
CS618: Program Analysis

2016-17 Ist Semester

Sparse Conditional Constant
Propagation

Amey Karkare

karkare@cse.iitk.ac.in

karkare@cse.iitb.ac.in

Department of CSE, IIT Kanpur/Bombay

karkare, CSE, IITK/B CS618 1/22

karkare@cse.iitk.ac.in
karkare@cse.iitb.ac.in


Sparse Simple Constant Propagation (SSC)

Improved analysis time over Simple Constant Propagation

Finds all simple constant

Same class as Simple Constant Propagation

karkare, CSE, IITK/B CS618 2/22



Sparse Simple Constant Propagation (SSC)

Improved analysis time over Simple Constant Propagation

Finds all simple constant

Same class as Simple Constant Propagation

karkare, CSE, IITK/B CS618 2/22



Sparse Simple Constant Propagation (SSC)

Improved analysis time over Simple Constant Propagation

Finds all simple constant

Same class as Simple Constant Propagation

karkare, CSE, IITK/B CS618 2/22



Motivating Example

Dashed edges denote SSA

def-use chains

ENTRY

a = 2

b = 3

a < b

c1 = 4 c2 = 5

c3 = φ(c1, c2)

EXIT

true false

karkare, CSE, IITK/B CS618 3/22



Preparations for SSC Analysis

Convert the program to SSA form

One statement per basic block

Add connections called SSA edges

Connect (unique) definition point of a variable to its use

points

Same as def-use chains

karkare, CSE, IITK/B CS618 4/22



Preparations for SSC Analysis

Convert the program to SSA form

One statement per basic block

Add connections called SSA edges

Connect (unique) definition point of a variable to its use

points

Same as def-use chains

karkare, CSE, IITK/B CS618 4/22



Preparations for SSC Analysis

Convert the program to SSA form

One statement per basic block

Add connections called SSA edges

Connect (unique) definition point of a variable to its use

points

Same as def-use chains

karkare, CSE, IITK/B CS618 4/22



Preparations for SSC Analysis

Convert the program to SSA form

One statement per basic block

Add connections called SSA edges

Connect (unique) definition point of a variable to its use

points

Same as def-use chains

karkare, CSE, IITK/B CS618 4/22



Preparations for SSC Analysis

Convert the program to SSA form

One statement per basic block

Add connections called SSA edges

Connect (unique) definition point of a variable to its use

points

Same as def-use chains

karkare, CSE, IITK/B CS618 4/22



SSC Algorithm: Initialization

Evaluate expressions involving constants only and assign

the value (c) to variable on LHS

If expression can not be evaluated at compile time, assign

⊥

Else (for expression contains variables) assign ⊤

Initialize worklist WL with SSA edges whose def is not ⊤

Algorithm terminates when WL is empty

karkare, CSE, IITK/B CS618 5/22



SSC Algorithm: Initialization

Evaluate expressions involving constants only and assign

the value (c) to variable on LHS

If expression can not be evaluated at compile time, assign

⊥

Else (for expression contains variables) assign ⊤

Initialize worklist WL with SSA edges whose def is not ⊤

Algorithm terminates when WL is empty

karkare, CSE, IITK/B CS618 5/22



SSC Algorithm: Initialization

Evaluate expressions involving constants only and assign

the value (c) to variable on LHS

If expression can not be evaluated at compile time, assign

⊥

Else (for expression contains variables) assign ⊤

Initialize worklist WL with SSA edges whose def is not ⊤

Algorithm terminates when WL is empty

karkare, CSE, IITK/B CS618 5/22



SSC Algorithm: Initialization

Evaluate expressions involving constants only and assign

the value (c) to variable on LHS

If expression can not be evaluated at compile time, assign

⊥

Else (for expression contains variables) assign ⊤

Initialize worklist WL with SSA edges whose def is not ⊤

Algorithm terminates when WL is empty

karkare, CSE, IITK/B CS618 5/22



SSC Algorithm: Initialization

Evaluate expressions involving constants only and assign

the value (c) to variable on LHS

If expression can not be evaluated at compile time, assign

⊥

Else (for expression contains variables) assign ⊤

Initialize worklist WL with SSA edges whose def is not ⊤

Algorithm terminates when WL is empty

karkare, CSE, IITK/B CS618 5/22



SSC Algorithm: Iterative Actions

Take an SSA edge E out of WL

Take meet of the value at def end and the use end of E for

the variable defined at def end

If the meet value is different from use value, replace the

use by the meet

Recompute the def d at the use end of E

If the recomputed value is lower than the stored value, add

all SSA edges originating at d

karkare, CSE, IITK/B CS618 6/22



SSC Algorithm: Iterative Actions

Take an SSA edge E out of WL

Take meet of the value at def end and the use end of E for

the variable defined at def end

If the meet value is different from use value, replace the

use by the meet

Recompute the def d at the use end of E

If the recomputed value is lower than the stored value, add

all SSA edges originating at d

karkare, CSE, IITK/B CS618 6/22



SSC Algorithm: Iterative Actions

Take an SSA edge E out of WL

Take meet of the value at def end and the use end of E for

the variable defined at def end

If the meet value is different from use value, replace the

use by the meet

Recompute the def d at the use end of E

If the recomputed value is lower than the stored value, add

all SSA edges originating at d

karkare, CSE, IITK/B CS618 6/22



SSC Algorithm: Iterative Actions

Take an SSA edge E out of WL

Take meet of the value at def end and the use end of E for

the variable defined at def end

If the meet value is different from use value, replace the

use by the meet

Recompute the def d at the use end of E

If the recomputed value is lower than the stored value, add

all SSA edges originating at d

karkare, CSE, IITK/B CS618 6/22



SSC Algorithm: Iterative Actions

Take an SSA edge E out of WL

Take meet of the value at def end and the use end of E for

the variable defined at def end

If the meet value is different from use value, replace the

use by the meet

Recompute the def d at the use end of E

If the recomputed value is lower than the stored value, add

all SSA edges originating at d

karkare, CSE, IITK/B CS618 6/22



Meet for φ-function

v = φ(v1, v2, . . . , vk )

⇒ ValueOf(v) = v1 ∧ v2 ∧ . . . ∧ vn

karkare, CSE, IITK/B CS618 7/22



SSC Algorithm: Complexity

Height of CP lattice = 2

Each SSA edge is examined at most twice, for each

lowering

Theoritical size of SSA graph: O(V × E)

Practical size: linear in the program size

karkare, CSE, IITK/B CS618 8/22



SSC Algorithm: Complexity

Height of CP lattice = 2

Each SSA edge is examined at most twice, for each

lowering

Theoritical size of SSA graph: O(V × E)

Practical size: linear in the program size

karkare, CSE, IITK/B CS618 8/22



SSC Algorithm: Complexity

Height of CP lattice = 2

Each SSA edge is examined at most twice, for each

lowering

Theoritical size of SSA graph: O(V × E)

Practical size: linear in the program size

karkare, CSE, IITK/B CS618 8/22



SSC Algorithm: Complexity

Height of CP lattice = 2

Each SSA edge is examined at most twice, for each

lowering

Theoritical size of SSA graph: O(V × E)

Practical size: linear in the program size

karkare, CSE, IITK/B CS618 8/22



SSC: Practice Example

ENTRY

a = 2

b = 3

a < b

c1 = 4 c2 = 5

c3 = φ(c1, c2)

EXIT

true false

karkare, CSE, IITK/B CS618 9/22



SSC: Practice Example

What if we change “c1 = 4” to “c1 = 5”?

karkare, CSE, IITK/B CS618 10/22



Sparse Condtional Constant Propagation (SCC)

Constant Propagation with unreachable code elimination

Ignore definitions that reach a use via a non-executable

edge

karkare, CSE, IITK/B CS618 11/22



Sparse Condtional Constant Propagation (SCC)

Constant Propagation with unreachable code elimination

Ignore definitions that reach a use via a non-executable

edge

karkare, CSE, IITK/B CS618 11/22



SCC Algorithm: Key Idea

v = φ(v1, v2, . . . , vk )

⇒ ValueOf(v) =
∧

i∈ExecutablePath

vi

We ignore paths that are not “yet” marked executable

karkare, CSE, IITK/B CS618 12/22



SCC Algorithm: Preparations

Two Worklists
Flow Worklist (FWL)

Worklist of flow graph edges

SSA Worklist (SWL)

Worlist of SSA graph edges

Execution Halts when both worklists are empty

Associate a flag, the ExecutableFlag, with every flow graph

edge to control the evaluation of φ-function in the

destination node

karkare, CSE, IITK/B CS618 13/22



SCC Algorithm: Preparations

Two Worklists
Flow Worklist (FWL)

Worklist of flow graph edges

SSA Worklist (SWL)

Worlist of SSA graph edges

Execution Halts when both worklists are empty

Associate a flag, the ExecutableFlag, with every flow graph

edge to control the evaluation of φ-function in the

destination node

karkare, CSE, IITK/B CS618 13/22



SCC Algorithm: Preparations

Two Worklists
Flow Worklist (FWL)

Worklist of flow graph edges

SSA Worklist (SWL)

Worlist of SSA graph edges

Execution Halts when both worklists are empty

Associate a flag, the ExecutableFlag, with every flow graph

edge to control the evaluation of φ-function in the

destination node

karkare, CSE, IITK/B CS618 13/22



SCC Algorithm: Preparations

Two Worklists
Flow Worklist (FWL)

Worklist of flow graph edges

SSA Worklist (SWL)

Worlist of SSA graph edges

Execution Halts when both worklists are empty

Associate a flag, the ExecutableFlag, with every flow graph

edge to control the evaluation of φ-function in the

destination node

karkare, CSE, IITK/B CS618 13/22



SCC Algorithm: Preparations

Two Worklists
Flow Worklist (FWL)

Worklist of flow graph edges

SSA Worklist (SWL)

Worlist of SSA graph edges

Execution Halts when both worklists are empty

Associate a flag, the ExecutableFlag, with every flow graph

edge to control the evaluation of φ-function in the

destination node

karkare, CSE, IITK/B CS618 13/22



SCC Algorithm: Preparations

Two Worklists
Flow Worklist (FWL)

Worklist of flow graph edges

SSA Worklist (SWL)

Worlist of SSA graph edges

Execution Halts when both worklists are empty

Associate a flag, the ExecutableFlag, with every flow graph

edge to control the evaluation of φ-function in the

destination node

karkare, CSE, IITK/B CS618 13/22



SCC Algorithm: Preparations

Two Worklists
Flow Worklist (FWL)

Worklist of flow graph edges

SSA Worklist (SWL)

Worlist of SSA graph edges

Execution Halts when both worklists are empty

Associate a flag, the ExecutableFlag, with every flow graph

edge to control the evaluation of φ-function in the

destination node

karkare, CSE, IITK/B CS618 13/22



SCC Algorithm: Initialization

Initialize FWL to contain edges leaving ENTRY node

Initialize SWL to empty

Each ExecutableFlag is false initially

Each value is ⊤ initially (Optimistic)

karkare, CSE, IITK/B CS618 14/22



SCC Algorithm: Initialization

Initialize FWL to contain edges leaving ENTRY node

Initialize SWL to empty

Each ExecutableFlag is false initially

Each value is ⊤ initially (Optimistic)

karkare, CSE, IITK/B CS618 14/22



SCC Algorithm: Initialization

Initialize FWL to contain edges leaving ENTRY node

Initialize SWL to empty

Each ExecutableFlag is false initially

Each value is ⊤ initially (Optimistic)

karkare, CSE, IITK/B CS618 14/22



SCC Algorithm: Initialization

Initialize FWL to contain edges leaving ENTRY node

Initialize SWL to empty

Each ExecutableFlag is false initially

Each value is ⊤ initially (Optimistic)

karkare, CSE, IITK/B CS618 14/22



SCC Algorithm: Iterations

Remove an item from either worklist

process the item (described next)

karkare, CSE, IITK/B CS618 15/22



SCC Algorithm: Iterations

Remove an item from either worklist

process the item (described next)

karkare, CSE, IITK/B CS618 15/22



SCC Algorithm: Processing FWL Item

Item is flow graph edge

If ExecutableFlag is true, do nothing

Otherwise

Mark the ExecutableFlag as true

Visit-φ for all φ-functions in the destination

If only one of the ExecutableFlags of incoming flow graph

edges for dest is true (dest visted for the first time), then

VisitExpression for all expressions in dest

If the dest contains only one outgoing flow graph edge, add

that edge to FWL

karkare, CSE, IITK/B CS618 16/22



SCC Algorithm: Processing FWL Item

Item is flow graph edge

If ExecutableFlag is true, do nothing

Otherwise

Mark the ExecutableFlag as true

Visit-φ for all φ-functions in the destination

If only one of the ExecutableFlags of incoming flow graph

edges for dest is true (dest visted for the first time), then

VisitExpression for all expressions in dest

If the dest contains only one outgoing flow graph edge, add

that edge to FWL

karkare, CSE, IITK/B CS618 16/22



SCC Algorithm: Processing FWL Item

Item is flow graph edge

If ExecutableFlag is true, do nothing

Otherwise

Mark the ExecutableFlag as true

Visit-φ for all φ-functions in the destination

If only one of the ExecutableFlags of incoming flow graph

edges for dest is true (dest visted for the first time), then

VisitExpression for all expressions in dest

If the dest contains only one outgoing flow graph edge, add

that edge to FWL

karkare, CSE, IITK/B CS618 16/22



SCC Algorithm: Processing FWL Item

Item is flow graph edge

If ExecutableFlag is true, do nothing

Otherwise

Mark the ExecutableFlag as true

Visit-φ for all φ-functions in the destination

If only one of the ExecutableFlags of incoming flow graph

edges for dest is true (dest visted for the first time), then

VisitExpression for all expressions in dest

If the dest contains only one outgoing flow graph edge, add

that edge to FWL

karkare, CSE, IITK/B CS618 16/22



SCC Algorithm: Processing FWL Item

Item is flow graph edge

If ExecutableFlag is true, do nothing

Otherwise

Mark the ExecutableFlag as true

Visit-φ for all φ-functions in the destination

If only one of the ExecutableFlags of incoming flow graph

edges for dest is true (dest visted for the first time), then

VisitExpression for all expressions in dest

If the dest contains only one outgoing flow graph edge, add

that edge to FWL

karkare, CSE, IITK/B CS618 16/22



SCC Algorithm: Processing FWL Item

Item is flow graph edge

If ExecutableFlag is true, do nothing

Otherwise

Mark the ExecutableFlag as true

Visit-φ for all φ-functions in the destination

If only one of the ExecutableFlags of incoming flow graph

edges for dest is true (dest visted for the first time), then

VisitExpression for all expressions in dest

If the dest contains only one outgoing flow graph edge, add

that edge to FWL

karkare, CSE, IITK/B CS618 16/22



SCC Algorithm: Processing FWL Item

Item is flow graph edge

If ExecutableFlag is true, do nothing

Otherwise

Mark the ExecutableFlag as true

Visit-φ for all φ-functions in the destination

If only one of the ExecutableFlags of incoming flow graph

edges for dest is true (dest visted for the first time), then

VisitExpression for all expressions in dest

If the dest contains only one outgoing flow graph edge, add

that edge to FWL

karkare, CSE, IITK/B CS618 16/22



SCC Algorithm: Processing SWL Item

Item is SSA edge

If dest is a φ-function, Visit-φ

If dest is an expression and any of ExecutableFlags for the

incoming flow graph edges of dest is true, perform

VisitExpression

karkare, CSE, IITK/B CS618 17/22



SCC Algorithm: Processing SWL Item

Item is SSA edge

If dest is a φ-function, Visit-φ

If dest is an expression and any of ExecutableFlags for the

incoming flow graph edges of dest is true, perform

VisitExpression

karkare, CSE, IITK/B CS618 17/22



SCC Algorithm: Processing SWL Item

Item is SSA edge

If dest is a φ-function, Visit-φ

If dest is an expression and any of ExecutableFlags for the

incoming flow graph edges of dest is true, perform

VisitExpression

karkare, CSE, IITK/B CS618 17/22



SCC Algorithm: Visit-φ

v = φ(v1, v2, . . . , vk )

If i th incoming edge’s ExecutableFlag is true,

vali = ValueOf(vi) else vali = ⊤

ValueOf(v) =
∧

i vali

karkare, CSE, IITK/B CS618 18/22



SCC Algorithm: Visit-φ

v = φ(v1, v2, . . . , vk )

If i th incoming edge’s ExecutableFlag is true,

vali = ValueOf(vi) else vali = ⊤

ValueOf(v) =
∧

i vali

karkare, CSE, IITK/B CS618 18/22



SCC Algorithm: VisitExpression

Evaluate the expression using values of operands and

rules for operators

If the result is same as old, nothing to do

Otherwise

If the expression is part of assignment, add all outgoing

SSA edges to SWL
if the expression controls a conditional branch, then

if the result is ⊥, add all outgoing flow edges to FWL

if the value is constant c, only the corresponding flow graph

edge is added to FWL

Value can not be ⊤ (why?)

karkare, CSE, IITK/B CS618 19/22



SCC Algorithm: VisitExpression

Evaluate the expression using values of operands and

rules for operators

If the result is same as old, nothing to do

Otherwise

If the expression is part of assignment, add all outgoing

SSA edges to SWL
if the expression controls a conditional branch, then

if the result is ⊥, add all outgoing flow edges to FWL

if the value is constant c, only the corresponding flow graph

edge is added to FWL

Value can not be ⊤ (why?)

karkare, CSE, IITK/B CS618 19/22



SCC Algorithm: VisitExpression

Evaluate the expression using values of operands and

rules for operators

If the result is same as old, nothing to do

Otherwise

If the expression is part of assignment, add all outgoing

SSA edges to SWL
if the expression controls a conditional branch, then

if the result is ⊥, add all outgoing flow edges to FWL

if the value is constant c, only the corresponding flow graph

edge is added to FWL

Value can not be ⊤ (why?)

karkare, CSE, IITK/B CS618 19/22



SCC Algorithm: VisitExpression

Evaluate the expression using values of operands and

rules for operators

If the result is same as old, nothing to do

Otherwise

If the expression is part of assignment, add all outgoing

SSA edges to SWL
if the expression controls a conditional branch, then

if the result is ⊥, add all outgoing flow edges to FWL

if the value is constant c, only the corresponding flow graph

edge is added to FWL

Value can not be ⊤ (why?)

karkare, CSE, IITK/B CS618 19/22



SCC Algorithm: VisitExpression

Evaluate the expression using values of operands and

rules for operators

If the result is same as old, nothing to do

Otherwise

If the expression is part of assignment, add all outgoing

SSA edges to SWL
if the expression controls a conditional branch, then

if the result is ⊥, add all outgoing flow edges to FWL

if the value is constant c, only the corresponding flow graph

edge is added to FWL

Value can not be ⊤ (why?)

karkare, CSE, IITK/B CS618 19/22



SCC Algorithm: VisitExpression

Evaluate the expression using values of operands and

rules for operators

If the result is same as old, nothing to do

Otherwise

If the expression is part of assignment, add all outgoing

SSA edges to SWL
if the expression controls a conditional branch, then

if the result is ⊥, add all outgoing flow edges to FWL

if the value is constant c, only the corresponding flow graph

edge is added to FWL

Value can not be ⊤ (why?)

karkare, CSE, IITK/B CS618 19/22



SCC Algorithm: VisitExpression

Evaluate the expression using values of operands and

rules for operators

If the result is same as old, nothing to do

Otherwise

If the expression is part of assignment, add all outgoing

SSA edges to SWL
if the expression controls a conditional branch, then

if the result is ⊥, add all outgoing flow edges to FWL

if the value is constant c, only the corresponding flow graph

edge is added to FWL

Value can not be ⊤ (why?)

karkare, CSE, IITK/B CS618 19/22



SCC Algorithm: VisitExpression

Evaluate the expression using values of operands and

rules for operators

If the result is same as old, nothing to do

Otherwise

If the expression is part of assignment, add all outgoing

SSA edges to SWL
if the expression controls a conditional branch, then

if the result is ⊥, add all outgoing flow edges to FWL

if the value is constant c, only the corresponding flow graph

edge is added to FWL

Value can not be ⊤ (why?)

karkare, CSE, IITK/B CS618 19/22



SCC Algorithm: Complexity

Each SSA edge is examined twice

Flow graph nodes are visited once for every incoming edge

Complexity = O(# of SSA edges + # of flow graph edges)

karkare, CSE, IITK/B CS618 20/22



SCC Algorithm: Complexity

Each SSA edge is examined twice

Flow graph nodes are visited once for every incoming edge

Complexity = O(# of SSA edges + # of flow graph edges)

karkare, CSE, IITK/B CS618 20/22



SCC Algorithm: Complexity

Each SSA edge is examined twice

Flow graph nodes are visited once for every incoming edge

Complexity = O(# of SSA edges + # of flow graph edges)

karkare, CSE, IITK/B CS618 20/22



SCC Algorithm: Correctness and Precision

SCC is conservative

Never labels a variable value as a constant

SCC is at least as powerful as Conditional Constant
Propagation (CC)

Finds all constants as CC does

PROOFs: In paper Constant propagation with

conditional branches by Mark N. Wegman, F. Kenneth

Zadeck, ACM TOPLAS 1991.

karkare, CSE, IITK/B CS618 21/22



SCC Algorithm: Correctness and Precision

SCC is conservative

Never labels a variable value as a constant

SCC is at least as powerful as Conditional Constant
Propagation (CC)

Finds all constants as CC does

PROOFs: In paper Constant propagation with

conditional branches by Mark N. Wegman, F. Kenneth

Zadeck, ACM TOPLAS 1991.

karkare, CSE, IITK/B CS618 21/22



SCC Algorithm: Correctness and Precision

SCC is conservative

Never labels a variable value as a constant

SCC is at least as powerful as Conditional Constant
Propagation (CC)

Finds all constants as CC does

PROOFs: In paper Constant propagation with

conditional branches by Mark N. Wegman, F. Kenneth

Zadeck, ACM TOPLAS 1991.

karkare, CSE, IITK/B CS618 21/22



SCC Algorithm: Correctness and Precision

SCC is conservative

Never labels a variable value as a constant

SCC is at least as powerful as Conditional Constant
Propagation (CC)

Finds all constants as CC does

PROOFs: In paper Constant propagation with

conditional branches by Mark N. Wegman, F. Kenneth

Zadeck, ACM TOPLAS 1991.

karkare, CSE, IITK/B CS618 21/22



SCC Algorithm: Correctness and Precision

SCC is conservative

Never labels a variable value as a constant

SCC is at least as powerful as Conditional Constant
Propagation (CC)

Finds all constants as CC does

PROOFs: In paper Constant propagation with

conditional branches by Mark N. Wegman, F. Kenneth

Zadeck, ACM TOPLAS 1991.

karkare, CSE, IITK/B CS618 21/22



Practice Example

ENTRY

a = 2

b = 3

a < b

c1 = 4 c2 = 5

c3 = φ(c1, c2)

EXIT

true false

karkare, CSE, IITK/B CS618 22/22


