Program Analysis

https://www.cse.iitb.ac.in/~karkare/cs618/

Data Flow Analysis

Amey Karkare
Dept of Computer Science and Engg
IIT Kanpur
Visiting IIT Bombay

karkare@cse.iitk.ac.in
karkare@cse.iitb.ac.in

Recap

- Optimizations
 - Machine Independent
 - Machine Dependent
- Analysis
 - Intraprocedural
 - Local
 - Global
 - Interprocedural

Agenda

- For the next few lectures
- Intraprocedural Data Flow analysis
 - Components
 - Classical examples

Assumptions

- Unless otherwise specified
- Intraprocedural: Restrict to a single procedure
- Input in 3–address code format

3 Address Code

Assignments

```
x = y \text{ op } z

x = \text{ op } y

x = y
```

Arrays, Pointers and Procedures to be added later when needed

Jump/Control statements

```
goto L
if x relop y goto L
```

Statements can have label(s)

```
L: ...
```

Data Flow Analysis

- Class of techniques to derive information about flow of data
 - along program execution paths
- Used to answer questions such as:
 - whether two identical expressions evaluate to same value
 - used in common subexpression elimination
 - whether the result of an assignment is used later
 - used by dead code elimination

- Basic Blocks (BB)
 - -sequence of 3-address code stmts
 - -single entry at the first statement
 - -single exit at the last statement
 - -Typically we use "maximal" basic block (maximal sequence of such instructions)

- Leader: First statement of a basic block
 - First instruction of program (procedure)
 - —Target of a branch (goto)
 - Instruction immediately following a branch

Special Basic Blocks

- Two special BBs are added to simplify the analysis
 - -empty (?) blocks!
- Entry: Assumed to be the first block to be executed for the procedure analyzed
- Exit: Assumed to be the last block to be executed

- Control Flow Graph (CFG)
- A rooted directed graph G= (N, E)
- N = set of BBs
 - -including entry, exit
- E = set of edges

CFG Edges

- Edge B1→B2 ∈ E if control can transfer from B1 to B2
 - Fall through
 - —Through jump (goto)
 - Edge from entry to (all?) real first BB(s)
 - Edge to exit from all last BBs
 - BBs containing return
 - Last real BB

- Control Flow graph
 - Graph representation of paths that program may exercise during execution
 - Typically one graph per procedure
 - Graphs for separate procedures have to be combined/connected for interprocedural analysis
 - Later!
 - Single procedure, single flow graph for now.

- Input state/Output state for Stmt
 - —Program point before/after a stmt
 - —Denoted IN[s] and OUT[s]
 - -Within a basic block:
 - Program point after a stmt is same as the program point before the next stmt

- Input state/Output state for BBs
 - —Program point before/after a bb
 - —Denoted IN[B] and OUT[B]
 - -For B1 and B2:
 - if there is an edge from B1 to B2 in CFG, then the program point *after* the last stmt of B1 *may be* followed immediately by the program point *before* the first stmt of B2.

- Execution Path
 - $-p_1,p_2,...,p_n$
 - p_i -> p_{i+1} are adjacent program points in the
 CFG
- Infinite number of possible execution paths.
- No finite upper bound on the length.
- Need to Summarize the information at a program point with a finite set of facts.

Data Flow Schema

- Data flow values associated with each program point
 - Summarize all possible states at that point
- Domain: set of all possible data flow values
- Different domains for different analysis/optimization

Data Flow Problem

- Constraints on data flow values
 - Transfer constraints
 - Control flow constraints
- AIM: To find a solution to the constraints
 - Multiple solutions possible
 - -Trivial solutions,..., Exact solutions
- We typically compute approximate solution, close to the exact solution
 - Why not exact solution?

Data Flow Constraints

- Transfer functions
 - relationship between the data flow values before and after a stmt
- forward functions

$$OUT[s] = f_s(IN[s])$$

backward functions

$$IN[s] = f_s(OUT[s])$$

Data Flow Constraints

- Control flow constraints
 - relationship between the data flow values of two points that are related by program execution semantics
- For a basic block having n statements:

$$IN[s_{i+1}] = OUT[s_i], i = 1,2,...,n-1$$

 $IN[s_1], OUT[s_n] to come later$

Data Flow Constraints: Basic Block

Forward

- For B consisting of s_1 , s_2 , ... s_n $f_B = f_{s_n} \circ ... \circ f_{s_2} \circ f_{s_1}$ $OUT[B] = f_B(IN[B])$

Control flow constraints

Backward

$$IN[B] = f_B(OUT[B])$$
 $OUT[B] = U_{S \text{ a successor of B}} IN[S]$

Data Flow Equations

Typical Equation

```
out[s] = in[s] - kill[s] U gen[s]
```

- -gen(s): information generated
- kill(s): information killed
- For example:

Reaching Definitions Analysis

- Reaching Definitions Analysis
 - definition of a variable x :

```
x = ...something...
```

- Reaching Definitions Analysis
 - definition of a variable x :
 - x = ...something...
 - Could be more complex (e.g. through pointers, references, implicit)

- Reaching Definitions Analysis
 - definition of a variable x :

```
x = ...something...
```

- Could be more complex (e.g. through pointers, references, implicit)
- definition d reaches a point p if

- Reaching Definitions Analysis
 - definition of a variable x :
 - x = ...something...
 - Could be more complex (e.g. through pointers, references, implicit)
 - definition d reaches a point p if
 - there is a path from the point immediately following d to p

- Reaching Definitions Analysis
 - definition of a variable x :

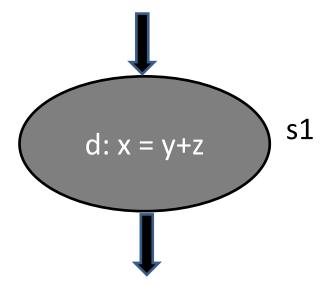
```
x = ...something...
```

- Could be more complex (e.g. through pointers, references, implicit)
- definition d reaches a point p if
 - there is a path from the point immediately following d to p
 - d is not "killed" along that path

- Reaching Definitions Analysis
 - definition of a variable x :

```
x = ...something...
```

- Could be more complex (e.g. through pointers, references, implicit)
- definition d reaches a point p if
 - there is a path from the point immediately following d to p
 - d is not "killed" along that path
 - "Kill" means redefinition of the left hand side (x in the above case)



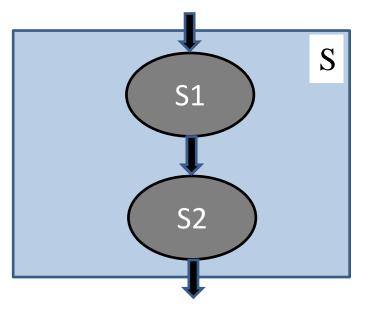
```
out(s1) = in(s1) - kill(s1) U gen(s1)

gen(s1) = {d}

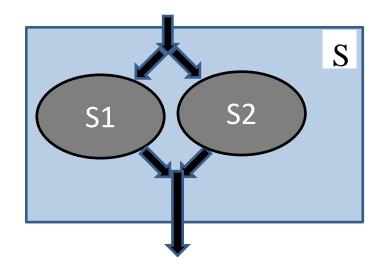
kill(s1) = D_x - {d} // D_x: set of all defs of x

kill(s1) = D_x will also work here!

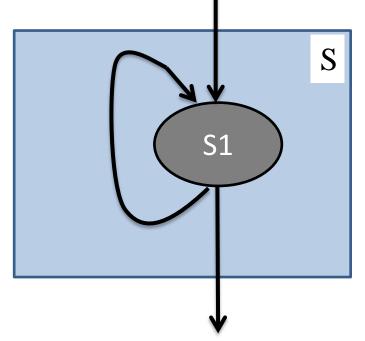
But may not work in general!
```



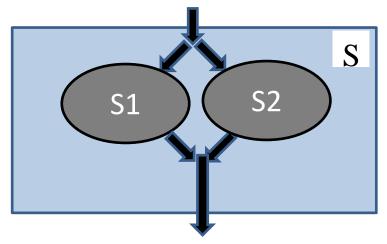
```
gen(s) = gen(s2) U (gen(s1) - kill(s2))
kill(s) = kill(s2) U (kill(s1) - gen(s2))
in(s1) = in(s)
in(s2) = out(s1)
out(s) = out(s2)
```



gen(s) = gen(s1) U gen(s2)
kill(s) = kill(s1)
$$\cap$$
 kill(s2)
in(s1) = in(s2) = in(s)
out(s) = out(s1) U out(s2)



Conservative Analysis

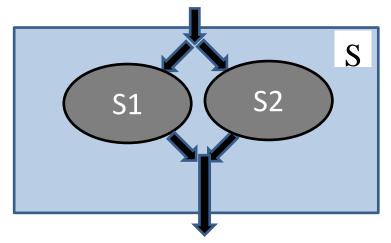


- Assumption: All paths are feasible.
 - Consider: if (true) s1; else s2
 - s2 is never executed

$$gen(s) = gen(s1) \subseteq gen(s1) \cup gen(s2)$$

$$kill(s) = kill(s1) \supseteq kill(s1) \cap kill(s2)$$

Conservative Analysis



- Thus: true gen (s) ⊆ analysis gen(s)
 true kill (s) ⊇ analysis kill(s)
- True is what is computed at run time
- This is SAFE estimate
 - prevents optimization
 - but no wrong optimization