
Program Analysis
https://www.cse.iitb.ac.in/~karkare/cs618/

Amey Karkare
Dept of Computer Science and Engg

 IIT Kanpur
Visiting IIT Bombay

karkare@cse.iitk.ac.in
karkare@cse.iitb.ac.in

Static Single Assignment (SSA)

SSA Form

• Developed by Ron Cytron, Jeanne Ferrante,
Barry K. Rosen, Mark N. Wegman, and F.
Kenneth Zadeck,
– in 1980s while at IBM.

• Static Single Assignment – A variable is
assigned only once in program text
– May be assigned multiple times if program is

executed

2

SSA Form

• Intermediate representation
• Sparse representation

– Definitions sites are directly associated with use
sites

• Advantage
– Directly access points where relevant data flow

information is avaliable

3

SSA Form

• In SSA Form
– Each variable has exactly one definition

• Each use of a variable is reached by exactly one
definition

– Control flow like traditional programs
– Some magic is needed at join nodes

4

SSA Form: Examples

i = 0;

…

i = i + 1;

…

j = i * 5;

…

i1 = 0;

…

i2 = i1 + 1;

…

j1 = i2 + 1;

…

5

SSA Form: Examples

i = …;

j = …;

if (i < 20)

 i = i + j;

else

 j = j + 2;

print i,j;

6

i = …;
j = …;

if (i < 20)

i = i + j j = j + 2

print i,j

SSA Form: Examples

7

i = …;
j = …;

if (i < 20)

i = i + j j = j + 2

print i,j i3 = ϕ(i2,i1)
j3 = ϕ(j1,j2)
print i3,j3

i1 = …;
j1 = …;

if (i1 < 20)

i2=i1+j1 j2=j1+2

SSA Form: Examples

i = …;

j = …;

if (i < 20)

 i = i + j;

else

 j = j + 2;

print i,j;

i1 = …;

j1 = …;

if (i1 < 20)

 i2 = i1 + j1;

else

 j2 = j1 + 2;

i3 = ϕ(i2, i1);

j3 = ϕ(j1, j2);

print i3, j3;
8

The “magic” : ϕ-function

• ϕ is used for selection
– One out of multiple values at join nodes

• Not every join node needs a ϕ
– Needed only if multiple definitions reach the node

9

But what does ϕ operation mean in a
machine code?

• ϕ is a conceptual entity
• No direct translation to machine code

– typically mimicked using “copy” in predecessors
– Inefficient
– Practically, the inefficiency is compensated by

dead code elimination and register allocation
passes

10

 ϕ Properties

• Placed only at the entry of a join node
• Multiple ϕ-functions could be placed

– for multiple variables
– all such ϕ functions execute concurrently

• n-ary ϕ function at n-way join node
𝑥𝑥 = 𝜙(𝑥𝑥, 𝑥𝑥, … , 𝑥𝑥, … , 𝑥𝑥)

• 𝑥𝑥 gets the value of i-th argument 𝑥𝑥 if
control enters through i-th edge
– Ordering of edges is improtant

 11

SSA Form: Example (revisit)

12

i = …;
j = …;

if (i < 20)

i = i + j j = j + 2

print i,j

i1 = …;
j1 = …;

if (i1 < 20)

i2=i1+j1 j2=j1+2

i3 = ϕ(i2,i1)
j3 = ϕ(j1,j2)
print i3,j3

Construction of SSA Form

13

Assumptions

• Only scalar variables
– Structures, pointers, arrays could be handled
– Refer to publications

14

Dominators

• Nodes x and y in flow graph
• x dominates y if every path from ENTRY to y

go through x
– x dom y
– partial order?

• x strictly dominates y if x dom y and x ≠ y
– x sdom y

15

Computing Dominators

𝐷𝐷𝐷 𝑥 = 𝑥 ∪ (� 𝐷𝐷𝐷 𝑥
𝑚∈𝑝𝑝𝑝𝑝𝑝 𝑛

)

Initial Conditions:
𝐷𝐷𝐷 𝑥0 = 𝑥0

∀𝑥 ≠ 𝑥0 𝐷𝐷𝐷 𝑥 = 𝑁
𝑁 is the set of all nodes, 𝑥0 is ENTRY

NOTE: Efficient methods exist for computing dominators

16

Immediate Dominators and Dominator
Tree

• x is immediate dominator of y if x is the
closest strict dominator of y
– unique, if it exists
– denoted idom[y]

• Dominator Tree
– A tree showing all immediate dominator

relationships

17

Dominator Tree

18

B0

B2

B1

B4

B3

B6

B5

B7

Control Flow Graph

B0

B2

B1

B4

B3

B6

B5

B7

Dominator Tree

Dominance Frontier

• Dominance Frontier of x is set of all nodes y
s.t.
– x dominates a predecessor of y AND
– x does not strictly dominate y

• Denoted DF(x)
• Why do you think DF(x) is important for any x?

– Think about information originated in x

19

Computing Dominance Frontier

𝐷𝐷 𝑥 = 𝐷𝐷𝑙𝑙𝑙𝑙𝑙 𝑥 ∪ � 𝐷𝐷𝑢𝑝 𝑧
𝑧∈chil𝑝𝑝𝑝𝑛 𝑥

𝐷𝐷𝑙𝑙𝑙𝑙𝑙 𝑥 = 𝑦 ∈ 𝑠𝑠𝑠𝑠 𝑥 𝑥𝑖𝑖𝑥(𝑦) ≠ 𝑥}

𝐷𝐷𝑢𝑝 𝑧 = 𝑦 ∈ 𝐷𝐷 𝑧 𝑥𝑖𝑖𝑥 𝑦 ≠ 𝑝𝑝𝑝𝑝𝑥𝑝(𝑧)}

* parent, children in dominator tree, succ in CFG
* parent(z) = x above

20

Iterated Dominance Frontier

• 𝐷𝐷+ 𝑆 : Transitive closure of Dominance
frontiers on a set of nodes

𝐷𝐷 𝑆 = � 𝐷𝐷 𝑥
𝑥∈𝑆 𝑥

𝐷𝐷1 𝑆 = 𝐷𝐷(𝑆)

𝐷𝐷𝑖+1 𝑆 = 𝐷𝐷(𝑆 ∪ 𝐷𝐷𝑖(𝑆))

21

Minimal SSA Form Construction

• Compute DF+ set for each flow graph node
• Place trivial ϕ-functions for each variable in

the node
• Rename variables

• Why DF+? Why not only DF?

22

Inserting ϕ-functions

foreach variable v {
 S = ENTRY ∪ {n | v defined in n}
 Compute DF+(S)

 foreach n in DF+(S) {
 insert ϕ-function for v at start of n

 }

}

23

Renaming Variables (Pseudo Code)
• Rename from the ENTRY node recursively

– maintain a rename stack of 𝑣𝑝𝑝 → 𝑣𝑝𝑝𝑣𝑝𝑝𝑠𝑥𝑖𝑥 mapping
• For node n

– For each assignment (x = …) in n
• If non-phi assignment, Rename any use of x with the Top

mapping of x from the rename stack
• Push the x → xi on rename stack
• i = i + 1

• For successors of n
– Rename ϕ operands through succ edge index

• Recursively rename for all child nodes in the
dominator tree

• For each assignment (x = …) in n
– Pop x → ⋯ from the rename stack

24

	Program Analysis�https://www.cse.iitb.ac.in/~karkare/cs618/�
	SSA Form
	SSA Form
	SSA Form
	SSA Form: Examples
	SSA Form: Examples
	SSA Form: Examples
	SSA Form: Examples
	The “magic” : ϕ-function
	But what does ϕ operation mean in a machine code?
		ϕ Properties
	SSA Form: Example (revisit)
	Construction of SSA Form
	Assumptions
	Dominators
	Computing Dominators
	Immediate Dominators and Dominator Tree
	Dominator Tree
	Dominance Frontier
	Computing Dominance Frontier
	Iterated Dominance Frontier
	Minimal SSA Form Construction
	Inserting ϕ-functions
	Renaming Variables (Pseudo Code)

