1t_2t_3)$, i.e., the scope of x is as far to the right as possible until it is
 - terminated by a) whose matching (occurs to the left pf λ , OR
 - terminated by the end of the term.

- $\lambda x.t_1t_2t_3$ is an abbreviation for $\lambda x.(t_1t_2t_3)$, i.e., the scope of x is as far to the right as possible until it is
 - terminated by a) whose matching (occurs to the left pf λ , OR
 - terminated by the end of the term.
- Applications associate to the left: t₁t₂t₃ to be read as (t₁t₂)t₃ and not as t₁(t₂t₃)

- $\lambda x.t_1t_2t_3$ is an abbreviation for $\lambda x.(t_1t_2t_3)$, i.e., the scope of x is as far to the right as possible until it is
 - terminated by a) whose matching (occurs to the left pf λ , OR
 - terminated by the end of the term.
- Applications associate to the left: t₁t₂t₃ to be read as (t₁t₂)t₃ and not as t₁(t₂t₃)
- λxyz .t is an abbreviation for $\lambda x\lambda y\lambda z$.t which in turn is abbreviation for $\lambda x.(\lambda y.(\lambda z.t))$.

▶ The name of a bound variable has no meaning except for its use to identify the bounding λ .

- The name of a bound variable has no meaning except for its use to identify the bounding λ.
- Renaming a λ variable, including all its bound occurrences, does not change the meaning of an expression. For example, $\lambda x.x \ y$ is equivalent to $\lambda u.u \ u \ y$

- ▶ The name of a bound variable has no meaning except for its use to identify the bounding λ .
- Renaming a λ variable, including all its bound occurrences, does not change the meaning of an expression. For example, λx.x x y is equivalent to λu.u u y
 - But it is not same as $\lambda x.x.x.w$

- ▶ The name of a bound variable has no meaning except for its use to identify the bounding λ .
- Renaming a λ variable, including all its bound occurrences, does not change the meaning of an expression. For example, λx.x x y is equivalent to λu.u u y
 - But it is not same as $\lambda x.x.x.w$
 - Can not change free variables!

β -reduction (Execution Semantics)

• if an abstraction $\lambda x.t_1$ is applied to a term t_2 then the result of the application is

β-reduction (Execution Semantics)

- if an abstraction $\lambda x.t_1$ is applied to a term t_2 then the result of the application is
 - the body of the abstraction t₁ with all free occurrences of the formal parameter x replaced with t₂.

β-reduction (Execution Semantics)

- if an abstraction $\lambda x.t_1$ is applied to a term t_2 then the result of the application is
 - ▶ the body of the abstraction t₁ with all free occurrences of the formal parameter x replaced with t₂.
- For example,

$$(\lambda f \lambda x. f(f x)) g \xrightarrow{\beta} \lambda x. g(g x)$$

During β -reduction, make sure a free variable is not captured inadvertently.

- During β -reduction, make sure a free variable is not captured inadvertently.
- ▶ The following reduction is WRONG

$$(\lambda x \lambda y.x)(\lambda x.y) \xrightarrow{\beta} \lambda y.\lambda x.y$$

- During β -reduction, make sure a free variable is not captured inadvertently.
- ▶ The following reduction is **WRONG**

$$(\lambda x \lambda y.x)(\lambda x.y) \stackrel{\beta}{\longrightarrow} \lambda y.\lambda x.y$$

• Use α -renaming to avoid variable capture

$$(\lambda x \lambda y.x)(\lambda x.y) \xrightarrow{\alpha} (\lambda u \lambda v.u)(\lambda x.y) \xrightarrow{\beta} \lambda v.\lambda x.y$$

- Apply β -reduction as far as possible
- 1. $(\lambda x y z. x z (y z)) (\lambda x y. x) (\lambda y. y)$
- 2. $(\lambda x. x x)(\lambda x. x x)$
- 3. $(\lambda x \ y \ z . \ x \ z \ (y \ z)) \ (\lambda x \ y . \ x) \ ((\lambda x . \ x \ x)(\lambda x . \ x \ x))$

• Multiple ways to apply β -reduction

- Multiple ways to apply β -reduction
- Some may not terminate

- Multiple ways to apply β -reduction
- Some may not terminate
- ▶ However, if two different reduction sequences terminate then they always terminate in the same term

- Multiple ways to apply β -reduction
- Some may not terminate
- However, if two different reduction sequences terminate then they always terminate in the same term
 - Also called the *Diamond Property*

- Multiple ways to apply β-reduction
- Some may not terminate
- However, if two different reduction sequences terminate then they always terminate in the same term
 - Also called the Diamond Property
- Leftmost, outermost reduction will find the normal form if it exists

Where is the other stuff?

- Where is the other stuff?
- Constants?

- Where is the other stuff?
- Constants?
 - Numbers

- Where is the other stuff?
- Constants?
 - Numbers
 - Booleans

- Where is the other stuff?
- Constants?
 - Numbers
 - Booleans
- ▶ Complex Types?

- Where is the other stuff?
- Constants?
 - Numbers
 - Booleans
- Complex Types?
 - Lists

- Where is the other stuff?
- Constants?
 - Numbers
 - Booleans
- ▶ Complex Types?
 - Lists
 - Arrays

- Where is the other stuff?
- Constants?
 - Numbers
 - Booleans
- ▶ Complex Types?
 - Lists
 - Arrays
- Don't we need data?

- Where is the other stuff?
- Constants?
 - Numbers
 - Booleans
- ▶ Complex Types?
 - Lists
 - Arrays
- Don't we need data?

Programming in λ Calculus

- Where is the other stuff?
- Constants?
 - Numbers
 - Booleans
- ▶ Complex Types?
 - Lists
 - Arrays
- Don't we need data?

Abstractions act as functions as well as data!

▶ We need a "Zero"

- ▶ We need a "Zero"
 - "Absence of item"

- We need a "Zero"
 - "Absence of item"
- And something to count

- We need a "Zero"
 - "Absence of item"
- And something to count
 - "Presence of item"

- We need a "Zero"
 - "Absence of item"
- And something to count
 - "Presence of item"
- Intuition: Whiteboard and Marker

- We need a "Zero"
 - "Absence of item"
- And something to count
 - "Presence of item"
- Intuition: Whiteboard and Marker
 - Blank board represents Zero

- We need a "Zero"
 - "Absence of item"
- And something to count
 - "Presence of item"
- Intuition: Whiteboard and Marker
 - ▶ Blank board represents Zero
 - ▶ Each mark by marker represents a count.

- We need a "Zero"
 - "Absence of item"
- And something to count
 - "Presence of item"
- Intuition: Whiteboard and Marker
 - ▶ Blank board represents Zero
 - Each mark by marker represents a count.
 - However, other pairs of objects will work as well

- We need a "Zero"
 - "Absence of item"
- And something to count
 - "Presence of item"
- Intuition: Whiteboard and Marker
 - Blank board represents Zero
 - Each mark by marker represents a count.
 - However, other pairs of objects will work as well
- Lets translate this intuition into λ -expressions

 \triangleright Zero = $\lambda m w. w$

- \triangleright Zero = $\lambda m w. w$
 - No mark on the whiteboard

- \triangleright Zero = $\lambda m w. w$
 - No mark on the whiteboard
- One = $\lambda m w. m w$

- \triangleright Zero = $\lambda m w. w$
 - No mark on the whiteboard
- One = $\lambda m w. m w$
 - One mark on the whiteboard

- \triangleright Zero = $\lambda m w. w$
 - No mark on the whiteboard
- One = $\lambda m w$. m w
 - One mark on the whiteboard
- Two = $\lambda m w. m (m w)$

- \triangleright Zero = $\lambda m w. w$
 - No mark on the whiteboard
- One = $\lambda m w$. m w
 - One mark on the whiteboard
- $Two = \lambda m \ w. \ m \ (m \ w)$
- **.** . . .

- \triangleright Zero = $\lambda m w. w$
 - No mark on the whiteboard
- One = $\lambda m w. m w$
 - One mark on the whiteboard
- $Two = \lambda m \ w. \ m \ (m \ w)$
- **.** . . .
- What about operations?

- \triangleright Zero = $\lambda m w. w$
 - No mark on the whiteboard
- One = $\lambda m w$. m w
 - One mark on the whiteboard
- Two = $\lambda m w \cdot m (m w)$
- ...
- What about operations?
 - add, multiply, subtract, divide, ...?

• succ = $\lambda x m w . m (x m w)$

- succ = $\lambda x m w. m (x m w)$
 - ▶ Verify: succ N = N + 1

- succ = $\lambda x m w . m (x m w)$
 - Verify: succ N = N + 1
- add = $\lambda x y m w. x m (y m w)$

- \blacktriangleright succ = $\lambda x m w. m (x m w)$
 - Verify: succ N = N + 1
- add = $\lambda x y m w. x m (y m w)$
 - Verify: add M N = M + N

- \blacktriangleright succ = $\lambda x m w. m (x m w)$
 - Verify: succ N = N + 1
- add = $\lambda x y m w. x m (y m w)$
 - Verify: add M N = M + N
- mult = $\lambda x y m w. x (y m) w$

- \blacktriangleright succ = $\lambda x m w. m (x m w)$
 - Verify: succ N = N + 1
- add = $\lambda x y m w. x m (y m w)$
 - Verify: add M N = M + N
- mult = $\lambda x y m w. x (y m) w$
 - Verify: mult M N = M * N

• pred = $\lambda x m w. x (\lambda g h. h (g m))(\lambda u. w)(\lambda u. u)$

More Operations

▶ pred = λx m w. x (λg h. h (g m))(λu . w)(λu . u) ▶ Verify: pred N = N - 1

More Operations

- pred = $\lambda x m w. x (\lambda g h. h (g m))(\lambda u. w)(\lambda u. u)$
 - Verify: pred N = N 1
- nminus = $\lambda x y$. y pred x

More Operations

- pred = $\lambda x m w. x (\lambda g h. h (g m))(\lambda u. w)(\lambda u. u)$
 - Verify: pred N = N 1
- nminus = $\lambda x y$. y pred x
 - Verify: nminus M N = max(0, M N) natural subtraction

True and False

- True and False
- Intuition: Selection of one out of two (complementary) choices

- True and False
- Intuition: Selection of one out of two (complementary) choices
- True = $\lambda x y$. x

- True and False
- Intuition: Selection of one out of two (complementary) choices
- True = $\lambda x y$. x
- False = $\lambda x y$. y

- True and False
- Intuition: Selection of one out of two (complementary) choices
- True = $\lambda x y$. x
- False = $\lambda x y$. y
- Predicate:

- True and False
- Intuition: Selection of one out of two (complementary) choices
- True = $\lambda x y$. x
- False = $\lambda x y$. y
- Predicate:
 - isZero = λx . x (λu .False) True

Operations on Booleans

Logical operations

and =
$$\lambda p q. p q p$$

or = $\lambda p q. p p q$
not = $\lambda p t f. p f t$

Operations on Booleans

Logical operations

and =
$$\lambda p q. p q p$$

or = $\lambda p q. p p q$
not = $\lambda p t f. p f t$

▶ The conditional operator if

if =
$$\lambda c e_t e_f$$
. $(c e_t e_f)$

Operations on Booleans

Logical operations

and =
$$\lambda p q. p q p$$

or = $\lambda p q. p p q$
not = $\lambda p t f. p f t$

- ▶ The conditional operator if
 - if $c e_t e_t$ reduces to e_t if c is True, and to e_t if c is False

if =
$$\lambda c e_t e_f$$
. $(c e_t e_f)$

More such types can be found at

https://en.wikipedia.org/wiki/Church_encoding

- More such types can be found at https://en.wikipedia.org/wiki/Church_encoding
- It is fun to come up with your own definitions for constants and operations over different types

- More such types can be found at https://en.wikipedia.org/wiki/Church_encoding
- It is fun to come up with your own definitions for constants and operations over different types
- or to develop understanding for existing definitions.

We are missing something!!

- The machinery described so far does not allow us to define Recursive functions
 - Factorial, Fibonacci, ...
- There is no concept of "named" functions
 - ▶ So no way to refer to a function "recursively"!
- ▶ Fix-point computation comes to rescue

Fix-point and Y-combinator

A fix-point of a function f is a value p such that f p = p

Fix-point and Y-combinator

- A fix-point of a function f is a value p such that f p = p
- Assume existence of a magic expression, called Y-combinator, that when applied to a λ-expression, gives its fixed point

$$Y f = f (Y f)$$

Fix-point and Y-combinator

- A fix-point of a function f is a value p such that f p = p
- Assume existence of a magic expression, called Y-combinator, that when applied to a λ-expression, gives its fixed point

$$Y f = f (Y f)$$

 Y-combinator gives us a way to apply a function recursively

Recursion Example: Factorial

```
fact = \lambda n. if (isZero n) One (mult n (fact (pred n)))
= (\lambda f n. if (isZero n) One (mult n (f (pred n)))) fact
```


Recursion Example: Factorial

```
fact = \lambda n. if (isZero n) One (mult n (fact (pred n)))
       = (\lambda f \ n. \ if \ (isZero \ n) \ One \ (mult \ n \ (f \ (pred \ n)))) \ fact
fact = g fact
```

fact is a fixed point of the function

$$g = (\lambda f \ n. \ if \ (isZero \ n)One \ (mult \ n \ (f \ (pred \ n))))$$

karkare, CSE, IITK/B CS618 20/24

Recursion Example: Factorial

fact
$$= \lambda n$$
. if (isZero n) One (mult n (fact (pred n)))
 $= (\lambda f \ n$. if (isZero n) One (mult n (f (pred n)))) fact
fact $= g$ fact

fact is a fixed point of the function

$$g = (\lambda f \ n. \ if \ (isZero \ n)One \ (mult \ n \ (f \ (pred \ n))))$$

Using Y-combinator,

$$fact = Y g$$

fact 2 =
$$(Y g) 2$$

fact 2 =
$$(Y g) 2$$

= $g(Y g) 2$ - by definition of Y-combinator

fact 2 =
$$(Y g) 2$$

= $g(Y g) 2$ - by definition of Y-combinator
= $(\lambda fn. \ if \ (isZero \ n) \ 1 \ (mult \ n \ (f \ (pred \ n)))) \ (Y g) \ 2$


```
fact 2 = (Y g) 2
= g(Y g) 2 - by definition of Y-combinator
= (\lambda fn. if (isZero n) 1 (mult n (f (pred n)))) (Y g) 2
= (\lambda n. if (isZero n) 1 (mult n ((Y g) (pred n)))) 2
```



```
fact 2 = (Y g) 2

= g(Y g) 2 - by definition of Y-combinator

= (\lambda fn. if (isZero n) 1 (mult n (f (pred n)))) (Y g) 2

= (\lambda n. if (isZero n) 1 (mult n ((Y g) (pred n)))) 2

= if (isZero 2) 1 (mult 2 ((Y g)(pred2)))
```



```
fact 2 = (Y g) 2
       = g(Yg) 2 - by definition of Y-combinator
       = (\lambda f n. if (isZero n) 1 (mult n (f (pred n)))) (Y g) 2
       = (\lambda n. if (isZero n) 1 (mult n ((Y g) (pred n)))) 2
       = if (isZero 2) 1 (mult 2 ((Y g)(pred2)))
       = (mult 2 ((Y g) 1))
```



```
fact 2 = (Y g) 2

= g(Y g) 2 - by definition of Y-combinator

= (\lambda fn. if (isZero n) 1 (mult n (f (pred n)))) (Y g) 2

= (\lambda n. if (isZero n) 1 (mult n ((Y g) (pred n)))) 2

= if (isZero 2) 1 (mult 2 ((Y g)(pred2)))

= (mult 2 ((Y g) 1))

...

= (mult 2 (mult 1 (if (isZero 0) 1 (...))))
```



```
fact 2 = (Y g) 2

= g(Y g) 2 - by definition of Y-combinator

= (\lambda fn. if (isZero n) 1 (mult n (f (pred n)))) (Y g) 2

= (\lambda n. if (isZero n) 1 (mult n ((Y g) (pred n)))) 2

= if (isZero 2) 1 (mult 2 ((Y g)(pred2)))

= (mult 2 ((Y g) 1))

...
```

= (mult 2 (mult 1 (if (isZero 0) 1 (...))))

= (mult 2 (mult 1 1))


```
fact 2 = (Y g) 2
       = g(Yg) 2 - by definition of Y-combinator
       = (\lambda f n. if (isZero n) 1 (mult n (f (pred n)))) (Y g) 2
       = (\lambda n. if (isZero n) 1 (mult n ((Y g) (pred n)))) 2
       = if (isZero 2) 1 (mult 2 ((Y g)(pred2)))
       = (mult 2 ((Y g) 1))
            . . .
       = (mult 2 (mult 1 (if (isZero 0) 1 (...))))
       = (mult 2 (mult 1 1))
```


 Y-combinator allows to unroll the body of loop once—similar to one unfolding of recursive call

- Y-combinator allows to unroll the body of loop once—similar to one unfolding of recursive call
- Sequence of Y-combinator applications allow complete unfolding of recursive calls

- Y-combinator allows to unroll the body of loop once—similar to one unfolding of recursive call
- Sequence of Y-combinator applications allow complete unfolding of recursive calls

- Y-combinator allows to unroll the body of loop once—similar to one unfolding of recursive call
- Sequence of Y-combinator applications allow complete unfolding of recursive calls

BUT, what about the existence of *Y*-combinator?

$$Y_1 = \lambda f. (\lambda x. f(x x)) (\lambda x. f(x x))$$

$$Y_1 = \lambda f. (\lambda x. f(x x)) (\lambda x. f(x x))$$

 $Y = \lambda abcdefghijklmnopqstuvwxwzr.r(thisisafixedpointcombinator)$

$$Y_1 = \lambda f. (\lambda x. f(x x)) (\lambda x. f(x x))$$

 $Y = \lambda abcdefghijklmnopqstuvwxwzr.r(thisisafixedpointcombinator)$

$$Y_{\text{funny}} = TTTTT TTTTT TTTTT TTTTT TTTTT T$$

karkare, CSE, IITK/B CS618 23/24

$$Y_1 = \lambda f. (\lambda x. f(x x)) (\lambda x. f(x x))$$

 $Y = \lambda abcdefghijklmnopqstuvwxwzr.r(thisisafixedpointcombinator)$

$$Y_{\text{funny}} = TTTTT TTTTT TTTTT TTTTT TTTTT T$$

Verify that (Y f) = f (Y f) for each

• A cursory look at λ -calculus

- A cursory look at λ -calculus
- Functions are data, and Data are functions!

- A cursory look at λ-calculus
- Functions are data, and Data are functions!
- Not covered but important to know: The power of λ calculus is equivalent to that of Turing Machine ("Church Turing Thesis")