
Program Analysis
https://www.cse.iitb.ac.in/~karkare/cs618/

Amey Karkare
Dept of Computer Science and Engg

 IIT Kanpur
Visiting IIT Bombay

karkare@cse.iitk.ac.in
karkare@cse.iitb.ac.in

Code Optimizations

Recap

2

Recap

• Optimizations
– To improve efficiency of generated executable

(time, space, resources …)
– Maintain semantic equivalence

2

Recap

• Optimizations
– To improve efficiency of generated executable

(time, space, resources …)
– Maintain semantic equivalence

• Two levels
– Machine Independent
– Machine Dependent

2

Machine Independent Optimizations

3

Machine Independent Optimizations

• Scope of optimizations

3

Machine Independent Optimizations

• Scope of optimizations
– Local

3

Machine Independent Optimizations

• Scope of optimizations
– Local
– Global

3

Machine Independent Optimizations

• Scope of optimizations
– Local
– Global

3

Intraprocedural

Machine Independent Optimizations

• Scope of optimizations
– Local
– Global
– Interprocedural

3

Intraprocedural

Local Optimizations

• Restricted to a basic block
• Simplifies the analysis
• Not all optimizations can be applied locally

– E.g. Loop optimizations

• Gains are also limited
• Simplify global/interprocedural

optimizations

4

Global Optimizations

5

Global Optimizations

• Typically restricted within a
procedure/function
– Could be restricted to a smaller scope, e.g. a loop

5

Global Optimizations

• Typically restricted within a
procedure/function
– Could be restricted to a smaller scope, e.g. a loop

• Most compiler implement up to global
optimizations
– Well founded theory
– Practical gains

5

Interprocedural Optimizations

6

Interprocedural Optimizations

• Spans multiple procedures, files
– In some cases multiple languages!

6

Interprocedural Optimizations

• Spans multiple procedures, files
– In some cases multiple languages!

• Not as popular as global optimizations

6

Interprocedural Optimizations

• Spans multiple procedures, files
– In some cases multiple languages!

• Not as popular as global optimizations
– No single theory applicable to multiple scenarios
– Time consuming

6

A Catalogue of Code
Optimizations

7

Compile-time Evaluation

8

Compile-time Evaluation

• Move run-time actions to compile-time

8

Compile-time Evaluation

• Move run-time actions to compile-time
• Constant Folding:

8

Compile-time Evaluation

• Move run-time actions to compile-time
• Constant Folding:

Volume = 4/3*PI*r*r*r;

8

Compile-time Evaluation

• Move run-time actions to compile-time
• Constant Folding:

Volume = 4/3*PI*r*r*r;

– Compute 4/3*PI at compile time

8

Compile-time Evaluation

• Move run-time actions to compile-time
• Constant Folding:

Volume = 4/3*PI*r*r*r;

– Compute 4/3*PI at compile time
– Applied very frequently for linearizing indices of

multidimensional arrays

8

Compile-time Evaluation

• Move run-time actions to compile-time
• Constant Folding:

Volume = 4/3*PI*r*r*r;

– Compute 4/3*PI at compile time
– Applied very frequently for linearizing indices of

multidimensional arrays
– When can we apply it?

8

Compile-time Evaluation

 9

Compile-time Evaluation

• Constant Propagation

 9

Compile-time Evaluation

• Constant Propagation
– Replace a variable by its “constant” value

 9

Compile-time Evaluation

• Constant Propagation
– Replace a variable by its “constant” value

 9

i = 5;
…
j = i*4;
…

Replaced by

i = 5;
…
j = 5*4;
…

Compile-time Evaluation

• Constant Propagation
– Replace a variable by its “constant” value

– May result in application of constant folding

 9

i = 5;
…
j = i*4;
…

Replaced by

i = 5;
…
j = 5*4;
…

Compile-time Evaluation

• Constant Propagation
– Replace a variable by its “constant” value

– May result in application of constant folding
– When can we apply it?

 9

i = 5;
…
j = i*4;
…

Replaced by

i = 5;
…
j = 5*4;
…

Common Subexpression Elimination

10

Common Subexpression Elimination

• Reuse a computation if already “available”

10

Common Subexpression Elimination

• Reuse a computation if already “available”

10

x = u+v;
…
y = u+v+w;
…

Replaced by

t0 = u+v;
x = t0;
…
y = t0+w;
…

Common Subexpression Elimination

• Reuse a computation if already “available”

• When can we do it?

10

x = u+v;
…
y = u+v+w;
…

Replaced by

t0 = u+v;
x = t0;
…
y = t0+w;
…

Copy Propagation

 11

Copy Propagation

• Replace a variable by another
– If they are guaranteed to have same value

 11

Copy Propagation

• Replace a variable by another
– If they are guaranteed to have same value

 11

i = k;
…
j = i*4;
…

Replaced by

i = k;
…
j = k*4;
…

Copy Propagation

• Replace a variable by another
– If they are guaranteed to have same value

– May result in dead code, common subexpr, …

 11

i = k;
…
j = i*4;
…

Replaced by

i = k;
…
j = k*4;
…

Copy Propagation

• Replace a variable by another
– If they are guaranteed to have same value

– May result in dead code, common subexpr, …
– When can we apply it?

 11

i = k;
…
j = i*4;
…

Replaced by

i = k;
…
j = k*4;
…

Code Movement

 12

Code Movement

• Move the code in a program

 12

Code Movement

• Move the code in a program
• Benefits:

– Code size reduction
– Reduction in the frequency of execution

 12

Code Movement

• Move the code in a program
• Benefits:

– Code size reduction
– Reduction in the frequency of execution

• Allowed only if the meaning of the program
does not change.

 12

Code Movement

• Move the code in a program
• Benefits:

– Code size reduction
– Reduction in the frequency of execution

• Allowed only if the meaning of the program
does not change.
– May result in dead code, common subexpr, …

 12

Code Movement

• Move the code in a program
• Benefits:

– Code size reduction
– Reduction in the frequency of execution

• Allowed only if the meaning of the program
does not change.
– May result in dead code, common subexpr, …
– When can we apply it?

 12

Code Movement

13

Code Movement

• Code size reduction

13

Code Movement

• Code size reduction
Suppose op generates a large number of machine
instructions

13

if (a < b)
 u = x op y;
else
 v = x op y;

Replaced by

t1 = x op y;
if (a < b)
 u = t1;
else
 v = t1;

Code Movement

14

Code Movement
• Execution frequency reduction

14

Code Movement
• Execution frequency reduction

14

if (a < b)
 u = …;
else
 v = x*y;
w = x*y;

Replaced by

if (a < b) {
 t2 = x*y;
 u = …;
} else {
 t2 = x*y;
 v = t2;
}
w = t2;

Code Movement
• Execution frequency reduction

• When can we do it?

14

if (a < b)
 u = …;
else
 v = x*y;
w = x*y;

Replaced by

if (a < b) {
 t2 = x*y;
 u = …;
} else {
 t2 = x*y;
 v = t2;
}
w = t2;

Loop Invariant Code Movement

15

Loop Invariant Code Movement

• Execution frequency reduction

15

Loop Invariant Code Movement

• Execution frequency reduction

15

for (…) {
 …
 u = a+b;
 …
}

Replaced by

t3 = a+b;
for (…) {
 …
 u = t3;
 …
}

Loop Invariant Code Movement

• Execution frequency reduction

• When can we do it?

15

for (…) {
 …
 u = a+b;
 …
}

Replaced by

t3 = a+b;
for (…) {
 …
 u = t3;
 …
}

Code Movement

16

Code Movement
• Safety of code motion

16

Code Movement
• Safety of code motion
• Profitability of code motion

16

Other optimizations

17

Other optimizations

• Dead code elimination
– Remove unreachable, unused code.
– Can we always do it?

17

Other optimizations

• Dead code elimination
– Remove unreachable, unused code.
– Can we always do it?

• Strength reduction
– Use of low strength operators in place of high

strength operators.
• i*i instead of i^2, pow(i,2)
• i<<1 instead of i*2

– Typically performed for integers only (Why?)

17

Data Flow Analysis

18

Data Flow Analysis
• Class of techniques to derive information

about flow of data
– along program execution paths

18

Data Flow Analysis
• Class of techniques to derive information

about flow of data
– along program execution paths

• Used to answer questions such as:

18

Data Flow Analysis
• Class of techniques to derive information

about flow of data
– along program execution paths

• Used to answer questions such as:
– whether two identical expressions evaluate to

same value
• used in common subexpression elimination

18

Data Flow Analysis
• Class of techniques to derive information

about flow of data
– along program execution paths

• Used to answer questions such as:
– whether two identical expressions evaluate to

same value
• used in common subexpression elimination

– whether the result of an assignment is used
later

• used by dead code elimination

18

Data Flow Abstraction

19

Data Flow Abstraction
• Flow graph

– Graph representation of paths that
program may exercise during execution

– Typically one graph per procedure
– Graphs for separate procedure have to

be combined/connected for
interprocedural analysis
• Later!
• Single procedure, single flow graph for now.

19

Data Flow Abstraction

20

Data Flow Abstraction
• Basic Blocks (bb)

20

Data Flow Abstraction
• Basic Blocks (bb)
• Input state/Output state for Stmt

–Program point before/after a stmt
–Denoted IN[s] and OUT[s]

20

Data Flow Abstraction
• Basic Blocks (bb)
• Input state/Output state for Stmt

–Program point before/after a stmt
–Denoted IN[s] and OUT[s]
–Within a basic block:

• Program point after a stmt is same as
the program point before the next stmt

20

	Program Analysis�https://www.cse.iitb.ac.in/~karkare/cs618/�
	Recap
	Recap
	Recap
	Machine Independent Optimizations
	Machine Independent Optimizations
	Machine Independent Optimizations
	Machine Independent Optimizations
	Machine Independent Optimizations
	Machine Independent Optimizations
	Local Optimizations
	Global Optimizations
	Global Optimizations
	Global Optimizations
	Interprocedural Optimizations
	Interprocedural Optimizations
	Interprocedural Optimizations
	Interprocedural Optimizations
	A Catalogue of Code Optimizations
	Compile-time Evaluation
	Compile-time Evaluation
	Compile-time Evaluation
	Compile-time Evaluation
	Compile-time Evaluation
	Compile-time Evaluation
	Compile-time Evaluation
	Compile-time Evaluation
	Compile-time Evaluation
	Compile-time Evaluation
	Compile-time Evaluation
	Compile-time Evaluation
	Compile-time Evaluation
	Common Subexpression Elimination
	Common Subexpression Elimination
	Common Subexpression Elimination
	Common Subexpression Elimination
	Copy Propagation
	Copy Propagation
	Copy Propagation
	Copy Propagation
	Copy Propagation
	Code Movement
	Code Movement
	Code Movement
	Code Movement
	Code Movement
	Code Movement
	Code Movement
	Code Movement
	Code Movement
	Code Movement
	Code Movement
	Code Movement
	Code Movement
	Loop Invariant Code Movement
	Loop Invariant Code Movement
	Loop Invariant Code Movement
	Loop Invariant Code Movement
	Code Movement
	Code Movement
	Code Movement
	Other optimizations
	Other optimizations
	Other optimizations
	Data Flow Analysis
	Data Flow Analysis
	Data Flow Analysis
	Data Flow Analysis
	Data Flow Analysis
	Data Flow Abstraction
	Data Flow Abstraction
	Data Flow Abstraction
	Data Flow Abstraction
	Data Flow Abstraction
	Data Flow Abstraction

