CS618: Program Analysis 2016-17 Ist Semester Interprocedural Data Flow Analysis main

> Amey Karkare karkare@cse.iitk.ac.in

> karkare@cse.iitb.ac.in

Department of CSE, IIT Kanpur/Bombay

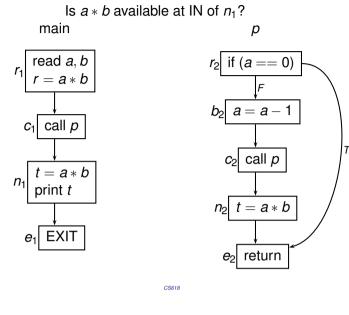
CS618

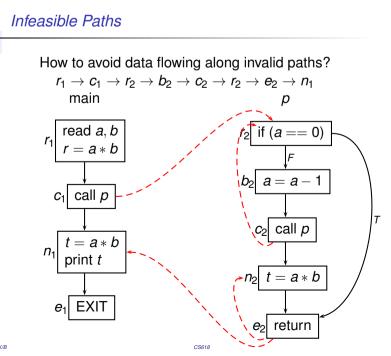
karkare, CSE, IITK/B

Challenges

Infeasible paths

- Recursion
- > Function pointers and virtual functions
- Dynamic functions (functional programs)

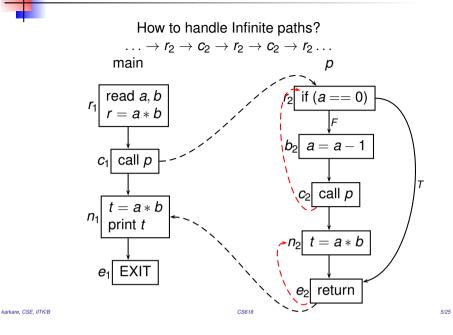




1/25

karkare CSE IITK/B

2/25



- > Target of a function can not be determined statically
- Function Pointers (including virtual functions)
 - double (*fun) (double arg);
 - if (cond)
 fun = sqrt;
 else
 - fun = fabs;
 - ...
 - fun(x);

karkare CSE IITK/B

> Dynamically created functions (in functional languages)

CS618

6/25

No static control flow graph!

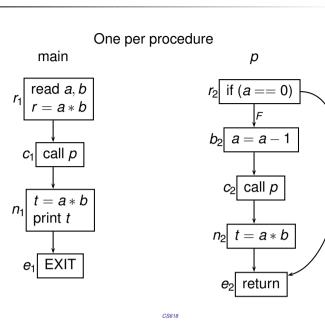
Functional approach

Two Approaches

- procedures as structured blocks
- input-output relation (*functions*) for each block
- function used at call site to compute the effect of procedure on program state
- Call-strings approach
 - single flow graph for whole program
 - value of interest tagged with the history of unfinished procedure calls

M. Sharir, and A. Pnueli. **Two Approaches to Inter-Procedural Data-Flow Analysis**. In Jones and Muchnik, editors, Program Flow Analysis: Theory and Applications. Prentice-Hall, 1981.

Notations and Terminology



- > Parameterless procedures, to ignore the problems of
 - aliasing
 - recursion stack for formal parameters
- > No procedure variables (pointers, virtual functions etc.)

- Single instruction basic blocks
- ▶ Unique exit block, denoted *e_p*
- Unique entry block, denoted r_p (root block)
- Edge (m, n) if direct control transfer from (the end of) block m to (the start of) block n
- Path: $(n_1, n_2, ..., n_k)$
 - $(n_i, n_{i+1}) \in \text{Edge set for } 1 \leq i < k$
 - path_G(m, n): Set of all path in graph G = (N, E) leading from m to n

karkare, CSE, IITK/B	CS618 1	10/25
Data Flow Framework		
 (L, F): data flow framework L: a meet-semilattice Largest element Ω F: space of propagation fund Closed under composition Contains <i>id</i>_L(x) = x and t f_(m,n) ∈ F represents propage of control flow graph G = (N Change of DF values from start of n 	ictions n and meet $f_{\Omega}(x) = \Omega$ gation function for edge (m, n)	

karkare CSE IITK/B

9/25

 $egin{array}{rcl} x_r &=& BoundaryInfo \ x_n &=& \bigwedge_{(m,n)\in E} f_{(m,n)}(x_m) \qquad n\in N-r \end{array}$

MFP solution, approximation of MOP

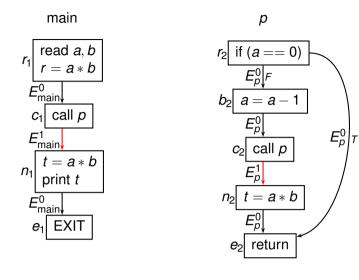
$$y_n = \bigwedge \{f_p(BoundaryInfo) : p \in \text{path}_G(r, n)\} \quad n \in N$$

Functional Approach to Interprocedural Analysis

- Procedures treated as structures of blocks
- Computes relationship between DF value at entry node and related data at *any* internal node of procedure
- At call site, DF value propagated directly using the computed relation

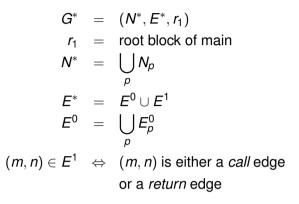
First Representation:

 $G = \bigcup \{G_p : p \text{ is a procedure in program}\}$ $G_p = (N_p, E_p, r_p)$ $N_p = \text{ set of all basic block of } p$ $r_p = \text{ root block of } p$ $E_p = \text{ set of edges of } p$ $= E_p^0 \cup E_p^1$ $(m, n) \in E_p^0 \iff \text{ direct control transfer from } m \text{ to } n$ $(m, n) \in E_p^1 \iff m \text{ is a call block, and } n \text{ immediately follows } m$



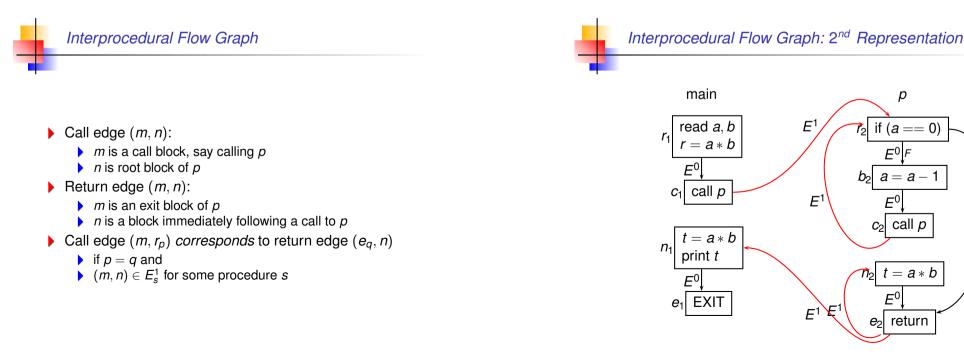
CS618

Second representation



CS618

CS618



17/25

18/25

karkare CSE IITK/B

karkare CSE IITK/B

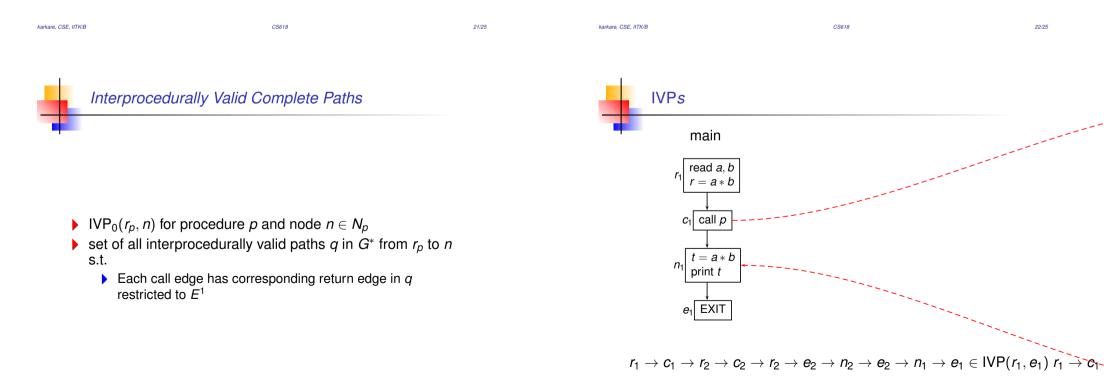
20/25

 $E^0|_T$

Interprocedurally Valid Paths Proper se

- *G*^{*} ignores the special nature of call and return edges
- ▶ Not all paths in *G*^{*} are feasible
 - > do not represent potentially valid execution paths
- IVP(r₁, n): set of all interprocedurally valid paths from r₁ to n
- ▶ Path $q \in \text{path}_{G^*}(r_1, n)$ is in IVP (r_1, n)
 - iff sequence of all E^1 edges in q (denoted q_1) is proper

- q_1 without any return edge is proper
- let $q_1[i]$ be the first return edge in q_1 . q_1 is proper if
 - *i* > 1; and
 - $q_1[i-1]$ is call edge corresponding to $q_1[i]$; and
 - q'_1 obtained from deleting $q_1[i-1]$ and $q_1[i]$ from q_1 is proper



$$q \in IVP(r_{main}, n)$$

$$\Leftrightarrow$$

$$\begin{array}{lll} q & = & q_1 \parallel (c_1, r_{p_2}) \parallel q_2 \parallel \cdots \parallel (c_{j-1}, r_{p_j}) \parallel q_j \\ & & \text{where for each } i < j, q_i \in \mathsf{IVP}_0(r_{p_i}, c_i) \text{ and } q_j \in \mathsf{IVP}_0(r_{p_j}, n) \end{array}$$

karkare, CSE, IITK/B CS618 25/25