Program Analysis https://www.cse.iitb.ac.in/~karkare/cs618/

Constant Propagation

Amey Karkare Dept of Computer Science and Engg IIT Kanpur Visiting IIT Bombay karkare@cse.iitk.ac.in karkare@cse.iitb.ac.in

Constant Propagation

 Replace expressions that evaluate to same constant "c" every time they are executed, by the value "c"

DF Framework for ConstProp

- Domain
 - For a single variable v of type t, all possible constant values of type t
 - T and \perp ?
- Semilattice?

DFF for CP

- NAC: not a constant
 - If variable is inferred not to be a constant
 - Multiple (different valued) defs, non-const defs, assigned an "un-interpreted" value ...
- UNDEF: No definition of the variable is seen yet – nothing known!

NAC vs UNDEF

- NAC ⇒ too many definitions seen to declare the variable is NOT constant
- UNDEF ⇒ too few definitions seen to declare anything about the variable
- T is UNDEF; \perp is NAC

CP Meet (Λ)

• UNDEF $\Lambda c = c$ NAC $\Lambda c = NAC$

- Recall $\top \Lambda x = x$ and $\perp \Lambda x = \perp$

• $c \wedge c = c$

• $c1 \wedge c2 = NAC$

• Infinite Domain, but finite height

CP Semilattice

- Previous figure semilattice for one variable
- CP Semilattice = Product of all such semilattices
- Each semilattice has a finite height

OUT Information

(Informal Representation)

- 1. x = c // const
 - $\{x -> c\}$
- 2. x = y + z
 - If {y -> c1, z -> c2} in IN then {x -> c1+c2}
 - If {y -> NAC} in IN then {x -> NAC}
 - If $\{z \rightarrow NAC\}$ in IN then $\{x \rightarrow NAC\}$
 - {x -> UNDEF} // y is UNDEF or z is UNDEF
- 3. x = <complicated unhandled expr>
 {x = NAC}

Monotonicity of CP

- Case analysis on transfer function f
- NAC \leq c \leq UNDEF
- Case (1) and (3) has "constant" f
- Case (2):
 - Fix z (One of UNDEF, c2, NAC)
 - Vary y over UNDEF, c1, NAC
 - Confirm that x does not "increase"
 - Do this for all z's.
 - Similarly, fix y and vary z.

Nondistributivity of CP

в0:			
if ()) {		
B1:	х	=	2;
	У	=	3;
} else	e {		
B2:	Х	=	3;
	У	=	2;
}			
B3: z	=	х	+ y;
•••			

All paths: B0-B1-B3 B0-B2-B3 z is 5 along both paths Meet Λ results in z = NAC (Exercise)

MOP: z is a constant 5 MFP: z is NAC MFP not equal to MOP