
CS618: Program Analysis

2016-17 Ist Semester

Pointer Analysis

Amey Karkare

karkare@cse.iitk.ac.in

karkare@cse.iitb.ac.in

Department of CSE, IIT Kanpur/Bombay

karkare, CSE, IITK/B CS618 1/27

Why Pointer Analysis?

Static analysis of pointers & references

S1. . . .

S2. q = p;
S3. while (. . .) {
S4. q = q.next ;
S5. }
S6. p.data = r1;
S7. q.data = q.data + r2;
S8. p.data = r1;
S9. r3 = p.data + r2;
S10. . . .

p

q

m1 m2 m3 mk
p next next

q
q

q

q

HeapStack

Superimposition of memory graphs after while loop

p and q may be aliases statement S6 onwards.

Statement S8 is not redundant.

karkare, CSE, IITK/B CS618 2/27

Why Pointer Analysis?

x = &a;

a = 5; *x = 15;

c = a + 1;

Reaching definitions analysis

Which defs

of a reach

here?

karkare, CSE, IITK/B CS618 3/27

Flow Sensitivity in Data Flow Analysis

Flow Sensitive Analysis

Order of execution: Determined by the semantics of

language

Point-specific information computed at each program point

within a procedure
A statement can “override” information computed by a
previous statement

Kill component in the flow function

karkare, CSE, IITK/B CS618 4/27

karkare@cse.iitk.ac.in
karkare@cse.iitb.ac.in

Flow Sensitivity in Data Flow Analysis

Flow Insensitive Analysis

Order of execution: Statements are assumed to execute in

any order
As a result, all the program points in a procedure receive
identical data flow information.

“Summary” for the procedure

Safe approximation of flow-sensitive point-specific

information for any point, for any given execution order

A statement can not “override” information computed by
another statement

NO Kill component in the flow function

If statement s kills some data flow information, there is an

alternate path that excludes s

karkare, CSE, IITK/B CS618 5/27

Examples of Flow Insensitive Analyses

Type checking, Type inferencing

Compute/Verify type of a variable/expression

Address taken analysis

Which variables have their addresses taken?

A very simple form of pointer analysis

Side effects analysis

Does a procedure modify address / global variable /

reference parameter / . . . ?

karkare, CSE, IITK/B CS618 6/27

Realizing Flow Insensitivity

b0

b1

b2 b3

b4

b5

ENTRY

b0 b1 b2 b3 b4 b5

EXIT

In practice, dependent constraints are collected in a global

repository in one pass and solved independently

karkare, CSE, IITK/B CS618 7/27

Alias Analysis vs. Points-to Analysis

Points-to Analysis Alias Analysis

x = &a x = a

x points-to a x and a are aliases

x → a x ≡ a

Reflexive? No Yes

Symmetric? No Yes

Transitive? No Must alias: Yes,

May alias: No

karkare, CSE, IITK/B CS618 8/27

Andersen’s Flow Insensitive Points-to Analysis

Subset based analysis

Plhs ⊇ Prhs

Program Constraints Points-to Graph

1 a = &b

2 c = a

3 a = &d 4 a = &e

5 b = a

Constraint

1 Pa ⊇ {b}
2 Pc ⊇ Pa

3 Pa ⊇ {d}
4 Pa ⊇ {e}
5 Pb ⊇ Pa

a ba

c

b

d

e
b

a

c

b

d

e

karkare, CSE, IITK/B CS618 9/27

Steensgaard’s Flow Insensitive Points-to Analysis

Equality based analysis: Plhs ≡ Prhs

Only one Points-to successor at any time, merge

(potential) multiple successors

Program Constraints Points-to Graph

1 a = &b

2 c = a

3 a = &d 4 a = &e

5 b = a

Constraint

1 Pa ⊇ {b}
2 MERGE(Pc ,Pa)

3 Pa ⊇ {d}
4 Pa ⊇ {e}
5 MERGE(Pb,Pa)

a ba

c

b

d

e

a

c

b

d

e

karkare, CSE, IITK/B CS618 10/27

Comparing Anderson’s and Steensgaard’s Analyses

Program Subset based Equality based

Points-to Graph Points-to Graph

a = &b

c = a

a = &d a = &e

b = a

a

c

b

d

e

a

c

b

d

e

karkare, CSE, IITK/B CS618 11/27

Comparing Anderson’s and Steensgaard’s Analyses

a = &b;

a b

b = &c;

a b c

d = &e;

a b c

d e

a = &d;

Subset based Equality based

a

b c

d e

a b,c d,e

karkare, CSE, IITK/B CS618 12/27

Pointer Indirection Constraints

Stmt Subset based Equality based

a = *b Pa ⊇ Pc , ∀c ∈ Pb MERGE(Pa,Pc), ∀c ∈ Pb

*a = b Pc ⊇ Pb, ∀c ∈ Pa MERGE(Pb,Pc), ∀c ∈ Pa

karkare, CSE, IITK/B CS618 13/27

Must Points-to Analysis

1 x = &a;

2 3

4

x definitely points-to a at various points in the program

x
D
→ a

karkare, CSE, IITK/B CS618 14/27

May Points-to Analysis

1 x = &a;

2 x = &b; 3

4

At OUT of 2, x definitely points-to b

At OUT of 3, x definitely points-to a

At IN of 4, x possibly points-to a (or b)

x
P
→ {a,b}

karkare, CSE, IITK/B CS618 15/27

Must Alias Analysis

1 x = a;

2 3

4 y = a;

x and a always refer to same memory location

x
D

≡ a

x , y and a refer to same location at OUT of 4.

x
D

≡ y
D

≡ a

karkare, CSE, IITK/B CS618 16/27

May Alias Analysis

1 x = a;

2 x = b; 3

4

At OUT of 2, x and b are must aliases

At OUT of 3, x and a are must aliases
At IN of 4, x can possibly be aliased with either a (or b)

(x ,a), (x ,b)

If we say: (x , a, b), Is it Precise? Safe?

karkare, CSE, IITK/B CS618 17/27

Must Pointer Analysis

Makes sense only for Flow Sensitive analysis

Why?

Must analysis ⇒ Flow sensitive analysis

Flow insensitive analysis ⇒ May analysis

Why?

karkare, CSE, IITK/B CS618 18/27

Updating Information: When Can We Kill?

Never if flow insensitive analysis

For flow sensitive

1 x = &a;

2
y = &b;

w = &c;

3 z = &x ; 4 z = &y ;

5
∗z = NULL;

∗w = NULL;

x , y may or may not get modified in 5: Weak update

c definitely gets modified in 5: Strong update

Must information is killed by Strong and Weak updates

May information is killed only by Strong updates

karkare, CSE, IITK/B CS618 19/27

Flow Functions for Points-to Analysis

Basic statements for pointer manipulation

x = y

x = &y

x = *y

*x = y

Other statements can be rewritten in terms of above

*x = *y ⇒ t = *y, *x = t

x = NULL ⇒ treat NULL as a special variable

OUT = IN − kill ∪ gen

with a twist!

karkare, CSE, IITK/B CS618 20/27

Flow Function: x = y

Maygen = {x → p | y → p ∈ MayIN}

Maykill =
⋃

p∈Vars

{x → p}

Mustgen = {x → p | y → p ∈ MustIN}

Mustkill =
⋃

p∈Vars

{x → p}

karkare, CSE, IITK/B CS618 21/27

Flow Function: x = &y

Maygen = {x → y}

Maykill =
⋃

p∈Vars

{x → p}

Mustgen = {x → y}

Mustkill =
⋃

p∈Vars

{x → p}

karkare, CSE, IITK/B CS618 22/27

Flow Function: x = *y

Maygen = {x → p | y → p′ ∈ MayIN and p′ → p ∈ MayIN}

Maykill =
⋃

p∈Vars

{x → p}

Maygen = {x → p | y → p′ ∈ MustIN and p′ → p ∈ tin}

Maykill =
⋃

p∈Vars

{x → p}

karkare, CSE, IITK/B CS618 23/27

Flow Function: *x = y

Maygen = {p → p′ | x → p ∈ MayIN , y → p′ ∈ MayIN}

Maykill =
⋃

p′∈Vars

{p → p′ | x → p ∈ MustIN} Strong update!!

Mustgen = {p → p′ | x → p ∈ MustIN , y → p′ ∈ MustIN}

Mustkill =
⋃

p′∈Vars

{p → p′ | x → p ∈ MayIN} Weak update!!

karkare, CSE, IITK/B CS618 24/27

Summarizing Flow Functions

May Points-To analysis

A points-to pair should be removed only if it must be

removed along all paths

⇒ should remove only strong updates

⇒ should kill using Must Points-To information

Must Points-To analysis

A points-to pair should be removed if it can be removed

along some path

⇒ should remove all weak updates

⇒ should kill using May Points-To information

Must Points-To ⊆ May Points-To

karkare, CSE, IITK/B CS618 25/27

Safe Approximations for May and Must Points-to

A pointer variable

May Must

Points-to points to every possible

location

points to nothing

Alias aliased to every other

pointer variable

only to itself

karkare, CSE, IITK/B CS618 26/27

Non-Distributivity of Points-to Analysis

May Information Must Information

1

2 x = &z 3 y = &w

4 ∗x = y

1 x = a;

2
b = &c

c = &d
3

b = &e

e = &d

4 a = ∗b

z → w is spurious a → d is missing

karkare, CSE, IITK/B CS618 27/27

