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Abstract. Many popular web sites get millions of hits everyday. To
service a large number of requests, clusters of fully replicated web servers
are used. In such a setup, the client’s request has to be directed to a
cluster and then to a server within the cluster in a manner that the
client receives the response in minimum time. In this paper, we propose
an adaptive policy of selecting the nearest cluster for a request. Proximity
is assessed by the round trip delay between the cluster and the client.
An innovative idea is to measure this delay only for those clients who are
sending a large number of requests. We have implemented this scheme,
and using a test-bed which simulates the world wide web environment,
compared the performance of the scheme with that of some existing
schemes. The results indicate that the proposed scheme performs better,
both in terms of average response time, as well as throughput.

1 Introduction

Multiple clusters of servers placed in different geographical regions is a very
common architecture for web server systems. Deploying such a system requires
a proper strategy for selecting a cluster, and then selecting a server within the
cluster for handling a client request. The strategy should result in low response
time for the client. In many existing strategies, a server or cluster is selected
without taking system state into account, e.g., random, round robin, etc. Some
policies use weighted capacity algorithms to direct more percentage of requests
to more capable servers or clusters but most policies do not take into account
the proximity between clients and clusters.

When clients are geographically far apart, network conditions play an impor-
tant role in the latency perceived by clients. In such a situation, we can provide
better service to clients by taking proximity information into account. A few
schemes that do try to use proximity information, either use only the IP address
allocation table, which is not very reliable, or use probes between client and
DNS/server, which has high overhead.
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In this paper, we propose a scheme for load balancing that employs prox-
imity information, as well as information about server loads. But proximity is
estimated only when some client has several requests for the website (e.g., proxy
server of a large organization.) Proximity is estimated by round trip delay, which
is measured by different clusters sending probes to the client. We have used a
test-bed for evaluating the performance of this approach and comparing it with
other approaches. The experimental results show that our proximity based ap-
proach performs better than other approaches.

2 Related Work

Cardelini et al [6] classify web server architectures based on the entity which
distributes the incoming requests among the servers.

In client-based approach, the client side entity is responsible for selecting the
server. The selection can be done by the client software (browser) or Java Applet
run by the client [16] or client-side DNS [5] or proxy servers [4]. Evaluation of
several approaches for server selection has been done by [15].

In DNS-based approach, server side authorized DNS maps the domain name
to IP address of one of the servers. Several DNS based approaches are discussed
in References [6] and [7]. An example of this type is the round robin approach
(DNS-RR) [13]. The selection of the server can also be based on the server load
or based on proximity with clients or a combination of both.

In dispatcher-based approach, DNS returns the address of a dispatcher that
routes all the client request to other servers in the cluster. Thus it acts as a
centralized scheduler at the server side. Dispatching of requests can be done
using various techniques, like Packet single-rewriting, or Packet double-rewriting
[2], or Packet forwarding using MAC address [12], or using ONE-IP address [9],
or using HTTP redirection.

Many server side approaches for load balancing have been proposed. Guyton
et al [11] focus on hop count and cost of collection of information for server
selection. In Cisco’s Distributed Director, server selection at DNS is done based
on geographical proximity estimated using client IP address or hop count infor-
mation obtained from routers. Given that clients are distributed geographically,
static metrics like hop count for proximity information were not found good in
study by [8]. Ammar et al [10, 17] propose local anycast resolver that is near a
large number of clients, to which servers push their performance information.

3 Load Balancing using Proximity Information

We assume a two level architecture. The web server system consists of multiple
clusters, each cluster having a dispatcher and multiple servers, In this system, the
response time depends on the load at selected server and the path characteristics
between the client and the server. the DNS selects the cluster (returns IP address
of its dispatcher), and the dispatcher selects the server within the cluster.



3.1 Using Proximity Metrics for Cluster Selection

We aim to use proximity information to provide a better response time. There
are various metrics to measure proximity. Some of these metrics are: round-trip
time, number of hops, geographical distance, bandwidth availability, etc.

For minimizing the response time, RTT is perhaps the best metric to use
along with the cluster (or server) load information. However, use of RTT requires
its periodic measurement. But this overhead is within limits. When used at the
client side, results in [8] indicate that the overhead was less than 1% in terms of
additional network traffic. Also use of three ping messages for measurement of
RTT gave better results. They found that RTT has high correlation with latency
perceived by the client.

For a server side approach, measuring RTT for each client can result in a
huge overhead as a heavily loaded cluster may get requests from thousands of
client. Arlitt et al [3] found out that 75% of total HTTP requests to a server
come from 10% of networks. So if we measure the RTT for only the high load
generating clients, we can minimize the overhead.

Our approach is to dynamically distribute requests based on the current
system state information. All servers in a cluster report state information to the
dispatcher. Dispatcher reports aggregate cluster information to the DNS. Servers
also count the number of requests coming from each IP address. This information
is also sent to the dispatcher, which aggregates this information and reports IP
addresses of clients having very high request rate to the DNS. Using the request
rate information, DNS asks a subset of clusters to measure round-trip delay with
only those clients which generate the heavy load. Round-trip delay is measured
by sending ping messages to clients.

While selecting the cluster, DNS ensures that clusters have enough free ca-
pacity to serve the client requests.

4 TImplementation

We have implemented the scheme on PCs running Linux.

We run Apache web server on all the server machines. Another process collects
state information like load average, CPU and memory utilization, number of
active connections, etc. The system load is obtained periodically, and sent to
dispatcher. Using the web server access log, the number of requests from each IP
address is determined and this information is also propagated to the dispatcher.

As discussed earlier, DNS-based schemes for load-balancing require that DNS
returns the IP address of server/dispatcher, based on the state information like
load, and information about the client like its round-trip time from various
clusters. We have extended BIND to permit this flexibility.

Dispatcher receives regular load updates from the servers. It also receives
client request rates from each server. The aggregate information is sent to the
DNS. Dispatcher may also receive requests from DNS to measure RTT of select
clients. It can send ICMP echo request messages to those clients and report
RTTs between clients and itself.



5 Experiments

We compare the performance of the proposed scheme with some existing schemes
using our test-bed [1]. The results of these experiments are presented below.

5.1 Setup

For conducting our experiments, we have setup a test-bed as shown in Fig. 1.
It has three clusters on different logical networks representing three different
geographical regions. Each cluster has one dispatcher (or front node, represented
by ‘F’ node) and two servers (‘S’ nodes).

Regionl (194.* * *)

S11 S12 Fl

194.31.104.10

194.22.11.21 194.11.22.23 194.83.46.95

DNS

Region3 (202.% * *)

S31 S32 F3

202.47.93.23

202.11.33.24 202.9.73.22

Internet

Region2 (198.* .* .*)

F2 SZl SZZ

198.91.84.32

198.83.104.31 198.23.46.91 198.11.146.37|

Other Regions(192.*,196.*,206.*)

192.12.23.45 196.91.75.81 206.111.25.43

Fig. 1. Test bed used in experiments

In this setup, we have eleven clients (‘C’ nodes) to generate requests. Note
that each client-node in the test-bed actually generates a very large number
of requests in the simulation, and is equivalent to more than 10 clients in real
environment. Three clients each were present in region 1 and region 2 and two



clients in region 3. We also had three clients in other regions which represent
mix of clients not close to any of the three clusters. A DNS was also setup to
resolve IP addresses of clusters.

To model WAN effects, artificial delays and packet losses were introduced
using Nistnet software [14]. We have introduced smaller delays for IP packets
sent and received between clients and servers in the same region and higher delays
for packets between clients and servers in different regions. We have assumed less
packet loss (2%) while they travel between the same region. For packets traveling
across the regions, the packet loss is assumed to be higher (5%).

To generate load and measure performance in experiments, we have used
WebStone. This is a standard software used to benchmark web servers. Differ-
ent schemes were tested with everything kept identical except policy for cluster
selection at DNS.

5.2 Experimental Results

Since minimizing the response time was the primary objective of the scheme,
we use average response time as the metric for performance evaluation. We have
compared the proximity-based policy with three other policies for load balancing,
viz., round robin (RR), random (R) and Weighted capacity (WC).

We conducted experiments to measure performance under two different con-
ditions for RTT on links. In one condition, there was less variations in RTT
(delays were mostly in the range of 20 to 45 milliseconds with a mean of 30
milliseconds for links within the same region and in the range of 200 to 500
milliseconds with a mean of 300 milliseconds). In the other condition, there were
high variations in RTT (delays were mostly in the range of 10 to 70 milliseconds,
with a mean of 30 milliseconds for links in the same region, and in the range of
100 to 600 milliseconds with a mean of 300 milliseconds). We have performed
experiments with file sizes of 5KB and 50KB.

We varied the number of client processes from 20 to 100 in steps of 20. We
also measured the request rate with the number of client processes. The request
arrival rate increases linearly with the number of client processes.

Average response time of the different schemes for file sizes 5KB and 50KB
are shown in Figures 2 and 3, when there were high variations in round-trip
time on links. As seen in the figure, the RR, R, and WC schemes have almost
similar performance, while the proximity-based scheme has a significantly lesser
response time.

For 5KB files, while the average response time with other three policies was
between 0.98 to 1.1 seconds, the average response time with our policy was
between 0.49 to .51 seconds. For 50KB files, the average response time with
other three policies was between 1.96 to 2.75 seconds, and the average response
time with our policy was between 1.02 to 1.13 seconds. The average response
time was reduced to half when our policy was used as compared to other policies.

The average response times of different schemes when there was low variations
in round-trip time on links are shown in Figures 4 and 5. In this case also, our
scheme performed better than the other schemes. For 5KB files, the average



Response Times for different schemes at DNS for 5KB file size and high variationsin RTT
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Fig. 2. Average response time with 5KB file size and high variations in RTT

Response Times for different schemes at DNS for 50KB file size and high variationsin RTT
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Fig. 3. Average response time with 50KB file size and high variations in RTT

response time with first three policies was between 0.86 to .99 second, the average
response time with our policy was between 0.45 to .48 second. For 50KB files, the
average response time with other three policies was between 1.7 to 2.27 seconds,
and the average response time with our policy was between 0.8 to 0.93 seconds.
Thus we see that the response time is reduced by a large factor when our policy
is used and clients are distributed geographically across the globe.

We have also measured throughput (in Mbps) in all simulation experiments.
We find that the throughput achieved by our policy is approximately twice in
most cases.



Response Times for different schemes at DNS for 5KB file size and low variationsin RTT
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Fig. 4. Average response time with 5KB file size and low variations in RTT
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Fig. 5. Average response time with 50KB file size and low variations in RTT

6 Conclusions

We have proposed a proximity-based scheme for request distribution for a very
large website. The scheme also takes server load into account. In the proposed
scheme, the round trip time (RTT) for the client is measured, and the request is
sent to the cluster that has the least RTT. This is done only for clients generating
a lot of requests.

We have implemented the scheme on Linux machines. Using a test-bed, which
simulates the delays of a real network, we compared the performance of our
proposed policy with round robin, random, and weighted capacity. We found
that the proposed policy gives better performance in terms of response time and
throughput as compared to other policies.
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