
Program Analysis
https://www.cse.iitb.ac.in/~karkare/cs618/

Amey Karkare
Dept of Computer Science and Engg

 IIT Kanpur
Visiting IIT Bombay

karkare@cse.iitk.ac.in
karkare@cse.iitb.ac.in

Data Flow Analysis (contd…)

Available Expressions

2

Available Expressions

• Expression e is available at a point p:

2

Available Expressions

• Expression e is available at a point p:
– Every path from entry to p has at least one

evaluation of e

2

Available Expressions

• Expression e is available at a point p:
– Every path from entry to p has at least one

evaluation of e
– There is no assignment to any component

variable of e after last evaluation of e prior
to p

2

Available Expressions

• Expression e is available at a point p:
– Every path from entry to p has at least one

evaluation of e
– There is no assignment to any component

variable of e after last evaluation of e prior
to p

• Expression e is generated by its evaluation

2

Available Expressions

• Expression e is available at a point p:
– Every path from entry to p has at least one

evaluation of e
– There is no assignment to any component

variable of e after last evaluation of e prior
to p

• Expression e is generated by its evaluation
• Expression e is killed by assignment to its

component variables
2

Available Expr Analysis

3

d: x = y+z
s1

Available Expr Analysis

gen(s1) = {y+z}

3

d: x = y+z
s1

Available Expr Analysis

gen(s1) = {y+z}

kill(s1) = Ex // Ex : set of all expressions having x as a component

3

d: x = y+z
s1

Available Expr Analysis

gen(s1) = {y+z}

kill(s1) = Ex // Ex : set of all expressions having x as a component

out(s1) = in(s1) - kill(s1) U gen(s1)

3

d: x = y+z
s1

Available Expr Analysis

gen(s1) = {y+z}

kill(s1) = Ex // Ex : set of all expressions having x as a component

out(s1) = in(s1) - kill(s1) U gen(s1)
THIS MAY NOT WORK IN GENERAL! WHY?

3

d: x = y+z
s1

Available Expr Analysis

4

d: x = x+z s1

Available Expr Analysis

INCORRECT FORMULATION

4

d: x = x+z s1

Available Expr Analysis

INCORRECT FORMULATION
out(s1) = in(s1) - kill(s1) U gen(s1)

4

d: x = x+z s1

Available Expr Analysis

INCORRECT FORMULATION
out(s1) = in(s1) - kill(s1) U gen(s1)
gen(s1) = {x+z}

4

d: x = x+z s1

Available Expr Analysis

INCORRECT FORMULATION
out(s1) = in(s1) - kill(s1) U gen(s1)
gen(s1) = {x+z}

kill(s1) = Ex // Ex : set of all expressions having x as a
component

4

d: x = x+z s1

Available Expr Analysis

INCORRECT FORMULATION
out(s1) = in(s1) - kill(s1) U gen(s1)
gen(s1) = {x+z}
kill(s1) = Ex // Ex : set of all expressions having x as

a component

5

d: x = x+z s1

Available Expr Analysis

6

 lhs = rhs s1

Available Expr Analysis

CORRECT FORMULATION

6

 lhs = rhs s1

Available Expr Analysis

CORRECT FORMULATION
out(s1) = in(s1) - kill(s1) U gen(s1)

6

 lhs = rhs s1

Available Expr Analysis

CORRECT FORMULATION
out(s1) = in(s1) - kill(s1) U gen(s1)
gen(s1) = { rhs | lhs is not part of rhs }

6

 lhs = rhs s1

Available Expr Analysis

CORRECT FORMULATION
out(s1) = in(s1) - kill(s1) U gen(s1)
gen(s1) = { rhs | lhs is not part of rhs }

kill(s1) = Elhs // Elhs : set of all expressions having lhs as
a component

6

 lhs = rhs s1

Available Expr Analysis

7

S
S1

S2

Available Expr Analysis

gen(s) = gen(s2) U (gen(s1) – kill(s2))

7

S
S1

S2

Available Expr Analysis

gen(s) = gen(s2) U (gen(s1) – kill(s2))
kill(s) = kill(s2) U (kill(s1) – gen(s2))

7

S
S1

S2

Available Expr Analysis

gen(s) = gen(s2) U (gen(s1) – kill(s2))
kill(s) = kill(s2) U (kill(s1) – gen(s2))

in(s1) = in(s)

7

S
S1

S2

Available Expr Analysis

gen(s) = gen(s2) U (gen(s1) – kill(s2))
kill(s) = kill(s2) U (kill(s1) – gen(s2))

in(s1) = in(s)
in(s2) = out(s1)

7

S
S1

S2

Available Expr Analysis

gen(s) = gen(s2) U (gen(s1) – kill(s2))
kill(s) = kill(s2) U (kill(s1) – gen(s2))

in(s1) = in(s)
in(s2) = out(s1)
out(s) = out(s2)

7

S
S1

S2

S

Analysis of Structured Programs

8

S1 S2

S

Analysis of Structured Programs

gen(s) = gen(s1) ∩ gen(s2)

8

S1 S2

S

Analysis of Structured Programs

gen(s) = gen(s1) ∩ gen(s2)
kill(s) = kill(s1) U kill(s2)

8

S1 S2

S

Analysis of Structured Programs

gen(s) = gen(s1) ∩ gen(s2)
kill(s) = kill(s1) U kill(s2)

in(s1) = in(s2) = in(s)

8

S1 S2

S

Analysis of Structured Programs

gen(s) = gen(s1) ∩ gen(s2)
kill(s) = kill(s1) U kill(s2)

in(s1) = in(s2) = in(s)
out(s) = out(s1) ∩ out(s2)

8

S1 S2

S

Available Expr Analysis

9

S1

S

Available Expr Analysis

gen(s) = gen(s1)

9

S1

S

Available Expr Analysis

gen(s) = gen(s1)
kill(s) = kill(s1)

9

S1

S

Available Expr Analysis

gen(s) = gen(s1)
kill(s) = kill(s1)

in(s1) = in(s) ∩ gen(s1)

9

S1

S

Available Expr Analysis

gen(s) = gen(s1)
kill(s) = kill(s1)

in(s1) = in(s) ∩ gen(s1)

9

S1

z = x*y;
do {} while(…);
// is x*y available
// here?

S

Available Expr Analysis

gen(s) = gen(s1)
kill(s) = kill(s1)

in(s1) = in(s) ∩ gen(s1)

9

S1

gen out(s1)

z = x*y;
do {} while(…);
// is x*y available
// here?

S

Available Expr Analysis

gen(s) = gen(s1)
kill(s) = kill(s1)

in(s1) = in(s) ∩ gen(s1)
out(s) = out(s1)

9

S1

gen out(s1)

z = x*y;
do {} while(…);
// is x*y available
// here?

S

Again: Conservative Analysis

10

S1 S2

S

Again: Conservative Analysis

• Assumption: All paths are feasible.

10

S1 S2

S

Again: Conservative Analysis

• Assumption: All paths are feasible.
– Consider: if (true) s1; else s2
– s2 is never executed

10

S1 S2

S

Again: Conservative Analysis

• Assumption: All paths are feasible.
– Consider: if (true) s1; else s2
– s2 is never executed
gen(s) = gen(s1) ⊇ gen(s1) ∩ gen(s2)
kill(s) = kill(s1) ⊆ kill(s1) ∪ kill(s2)

10

S1 S2

S

Again: Conservative Analysis

• Thus: true gen (s) ⊇ analysis gen(s)
 true kill (s) ⊆ analysis kill(s)

• True is what is computed at run time
• This is SAFE estimate

– prevents optimization
– but no wrong optimization 11

S1 S2

Available Expressions

12

Available Expressions

• Expr e is available at the start of a block

12

Available Expressions

• Expr e is available at the start of a block
–It is available at the end of all

predecessors

12

Available Expressions

• Expr e is available at the start of a block
–It is available at the end of all

predecessors

in(B) = ∩ P is pred of B out(P)

12

Available Expressions

• Expr e is available at the start of a block
–It is available at the end of all

predecessors

in(B) = ∩ P is pred of B out(P)
• Expr e is available at the end of a block

– either it is generated by the block
– or it is available at the start of the block and

not killed by the block

out(B) = in(B) –kill(B) ∪ gen(B)
12

Available Expressions

• Kill & gen known for each block.

13

Available Expressions

• Kill & gen known for each block.
• A program with N blocks has 2N

equations with 2N unknowns
–solution is possible.
– iterative approach (on next slide)

13

14

for each block B {
 out(B) = U; // U = “universal” set of all exprs
}

14

for each block B {
 out(B) = U; // U = “universal” set of all exprs
}
out(Entry) = ϕ; // remember reaching defs?

14

for each block B {
 out(B) = U; // U = “universal” set of all exprs
}
out(Entry) = ϕ; // remember reaching defs?
change = true;
while (change) {

}

14

for each block B {
 out(B) = U; // U = “universal” set of all exprs
}
out(Entry) = ϕ; // remember reaching defs?
change = true;
while (change) {
 change = false;

}

14

for each block B {
 out(B) = U; // U = “universal” set of all exprs
}
out(Entry) = ϕ; // remember reaching defs?
change = true;
while (change) {
 change = false;
 for each block B other than Entry {

 }
}

14

for each block B {
 out(B) = U; // U = “universal” set of all exprs
}
out(Entry) = ϕ; // remember reaching defs?
change = true;
while (change) {
 change = false;
 for each block B other than Entry {
 in(B) = ∩P is pred of B out(P);
 oldOut = out(B);
 out(B) = in(B) - kill(B) ∪ gen(B);

 }
}

14

for each block B {
 out(B) = U; // U = “universal” set of all exprs
}
out(Entry) = ϕ; // remember reaching defs?
change = true;
while (change) {
 change = false;
 for each block B other than Entry {
 in(B) = ∩P is pred of B out(P);
 oldOut = out(B);
 out(B) = in(B) - kill(B) ∪ gen(B);
 if (oldOut != out(B)) then {
 change = true;
 }
 }
}

14

Some Issues

• What is the set of all expressions?
• How to compute it efficiently?
• Why Entry block is initialized differently?

15

Available Expressions

16

ENTRY

…= a*b
…= c+d

… = c+d
a = a*b

… = a*b

c = a*b

EXIT

B1

B2

B3

B4

U = {a*b, c+d}
We are not interested in other
expressions/variables

Available Expressions

16

ENTRY

…= a*b
…= c+d

… = c+d
a = a*b

… = a*b

c = a*b

EXIT

B1

B2

B3

B4

BLOCK GEN KILL

B1 {a*b, c+d} {}

B2 {c+d} {a*b}

B3 {a*b} {}

B4 {a*b} {c+d}

U = {a*b, c+d}
We are not interested in other
expressions/variables

Available Expressions

17

B1

B2

B3

B4

ENTRY

…= a*b
…= c+d

… = c+d
a = a*b

… = a*b

c = a*b

EXIT

B1 B2 B3 B4

init In

Out

pass1 In

Out

pass2 In

Out

pass3 In

Out

Available Expressions

17

B1

B2

B3

B4

ENTRY

…= a*b
…= c+d

… = c+d
a = a*b

… = a*b

c = a*b

EXIT

B1 B2 B3 B4

init In - - - -

Out U U U U

pass1 In

Out

pass2 In

Out

pass3 In

Out

Available Expressions

18

B1

B2

B3

B4

ENTRY

…= a*b
…= c+d

… = c+d
a = a*b

… = a*b

c = a*b

EXIT

B1 B2 B3 B4

init In - - - -

Out U U U U

pass1 In ϕ

Out {a*b,c+d}

pass2 In

Out

pass3 In

Out

Available Expressions

19

B1

B2

B3

B4

ENTRY

…= a*b
…= c+d

… = c+d
a = a*b

… = a*b

c = a*b

EXIT

B1 B2 B3 B4

init In - - - -

Out U U U U

pass1 In ϕ

{a*b,c+d}

Out {a*b,c+d} {c+d}

pass2 In

Out

pass3 In

Out

Available Expressions

20

B1

B2

B3

B4

ENTRY

…= a*b
…= c+d

… = c+d
a = a*b

… = a*b

c = a*b

EXIT

B1 B2 B3 B4

init In - - - -

Out U U U U

pass1 In ϕ

{a*b,c+d}

{c+d}

Out {a*b,c+d} {c+d}

{a*b,
c+d}

pass2 In

Out

pass3 In

Out

Available Expressions

21

B1

B2

B3

B4

ENTRY

…= a*b
…= c+d

… = c+d
a = a*b

… = a*b

c = a*b

EXIT

B1 B2 B3 B4

init In - - - -

Out U U U U

pass1 In ϕ

{a*b,c+d}

{c+d} {c+d}

Out {a*b,c+d} {c+d}

{a*b,
c+d}

{a*b}

pass2 In

Out

pass3 In

Out

Available Expressions

22

B1

B2

B3

B4

ENTRY

…= a*b
…= c+d

… = c+d
a = a*b

… = a*b

c = a*b

EXIT

B1 B2 B3 B4

init In - - - -

Out U U U U

pass1 In ϕ

{a*b,c+d}

{c+d} {c+d}

Out {a*b,c+d} {c+d}

{a*b,
c+d}

{a*b}

pass2 In ϕ {a*b} {c+d} {c+d}

Out {a*b,c+d} {c+d} {a*b,
 c+d}

{a*b}

pass3 In

Out

Available Expressions

23

B1

B2

B3

B4

ENTRY

…= a*b
…= c+d

… = c+d
a = a*b

… = a*b

c = a*b

EXIT

B1 B2 B3 B4

init In - - - -

Out U U U U

pass1 In ϕ

{a*b,c+d}

{c+d} {c+d}

Out {a*b,c+d} {c+d}

{a*b,
c+d}

{a*b}

pass2 In ϕ {a*b} {c+d} {c+d}

Out {a*b,c+d} {c+d} {a*b,
 c+d}

{a*b}

pass3 In ϕ {a*b} {c+d} {c+d}

Out {a*b,c+d} {c+d} {a*b,
 c+d}

{a*b}

Available Expressions

24

B1

B2

B3

B4

ENTRY

…= a*b
…= c+d

… = c+d
a = a*b

… = a*b

c = a*b

EXIT

B1 B2 B3 B4

init In - - - -

Out 11 11 11 11

pass1 In 00

11 01 01

Out 11 01 11 10

pass2 In 00 10 01 01

Out 11 01 11 10

pass3 In 00 10 01 01

Out 11 01 11 10

Available Expressions: Bitvectors

25

a*b c+d bits for each expression

B1

B2

B3

B4

ENTRY

…= a*b
…= c+d

… = c+d
a = a*b

… = a*b

c = a*b

EXIT

Available Expressions: Bitvectors

in(B) = ∩ P is pred of B out(P)
out(B) = in(B) –kill(B) ∪ gen(B)

• With bit vectors,
in(B) = ∧ P is pred of B out(P)

out(B) = (in(B) ∧ ¬kill(B)) ∨ gen(B)
• Bitwise ∧, ∨, ¬ operations.

Available Expressions: Application

27

Available Expressions: Application

• Common subexpression elimination in a
block B
– Expression e available at the entry of B
– e is also computed at a point p in B
– Components of e are not modified from entry

of B to p

27

Available Expressions: Application

• Common subexpression elimination in a
block B
– Expression e available at the entry of B
– e is also computed at a point p in B
– Components of e are not modified from entry

of B to p

• e is “upward exposed” in B

27

Available Expressions: Application

• Common subexpression elimination in a
block B
– Expression e available at the entry of B
– e is also computed at a point p in B
– Components of e are not modified from entry

of B to p

• e is “upward exposed” in B
• Expressions generated in B are “downward

exposed”

27

Recap: Summary of Reaching
Definitions

gen = { dx | dx in B defines variable x and is not
followed by another definition of x in B}
kill = { dx | block contains some definition of x }
in(B) = ∪P is pred of B out(P)
out(B) = in(B) –kill(B) ∪ gen(B)
meet (Λ) operator is ∪
Initialization:
out(Bentry) = Entry Info = ϕ
out(B) = ϕ

28

Summary of Available Expressions

gen = downward exposed expressions
kill = { ex | block contains some definition of x }
in(B) = ∩ P is pred of B out(P)
out(B) = in(B) –kill(B) ∪ gen(B)
meet (Λ) operator is ∩
Initialization:
out(Bentry) = Entry Info = ϕ
out(B) = U

29

Comparing Reaching Definition and
Available Expressions Analysis

• Class Discussion about
–Similarities
–Differences

30

Summary of Available Expressions

31

Summary of Available Expressions

• What if we Initialize:
out(Bentry) = Entry Info = ϕ
out(B) = ϕ

31

Summary of Available Expressions

• What if we Initialize:
out(Bentry) = Entry Info = ϕ
out(B) = ϕ

• We might miss some expressions
that are available

31

Summary of Available Expressions

• What if we Initialize:
out(Bentry) = Entry Info = ϕ
out(B) = ϕ

• We might miss some expressions
that are available

• Loose on opportunity to optimize!

31

32

What are the expressions available at B2
when out(B) initialized with
i) U ii) ϕ

ENTRY

…= a*b
…= c+d

…= a*b
…= c+d

B1

B2

Live Variable Analysis

• A variable x is live at a point p if
–There is a point p’ along some path in

the flow graph starting at p to the EXIT
–Value of x could be used at p’
–There is no definition of x between p

and p’ along this path
• Otherwise x is dead at p

33

Live Variable Analysis: Gen

• gen(B)
• Set of variables whose values may

be used in B prior to any definition
• Also called “use(B)”
• “upward exposed” use of a

variable is generated by B

Live Variable Analysis: Kill

• kill(B)
• Set of variables defined in B prior

to any use
• Also called “def(B)”
• “upward exposed” definition of a

variable kills its liveness in B

Live Variable Analysis

out(B) = ∪ S is succ of B in(S)
in(B) = out(B) –kill(B) ∪ gen(B)

Alt: in(B) = out(B) – def(B) ∪ use(B)
• With bit vectors,

out(B) = ∨ S is succ of B in(S)
in(B) = (out(B) ∧ ¬kill(B)) ∨ gen(B)

• Bitwise ∧, ∨, ¬ operations.

Very Busy Expressions

37

Very Busy Expressions

• Expression e is very busy at a point p

37

Very Busy Expressions

• Expression e is very busy at a point p
–Every path from p to exit has at least

one evaluation of e

37

Very Busy Expressions

• Expression e is very busy at a point p
–Every path from p to exit has at least

one evaluation of e
–There is no assignment to any

component variable of e before first
evaluation of e following p

37

Very Busy Expressions

• Expression e is very busy at a point p
–Every path from p to exit has at least

one evaluation of e
–There is no assignment to any

component variable of e before first
evaluation of e following p

• Also called Anticipable expression

37

Very Busy Expression

• Practice Assignment
–Set the data flow equations for

Very Busy Expression
–Hint: Available Expression

Analysis

	Program Analysis�https://www.cse.iitb.ac.in/~karkare/cs618/�
	Available Expressions
	Available Expressions
	Available Expressions
	Available Expressions
	Available Expressions
	Available Expressions
	Available Expr Analysis
	Available Expr Analysis
	Available Expr Analysis
	Available Expr Analysis
	Available Expr Analysis
	Available Expr Analysis
	Available Expr Analysis
	Available Expr Analysis
	Available Expr Analysis
	Available Expr Analysis
	Available Expr Analysis
	Available Expr Analysis
	Available Expr Analysis
	Available Expr Analysis
	Available Expr Analysis
	Available Expr Analysis
	Available Expr Analysis
	Available Expr Analysis
	Available Expr Analysis
	Available Expr Analysis
	Available Expr Analysis
	Available Expr Analysis
	Analysis of Structured Programs
	Analysis of Structured Programs
	Analysis of Structured Programs
	Analysis of Structured Programs
	Analysis of Structured Programs
	Available Expr Analysis
	Available Expr Analysis
	Available Expr Analysis
	Available Expr Analysis
	Available Expr Analysis
	Available Expr Analysis
	Available Expr Analysis
	Again: Conservative Analysis
	Again: Conservative Analysis
	Again: Conservative Analysis
	Again: Conservative Analysis
	Again: Conservative Analysis
	Available Expressions
	Available Expressions
	Available Expressions
	Available Expressions
	Available Expressions
	Available Expressions
	Available Expressions
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Some Issues
	Available Expressions
	Available Expressions
	Available Expressions
	Available Expressions
	Available Expressions
	Available Expressions
	Available Expressions
	Available Expressions
	Available Expressions
	Available Expressions
	Available Expressions
	Available Expressions: Bitvectors
	Available Expressions: Bitvectors
	Available Expressions: Application
	Available Expressions: Application
	Available Expressions: Application
	Available Expressions: Application
	Recap: Summary of Reaching Definitions
	Summary of Available Expressions
	Comparing Reaching Definition and Available Expressions Analysis
	Summary of Available Expressions
	Summary of Available Expressions
	Summary of Available Expressions
	Summary of Available Expressions
	Slide Number 87
	Live Variable Analysis
	Live Variable Analysis: Gen
	Live Variable Analysis: Kill
	Live Variable Analysis
	Very Busy Expressions
	Very Busy Expressions
	Very Busy Expressions
	Very Busy Expressions
	Very Busy Expressions
	Very Busy Expression

