
CS618: Program Analysis

2016-17 Ist Semester

Interprocedural Data Flow Analysis

Amey Karkare

karkare@cse.iitk.ac.in

karkare@cse.iitb.ac.in

Department of CSE, IIT Kanpur/Bombay

karkare, CSE, IITK/B CS618 1/25

Interprocedural Analysis: WHY?

Is a ∗ b available at IN of n1?

main p

r1
read a, b

r = a ∗ b

c1 call p

n1
t = a ∗ b

print t

e1 EXIT

r2 if (a == 0)

b2 a = a − 1

c2 call p

n2 t = a ∗ b

e2 return

F

T

karkare, CSE, IITK/B CS618 2/25

Challenges

Infeasible paths

Recursion

Function pointers and virtual functions

Dynamic functions (functional programs)

karkare, CSE, IITK/B CS618 3/25

Infeasible Paths

How to avoid data flowing along invalid paths?

r1 → c1 → r2 → b2 → c2 → r2 → e2 → n1

main p

r1
read a, b

r = a ∗ b

c1 call p

n1
t = a ∗ b

print t

e1 EXIT

r2 if (a == 0)

b2 a = a − 1

c2 call p

n2 t = a ∗ b

e2 return

F

T

karkare, CSE, IITK/B CS618 4/25

karkare@cse.iitk.ac.in
karkare@cse.iitb.ac.in


Recursion

How to handle Infinite paths?

. . . → r2 → c2 → r2 → c2 → r2 . . .

main p

r1
read a, b

r = a ∗ b

c1 call p

n1
t = a ∗ b

print t

e1 EXIT

r2 if (a == 0)

b2 a = a − 1

c2 call p

n2 t = a ∗ b

e2 return

F

T

karkare, CSE, IITK/B CS618 5/25

Function Variables

Target of a function can not be determined statically

Function Pointers (including virtual functions)

double (*fun)(double arg);

...

if (cond)

fun = sqrt;

else

fun = fabs;

...

fun(x);

Dynamically created functions (in functional languages)

No static control flow graph!

karkare, CSE, IITK/B CS618 6/25

Two Approaches

Functional approach

procedures as structured blocks

input-output relation (functions) for each block

function used at call site to compute the effect of procedure

on program state

Call-strings approach

single flow graph for whole program

value of interest tagged with the history of unfinished

procedure calls

M. Sharir, and A. Pnueli. Two Approaches to Inter-Procedural Data-Flow Analysis.

In Jones and Muchnik, editors, Program Flow Analysis: Theory and Applications.

Prentice-Hall, 1981.

karkare, CSE, IITK/B CS618 7/25

Notations and Terminology



Control Flow Graph

One per procedure

main p

r1
read a, b

r = a ∗ b

c1 call p

n1
t = a ∗ b

print t

e1 EXIT

r2 if (a == 0)

b2 a = a − 1

c2 call p

n2 t = a ∗ b

e2 return

F

T

karkare, CSE, IITK/B CS618 9/25

Control Flow Graph for Procedure p

Single instruction basic blocks

Unique exit block, denoted ep

Unique entry block, denoted rp (root block)

Edge (m, n) if direct control transfer from (the end of) block

m to (the start of) block n

Path: (n1, n2, . . . , nk )

(ni ,ni+1) ∈ Edge set for 1 ≤ i < k

pathG(m,n): Set of all path in graph G = (N,E) leading

from m to n

karkare, CSE, IITK/B CS618 10/25

Assumptions

Parameterless procedures, to ignore the problems of

aliasing

recursion stack for formal parameters

No procedure variables (pointers, virtual functions etc.)

karkare, CSE, IITK/B CS618 11/25

Data Flow Framework

(L,F ): data flow framework

L: a meet-semilattice

Largest element Ω

F : space of propagation functions

Closed under composition and meet

Contains idL(x) = x and fΩ(x) = Ω

f(m,n) ∈ F represents propagation function for edge (m, n)
of control flow graph G = (N,E)

Change of DF values from the start of m, through m, to the

start of n

karkare, CSE, IITK/B CS618 12/25



Data Flow Equations

xr = BoundaryInfo

xn =
∧

(m,n)∈E

f(m,n)(xm) n ∈ N − r

MFP solution, approximation of MOP

yn =
∧

{fp(BoundaryInfo) : p ∈ pathG(r , n)} n ∈ N

karkare, CSE, IITK/B CS618 13/25

Functional Approach

to

Interprocedural Analysis

Functional Approach

Procedures treated as structures of blocks

Computes relationship between DF value at entry node

and related data at any internal node of procedure

At call site, DF value propagated directly using the

computed relation

karkare, CSE, IITK/B CS618 15/25

Interprocedural Flow Graph

First Representation:

G =
⋃

{Gp : p is a procedure in program}

Gp = (Np,Ep, rp)

Np = set of all basic block of p

rp = root block of p

Ep = set of edges of p

= E0
p ∪ E1

p

(m, n) ∈ E0
p ⇔ direct control transfer from m to n

(m, n) ∈ E1
p ⇔ m is a call block, and n immediately follows m

karkare, CSE, IITK/B CS618 16/25



Interprocedural Flow Graph: 1st Representation

main p

r1
read a, b

r = a ∗ b

c1 call p

n1
t = a ∗ b

print t

e1 EXIT

E0
main

E1
main

E0
main

r2 if (a == 0)

b2 a = a − 1

c2 call p

n2 t = a ∗ b

e2 return

FE0
p

E0
p

E1
p

E0
p

TE0
p

karkare, CSE, IITK/B CS618 17/25

Interprocedural Flow Graph

Second representation

G∗ = (N∗
,E∗

, r1)

r1 = root block of main

N∗ =
⋃

p

Np

E∗ = E0 ∪ E1

E0 =
⋃

p

E0
p

(m, n) ∈ E1 ⇔ (m, n) is either a call edge

or a return edge

karkare, CSE, IITK/B CS618 18/25

Interprocedural Flow Graph

Call edge (m, n):

m is a call block, say calling p

n is root block of p

Return edge (m, n):

m is an exit block of p

n is a block immediately following a call to p

Call edge (m, rp) corresponds to return edge (eq, n)

if p = q and

(m,n) ∈ E1
s for some procedure s

karkare, CSE, IITK/B CS618 19/25

Interprocedural Flow Graph: 2nd Representation

main p

r1
read a, b

r = a ∗ b

c1 call p

n1
t = a ∗ b

print t

e1 EXIT

E0

E0

r2 if (a == 0)

b2 a = a − 1

c2 call p

n2 t = a ∗ b

e2 return

FE0

E0

E0

TE0

E1

E1

E1
E1

karkare, CSE, IITK/B CS618 20/25



Interprocedurally Valid Paths

G∗ ignores the special nature of call and return edges

Not all paths in G∗ are feasible

do not represent potentially valid execution paths

IVP(r1, n): set of all interprocedurally valid paths from r1 to

n

Path q ∈ pathG∗(r1, n) is in IVP(r1, n)

iff sequence of all E1 edges in q (denoted q1)is proper

karkare, CSE, IITK/B CS618 21/25

Proper sequence

q1 without any return edge is proper

let q1[i] be the first return edge in q1. q1 is proper if

i > 1; and

q1[i − 1] is call edge corresponding to q1[i]; and

q′

1 obtained from deleting q1[i − 1] and q1[i] from q1 is

proper

karkare, CSE, IITK/B CS618 22/25

Interprocedurally Valid Complete Paths

IVP0(rp, n) for procedure p and node n ∈ Np

set of all interprocedurally valid paths q in G∗ from rp to n
s.t.

Each call edge has corresponding return edge in q

restricted to E1

karkare, CSE, IITK/B CS618 23/25

IVPs

main

r1
read a, b

r = a ∗ b

c1 call p

n1
t = a ∗ b

print t

e1 EXIT

r1 → c1 → r2 → c2 → r2 → e2 → n2 → e2 → n1 → e1 ∈ IVP(r1, e1) r1 → c1 →

karkare, CSE, IITK/B CS618 24/25



Path Decomposition

q ∈ IVP(rmain, n)

⇔

q = q1 ‖ (c1, rp2
) ‖ q2 ‖ · · · ‖ (cj−1, rpj

) ‖ qj

where for each i < j , qi ∈ IVP0(rpi
, ci) and qj ∈ IVP0(rpj

, n)

karkare, CSE, IITK/B CS618 25/25


