Program Analysis https://www.cse.iitb.ac.in/~karkare/cs618/

Foundations of Data Flow Analysis

Amey Karkare Dept of Computer Science and Engg IIT Kanpur Visiting IIT Bombay karkare@cse.iitk.ac.in karkare@cse.iitb.ac.in

Taxonomy of Dataflow Problems

- Categorized along several dimensions
 - -the information they are designed to provide
 - -the direction of flow
 - confluence operator
- Four kinds of dataflow problems, distinguished by
 - the operator used for confluence or divergence
 - -data flows backward or forward

Taxonomy of Dataflow Problems

Confluence→ Direction↓	U	$\widehat{}$
Forward	Reaching Definition	Available Expressions
Backward	Live Variables	Very Busy Expressions

When does Data Flow Analysis Works?

- Suitable initial values and boundary conditions
- Suitable domain of values

-Bounded, Finite

- Suitable meet operator
- Suitable flow functions

-monotonic, closed under composition

But what is "SUITABLE" ?

Why Data Flow Analysis Works?

- Suitable initial values and boundary conditions
- Suitable domain of values Bounded, Finite
 Suitable meet operator

 - Suitable flow functions
 - -monotonic, closed under composition
 - But what is "SUITABLE" ?

Partially Ordered Sets

- Posets
- S : a set
- \leq : a relation
- (S, ≤) is a poset if ∀ x, y, z ∈ S
 -x ≤ x (reflexive)
 -x ≤ y and y ≤ x ⇒ x = y (antisymmetric)
 - $-x \le y$ and $y \le z \Rightarrow x \le z$ (transitive)

Chain

- Linear Ordering
- Poset where every pair of elements is comparable
- $x1 \le x2 \le ... \le xk$ is a chain of length k
- We are interested in chains of finite length

Observation

- Any finite nonempty subset of a poset has minimal and maximal elements
- Any finite nonempty chain has unique minimum and maximum elements

Semilattice

- Set S and meet Λ
- ∀ x, y, z ∈ S
 - $-x \wedge x = x$ (idempotent)
 - $-x \wedge y = y \wedge x$ (commutative)
 - $-x \wedge (y \wedge z) = (x \wedge y) \wedge z$ (associative)
- Partial order for semilattice
 - $-x \le y$ if and only if $x \land y = x$
 - -Reflexive, antisymmetric, transitive

Border Element

• Top Element (T) $-\forall x \in S, x \land T = T \land x = x$

• (Optional) Bot Element (\bot) $-\forall x \in S, x \land \bot = \bot \land x = \bot$

Familiar (semi)lattices

- Powerset for a set S, 2^S
- Meet \land *is* \cap
- Partial Order is \subseteq
- Top element is S
- Bottom element is Ø

Familiar (semi)lattices

- Powerset for a set S, 2^S
- Meet \land is \lor
- Partial Order is \supseteq
- Top element is Ø
- Bottom element is S, the universal set

Greatest Lower bound

- glb of x and y is an element g s.t.
 - $-g \le x$
 - $-g \le y$
 - -If $z \le x$ and $z \le y$ then $z \le g$

• $x \wedge y$ is glb of x and y (Prove!)

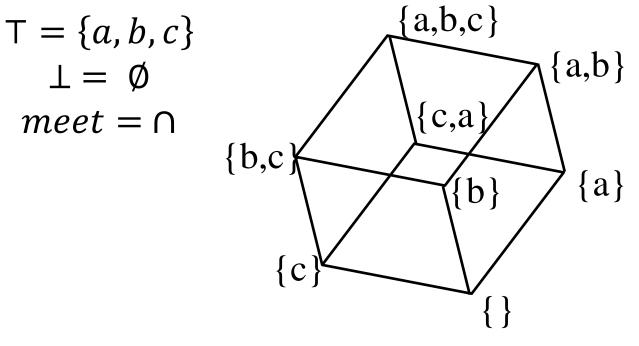
Semi (?)-Lattice

- We can define symmetric concepts:
 - $-\geq$ order
 - -V, Join operation
 - -Least upper bound (lub)
- A complete lattice has both meet and join
 Powerset lattice
- We will talk about "meet" semi-lattices only

Lattice Diagrams

- Graphical view of posets
- Elements = nodes in the graph
- If x < y then x is depicted lower than y in the diagram
- An edge between x and y (x lower than y) implies x < y and no other element z s.t. x < z < y (i.e. transitivity excluded)

Lattice Diagram



Lattice of superset relation

 $x \land y$ (glb): the highest z for which there are paths downward from both x and y.

What if we have a large number of elements?

- Combine simple lattices to build a complex one
- Superset lattices for singletons

 {a}
 {b}
 {b}
 {b}
 {b}
- {} {} {}
 Combine to form superset lattice for multielement sets

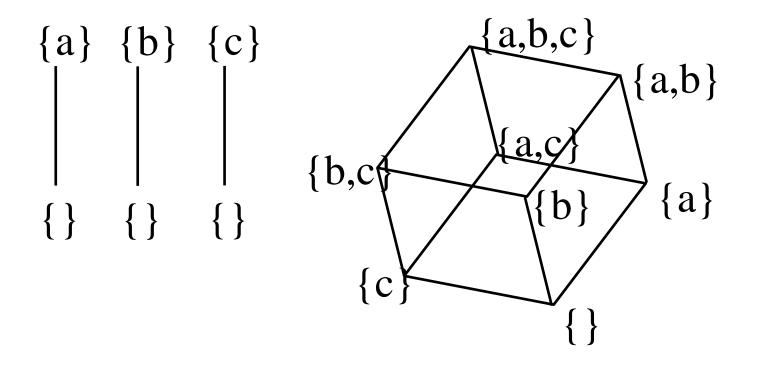
Product Lattice

- (S, Λ) is product lattice of (S₁, Λ_1) and (S₂, Λ_2)
 - $-S = S_1 \times S_2$ (domain)
 - -For (a_1,a_2) and $(b_1, b_2) \in S$
 - $(a_1,a_2) \land (b_1,b_2) = (a_1 \land_1 b_1, a_2 \land_2 b_2)$
 - $(a_1, a_2) \le (b_1, b_2)$ iff $a_1 \le_1 b_1$ and $a_2 \le_2 b_2$

$-\leq$ relation follows from Λ

- Product of lattices is associative
- $\Lambda_1, \Lambda_2, \dots$ are called component lattices

Product Lattice



Height of a Semilattice

- Length of a chain x1 ≤ x2 ≤ ... ≤ xk
 is k
- K = max over length of all chains in the semilattice
- Height of semilattice = K-1

Data Flow Analysis Framework

- (D, S, Λ, F)
- D: direction, Forward or Backward
- (S, Λ): Semilattice Domain and meet
- F: family of transfer functions, S->S

Transfer Functions

• F: family of functions, S -> S. Includes

 functions suitable for the boundary conditions (constant transfer functions for ENTRY and EXIT nodes)

-Identity function I: $I(x) = x \ \forall x \in S$

• Closed under composition

$$-f, g \in F, h(x) = g(f(x)) \Rightarrow h \in F$$

Monotonic Functions

- (S,≤) : a poset
- f: S->S is monotonic iff

$$\forall x, y \in S \quad x \le y \Rightarrow f(x) \le f(y)$$

Composition preserves monotonicity

—If f and g are monotonic, h = f.g, then h is also monotonic

Monotone Frameworks

- (D, S, Λ , F) is monotone if the family F consists of monotonic functions only $f \in F, x, y \in S \ x \le y \Rightarrow f(x) \le f(y)$
- Equivalently

 $f \in F, x, y \in S f(x \land y) \leq f(x) \land f(y)$

-Proof: Exercise

A Fixed Point Theorem

- *f*: *S* –> *S* a monotonic function
- (S, Λ) is a finite height semilattice,
- T is top element
- $f^0(x) = x, f^{i+1}(x) = f(f^i(x)), i \ge 0$
- The greatest fixed point of f is $f^{k}(T)$ where $f^{k+1}(T) = f^{k}(T)$

Fixed Point Algorithm

// monotonic f on a meet semilattice
x := T ;

while (x != f(x)) x := f(x);

return x;