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Recap 

• Optimizations 
– To improve efficiency of generated executable 

(time, space, resources …) 
– Maintain semantic equivalence 

• Two levels 
– Machine Independent 
– Machine Dependent 
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Local Optimizations 

• Restricted to a basic block 
• Simplifies the analysis 
• Not all optimizations can be applied locally 

– E.g. Loop optimizations 

• Gains are also limited 
• Simplify global/interprocedural 

optimizations 
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Global Optimizations 

• Typically restricted within a 
procedure/function 
– Could be restricted to a smaller scope, e.g. a loop 
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Global Optimizations 

• Typically restricted within a 
procedure/function 
– Could be restricted to a smaller scope, e.g. a loop 

• Most compiler implement up to global 
optimizations 
– Well founded theory 
– Practical gains 
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Interprocedural Optimizations 

• Spans multiple procedures, files 
– In some cases multiple languages! 

• Not as popular as global optimizations 
– No single theory applicable to multiple scenarios 
– Time consuming 
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A Catalogue of Code 
Optimizations 
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Compile-time Evaluation 

• Move run-time actions to compile-time 
• Constant Folding: 

Volume = 4/3*PI*r*r*r; 

– Compute 4/3*PI at compile time 
– Applied very frequently for linearizing indices of 

multidimensional arrays 
– When can we apply it? 
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… 

 



Compile-time Evaluation 

• Constant Propagation 
– Replace a variable by its “constant” value 

 
 
 
 

– May result in application of constant folding 
                       

 
 9 

i = 5;                       
… 
j = i*4; 
… 

 

Replaced by 

i = 5;                       
… 
j = 5*4; 
… 

 



Compile-time Evaluation 

• Constant Propagation 
– Replace a variable by its “constant” value 

 
 
 
 

– May result in application of constant folding 
– When can we apply it? 

 
 9 

i = 5;                       
… 
j = i*4; 
… 

 

Replaced by 

i = 5;                       
… 
j = 5*4; 
… 

 



Common Subexpression Elimination 

                                            
 
 
 
 

                    
 
 

10 



Common Subexpression Elimination 

• Reuse a computation if already “available” 
 
 
 
 

                    
 
 

10 



Common Subexpression Elimination 

• Reuse a computation if already “available” 
 
 
 
 

                    
 
 

10 

x = u+v;                       
… 
y = u+v+w; 
… 

 

Replaced by 

t0 = u+v; 
x = t0;                       
… 
y = t0+w; 
… 

 



Common Subexpression Elimination 

• Reuse a computation if already “available” 
 
 
 
 

• When can we do it? 
 
 

10 

x = u+v;                       
… 
y = u+v+w; 
… 

 

Replaced by 

t0 = u+v; 
x = t0;                       
… 
y = t0+w; 
… 

 



Copy Propagation 

                               
                                           

 
 
 
 

                                            
                       

 
 11 



Copy Propagation 

• Replace a variable by another 
– If they are guaranteed to have same value 

 
 
 
 

                                            
                       

 
 11 



Copy Propagation 

• Replace a variable by another 
– If they are guaranteed to have same value 

 
 
 
 

                                            
                       

 
 11 
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j = i*4; 
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… 
j = k*4; 
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Code Movement 

• Code size reduction 
Suppose op generates a large number of machine 
instructions 
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if (a < b)  
  u = x op y; 
else                        
  v = x op y; 

Replaced by 

t1 = x op y; 
if (a < b)  
  u = t1; 
else                        
  v = t1; 
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if (a < b)  
  u = …; 
else                        
  v = x*y; 
w = x*y; 

Replaced by 

if (a < b) {  
 t2 = x*y; 
 u  = …; 
} else { 
  t2 = x*y;                 
  v  = t2; 
} 
w = t2; 
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for (…) { 
   … 
  u = a+b; 
   … 
} 

Replaced by 

t3 = a+b; 
for (…) { 
   … 
  u  = t3; 
   … 
} 



Loop Invariant Code Movement 

• Execution frequency reduction 
 
 
 
 
 

• When can we do it? 

15 

for (…) { 
   … 
  u = a+b; 
   … 
} 

Replaced by 

t3 = a+b; 
for (…) { 
   … 
  u  = t3; 
   … 
} 



Code Movement 
                       
                              

16 



Code Movement 
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Code Movement 
• Safety of code motion 
• Profitability of code motion 
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Other optimizations 

• Dead code elimination 
– Remove unreachable, unused code. 
– Can we always do it? 

• Strength reduction 
– Use of low strength operators in place of high 

strength operators. 
• i*i instead of i^2, pow(i,2) 
• i<<1 instead of i*2 

– Typically performed for integers only (Why?) 

17 



Data Flow Analysis 
                                            

                   
                               

                                   
                                                

           
                                          

                                              
      

                               

18 



Data Flow Analysis 
• Class of techniques to derive information 

about flow of data 
– along program execution paths 

                                   
                                                

           
                                          

                                              
      

                               

18 



Data Flow Analysis 
• Class of techniques to derive information 

about flow of data 
– along program execution paths 

• Used to answer questions such as: 
                                                

           
                                          

                                              
      

                               

18 



Data Flow Analysis 
• Class of techniques to derive information 

about flow of data 
– along program execution paths 

• Used to answer questions such as: 
– whether two identical expressions evaluate to 

same value 
• used in common subexpression elimination 

                                              
      

                               

18 



Data Flow Analysis 
• Class of techniques to derive information 

about flow of data 
– along program execution paths 

• Used to answer questions such as: 
– whether two identical expressions evaluate to 

same value 
• used in common subexpression elimination 

– whether the result of an assignment is used 
later 

• used by dead code elimination 
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Data Flow Abstraction 
• Flow graph 

– Graph representation of paths that 
program may exercise during execution 

– Typically one graph per procedure 
– Graphs for separate procedure have to 

be combined/connected for 
interprocedural analysis 
•  Later! 
• Single procedure, single flow graph for now. 
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Data Flow Abstraction 
• Basic Blocks (bb) 
• Input state/Output state for Stmt 

–Program point before/after a stmt 
–Denoted IN[s] and OUT[s] 
–Within a basic block: 

• Program point after a stmt is same as 
the program point before the next stmt 
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