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Static Single Assignment (SSA) 



SSA Form 

• Developed by Ron Cytron, Jeanne Ferrante, 
Barry K. Rosen, Mark N. Wegman, and F. 
Kenneth Zadeck,  
– in 1980s while at IBM. 

• Static Single Assignment – A variable is 
assigned only once in program text 
– May be assigned multiple times if program is 

executed 
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SSA Form 

• Intermediate representation 
• Sparse representation 

– Definitions sites are directly associated with use 
sites 

• Advantage 
– Directly access points where relevant data flow 

information is avaliable 
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SSA Form 

• In SSA Form 
– Each variable has exactly one definition 

• Each use of a variable is reached by exactly one 
definition 

– Control flow like traditional programs 
– Some magic is needed at join nodes 
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SSA Form: Examples 

i = 0; 

… 

i = i + 1; 

… 

j = i * 5; 

… 

i1 = 0; 

… 

i2 = i1 + 1; 

… 

j1 = i2 + 1; 

… 
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SSA Form: Examples 

i = …; 

j = …; 

if (i < 20) 

  i = i + j; 

else 

  j = j + 2; 

 

print i,j; 
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i = …; 
j = …; 

if (i < 20) 

i = i + j j = j + 2 

print i,j 

 



SSA Form: Examples 
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i = …; 
j = …; 

if (i < 20) 

i = i + j j = j + 2 

print i,j i3 = ϕ(i2,i1) 
j3 = ϕ(j1,j2) 
print i3,j3 

i1 = …; 
j1 = …; 

if (i1 < 20) 

i2=i1+j1 j2=j1+2 



SSA Form: Examples 

i = …; 

j = …; 

if (i < 20) 

  i = i + j; 

else 

  j = j + 2; 

 

print i,j; 

i1 = …; 

j1 = …; 

if (i1 < 20) 

  i2 = i1 + j1; 

else 

  j2 = j1 + 2; 

i3 = ϕ(i2, i1); 

j3 = ϕ(j1, j2); 

print i3, j3; 
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The “magic” : ϕ-function 

• ϕ is used for selection 
– One out of multiple values at join nodes 

• Not every join node needs a ϕ 
– Needed only if multiple definitions reach the node 
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But what does ϕ operation mean in a 
machine code? 

• ϕ is a conceptual entity 
• No direct translation to machine code 

– typically mimicked using “copy” in predecessors 
– Inefficient 
– Practically, the inefficiency is compensated by 

dead code elimination and register allocation 
passes  
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 ϕ Properties 

• Placed only at the entry of a join node 
• Multiple ϕ-functions could be placed 

– for multiple variables 
– all such ϕ functions execute concurrently 

• n-ary ϕ function at n-way join node 
𝑥𝑥 = 𝜙(𝑥𝑥, 𝑥𝑥, … , 𝑥𝑥, … , 𝑥𝑥)  

• 𝑥𝑥 gets the value of i-th argument 𝑥𝑥 if 
control enters through i-th edge 
– Ordering of edges is improtant 
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SSA Form: Example (revisit) 
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i = …; 
j = …; 

if (i < 20) 

i = i + j j = j + 2 

print i,j 

i1 = …; 
j1 = …; 

if (i1 < 20) 

i2=i1+j1 j2=j1+2 

i3 = ϕ(i2,i1) 
j3 = ϕ(j1,j2) 
print i3,j3 



Construction of SSA Form 
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Assumptions 

• Only scalar variables 
– Structures, pointers, arrays could be handled 
– Refer to publications 
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Dominators 

• Nodes x and y in flow graph 
• x dominates y if every path from ENTRY to y 

go through x 
– x dom y 
– partial order? 

• x strictly dominates y if  x dom y and x ≠ y 
– x sdom y 
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Computing Dominators 

𝐷𝐷𝐷 𝑥 = 𝑥 ∪ ( � 𝐷𝐷𝐷 𝑥  
𝑚∈𝑝𝑝𝑝𝑝𝑝 𝑛

) 

Initial Conditions: 
𝐷𝐷𝐷 𝑥0 = 𝑥0  

∀𝑥 ≠ 𝑥0 𝐷𝐷𝐷 𝑥 = 𝑁 
𝑁 is the set of all nodes, 𝑥0 is ENTRY 
 
NOTE:  Efficient methods exist for computing dominators 
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Immediate Dominators and Dominator 
Tree 

• x is immediate dominator of y if x is the 
closest strict dominator of y 
– unique, if it exists 
– denoted idom[y] 

• Dominator Tree 
– A tree showing all immediate dominator 

relationships 
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Dominator Tree 
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Dominance Frontier 

• Dominance Frontier of x is set of all nodes y 
s.t. 
– x dominates a predecessor of y AND 
– x does not strictly dominate y 

• Denoted DF(x) 
• Why do you think DF(x) is important for any x? 

– Think about information originated in x  
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Computing Dominance Frontier 

𝐷𝐷 𝑥 = 𝐷𝐷𝑙𝑙𝑙𝑙𝑙 𝑥 ∪ � 𝐷𝐷𝑢𝑝 𝑧
𝑧∈chil𝑝𝑝𝑝𝑛 𝑥

 

 
𝐷𝐷𝑙𝑙𝑙𝑙𝑙 𝑥 = 𝑦 ∈ 𝑠𝑠𝑠𝑠 𝑥 𝑥𝑖𝑖𝑥(𝑦) ≠ 𝑥} 

𝐷𝐷𝑢𝑝 𝑧 = 𝑦 ∈ 𝐷𝐷 𝑧 𝑥𝑖𝑖𝑥 𝑦 ≠ 𝑝𝑝𝑝𝑝𝑥𝑝(𝑧)} 
 
* parent, children in dominator tree, succ in CFG 
* parent(z) = x above 
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Iterated Dominance Frontier 

• 𝐷𝐷+ 𝑆 : Transitive closure of Dominance 
frontiers on a set of nodes 

𝐷𝐷 𝑆 = � 𝐷𝐷 𝑥
𝑥∈𝑆 𝑥

 

 
𝐷𝐷1 𝑆 = 𝐷𝐷(𝑆) 

𝐷𝐷𝑖+1 𝑆 = 𝐷𝐷(𝑆 ∪ 𝐷𝐷𝑖(𝑆)) 
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Minimal SSA Form Construction 

• Compute DF+ set for each flow graph node 
•  Place trivial ϕ-functions for each variable in 

the node 
• Rename variables 

 
• Why DF+? Why not only DF? 
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Inserting ϕ-functions 

foreach variable v { 
  S = ENTRY ∪ {n | v defined in n} 
  Compute DF+(S) 

  foreach n in DF+(S) { 
  insert ϕ-function for v at start of n 

  } 

} 
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Renaming Variables (Pseudo Code) 
• Rename from the ENTRY node recursively 

– maintain a rename stack of 𝑣𝑝𝑝 → 𝑣𝑝𝑝𝑣𝑝𝑝𝑠𝑥𝑖𝑥 mapping 
• For node n 

– For each assignment (x = …) in n 
• If non-phi assignment, Rename any use of x with the Top 

mapping of x from the rename stack 
• Push the x → xi on rename stack 
• i = i + 1 

• For successors of n 
– Rename ϕ operands through succ edge index 

• Recursively rename for all child nodes in the 
dominator tree  

• For each assignment (x = …) in n  
– Pop x → ⋯ from the rename stack 
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