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ABSTRACT
Soundness and completeness are two primary concerns of a
static analysis tool for finding defects in software. Exhaus-
tive static analysis of the program through all paths is not
always possible, especially for a large software causing in-
completeness in the analysis. Also, exhaustive testing of the
program to detect all bugs is not possible. In this work, we
describe a technique which uses coverage data from testing
to remove the tested paths and then statically analyzes the
remaining code. This pruning of tested paths allows a static
analyzer to perform a more thorough analysis of the reduced
code, thereby improving its effectiveness. This work is a
step towards integration of static analysis and testing frame-
works. The proposed technique is applied with a few static
analyzers publicly available. Our experience shows that the
approach results in lesser false positives as well as detection
of more serious errors which might have gone unnoticed oth-
erwise.
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1. INTRODUCTION
Reliability of the software system is basic concern during

development. The only way to achieve high reliability is by
detecting and removing the defects present in the program.
In general, the behavior of a program can be known only
at runtime. However, some of the inconsistencies and errors
prevailing in the program can be directly caught by analyz-
ing the code. These errors or bugs present in the program
may cause undesired effects during execution. Analyzing
the program can identify these errors which might not have
been found by the compiler.

Testing and static analysis are prevalent approaches to
identify the bugs in the software. Both of these techniques
have contrasting features which can be exploited for mutual
benefit and better performance in detecting the bugs which
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will be the focus of this work. 1

Defects in program can be identified by testing [8]. Here
we have a set of test cases exclusively built to execute some
conditions and parts of the code which would let us know the
possible defects in the program. To identify a defect, we may
need a large set of test cases which involves a lot of effort.
So the soundness and completeness of testing to detect the
defects depends on the test cases used. Soundness refers
to the fact that identified defects are correct without being
false positives and completeness indicates that all defects in
program are being identified. It is obvious that, by testing,
the inferred results are valid for the current execution paths
and hence unsoundness and incompleteness persists along
the paths uncovered by the test case(s).

On the other hand, in static analysis, we need not exe-
cute the program and hence the notions of test case does
not exist. The analysis is performed on the source code or
some representation of program. The representation may be
an abstract syntax tree, a dependence graph, a call graph
etc [1]. The results observed from such an analysis will re-
main valid for all input data. Hence we can have guarantee
on the applicability of the inferences made by static anal-
ysis. Model checkers, annotation checkers etc are different
approaches for static analysis tools. There are many static
analysis tools available publicly and commercially to detect
bugs in the program [7, 3, 4, 5].

The issues of concern in static analysis tools are sound-
ness, completeness and noise. As the complete analysis of
the program through all possible paths may not be possi-
ble at all times, we may have to exclude some paths during
analysis and this forms the basis for incompleteness. The
power of the static analysis and testing to detect defects is
not the same and each has its strengths . If we can combine
the advantages of both the techniques, we can improve the
checking of programs. This is what this work aims to do.

During testing phase of program, some parts of the code
may be rigorously tested but some parts might be neglected
depending on the quality of test suite. The rigorously tested
portions of the program would generally have fewer errors
which are not fixed than the rest. Hence we can avoid ana-
lyzing the already tested portions of the program. This work
aims to use the data from testing to direct a static analysis
engine to the areas of unexplored code and the parts which
have been tested with very less confidence.

Our approach takes the advantage of rigorous testing to
perform better and efficient focused static analysis. The idea
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is to use the coverage information to prune those paths of the
program which have been sufficiently tested. By reducing
the number of paths, we encourage the static analyzer to do
more thorough analysis of the remaining code and explore
more paths which it could not do earlier due to the large
number of paths.

The proposed technique has useful application in the path
insensitive static analysis. This includes abstract interpreta-
tion based checkers. Aggressive decisions can be made when
the number of paths are reduced detecting additional errors
which were not identified with all the paths criterion.

The nearest related work is Java Path Finder [6], a model
checking tool for JAVA which uses runtime information to
guide its model checking engine for detecting deadlocks. An
attempt of visualization of failure points based on coverage
was made in Tarantula [9]. In co-operative bug isolation
project [10], the failure cases of program, given as feedback
from user are used in efficient debugging. In contrast to
these approaches, our work considers coverage information
from testing to guide static analysis. This paper is orga-
nized as follows. In next section we describe our approach
and algorithm, Section 3 contains some implementation de-
tails. Section 4 illustrates an example followed by some ex-
periments and observations in Section 5. Section 6 contains
conclusions and future work.

2. OUR APPROACH
There are two ways in which one can view the testing pro-

cess. In one view, we can think that some paths are tested
efficiently and bugs are revealed, leaving certain untested
paths which have to be further analyzed for bugs. These
paths are not tested because of improper test suite or rare
conditions of execution for which test case(s) can’t be eas-
ily generated. Hence we may put more effort on these paths
rather than already tested paths. In the second view of test-
ing, we may identify that certain control flow paths have
always caused failure in the program. So the effort of static
analysis can be levied on these paths. In this work, we focus
on the first.

Our approach of using block coverage information from
testing to drive static analysis consists of three phases as
shown in Figure 1.

1. Mine the coverage information

2. Transform the control flow graph

3. Perform focused static analysis

During the testing process, we record the block coverage
information which is then mined to identify the unexplored
parts of the code in testing. The selection of blocks which
have to be analyzed for possible bugs depends upon our
block selection criterion, explained below. The program’s
control flow is reconstructed with pruning so as to include
the blocks which are not properly tested. This step also iden-
tifies the blocks which might have been already explored but
which are required in further analysis of unexplored blocks
and the paths covering these blocks. In the third phase, we
use this transformed program, and its control flow graph,
for efficient and focused static analysis.

2.1 Block selection criterion
The efficiency of the approach lies in the selection of subset

of blocks and paths using coverage data for a focused and

Figure 1: The three phases of our approach

thorough static analysis. We assume that the blocks which
are substantially tested need not be analyzed further as the
bugs might have been detected and fixed. A threshold value,
‘K’, is chosen for selection of the blocks to be analyzed. We
can have two measures for ‘K’:

• If a block is covered in less than ‘K’ test cases (‘K’ is
a threshold value, a parameter we choose), we would
consider it for further static analysis. For the value of
K=1, the set of blocks that are not executed in any of
the test case are considered for static analysis.

• Alternatively, the value ‘K’ can be considered as the
ratio of number of test cases executing the block to the
maximum number times any block has been executed.

The result of path pruning is dependent on the value of
‘K’. For small value of ‘K’, only uncovered paths are selected,
while for large values of ‘K’, all the paths may be included
for further analysis.

2.2 Transformation of control flow graph
The set of blocks tested with less confidence, Ba (subscript

a indicates - to be analyzed), are identified based on the
threshold value ‘K’. These blocks are used for directing the
static analysis engine. We need to get only those paths
in the program which cover the set Ba. To do this, we
reconstruct the program’s control flow graph. According to
the semantics of program, for each function there needs to
be atleast one path from starting block to the returning/exit
basic block. For each of the blocks in Ba, we construct
the paths from the starting block to the terminating block,
passing through any Ba and include each such block in the
path for further analysis.

Let Bi (subscript i indicates - to be included) be the set of
blocks to be included in analysis. The set of basic blocks Bp



Figure 2: Transformation 1

(subscript p indicates - pruned blocks) which are not needed
for the analysis of Ba are identified. Hence any control flow
to one of these blocks, Bp, should be pruned. If Bn is the
set of additional blocks to be included for analysis of Ba, B
is set of all blocks in the program then the relation between
these sets is as follows:

Ba ⊂ Bi

Bn = B −Ba −Bp

Bi = Ba ∪Bn

As we are reconstructing the paths for each block bb ∈ Ba,
there would be no control flow resulting from bb to any of Bp

and vice versa which needs to be analyzed. This is because,
if there was to be a path from an element of Bp to bb, then
it would have been included in Bi.

Let b be any block in the program’s control flow graph.
We have following three transformations for path pruning
which are also illustrated in Figure 2 and Figure 3. These
transformations are formulated with JAVA bytecode in view,
which can be applied to other languages as well.

1. If b has any jump to an element from Bp then remove
that jump i.e make it null.

2. If b has its immediate successor block in Bp, modify
the conditional jump into unconditional jump to its
right child.

3. Both left and right child of block b would not be in Bp,
as we will be considering only those paths which would
result in traversing uncovered paths. If this case was
to arise then the block b itself would be in Bp.

In transformation 1, Ba = {B3} , Bi = {B1, B2, B3, B4},
Bp = {X}. The path L1, L3, L5 is substantially tested,
leaving L1, L2, L4 for further analysis. Hence the jump in-
struction to X at B2 is replaced with null leaving the path
L1, L2, L4.

In transformation 2, Ba = {B3} , Bi = {B1, B2, B3, B4},
Bp = {X}. The path L1, L2, L4 is substantially tested leav-
ing L1, L3, L5 for further analysis. The conditional jump at
B2 is replaced by unconditional goto to B3.

Figure 3: Transformation 2

2.3 Correctness of transformations
The basic transformations on the control flow graph are

additions (or modifications) and deletions of jump instruc-
tions so as to include only the unexplored blocks along with
the paths resulting them. While doing this, the new pro-
gram and hence its control flow graph should have a subset
of paths from the original program without any extra paths.
Also the paths should be complete i.e. there should be path
from start to atleast one of the terminating basic blocks,
and hence this path may be taken in one of the possible ex-
ecutions. To ensure these conditions, we generate complete
control flow for each of the uncovered blocks and include all
those blocks in the control flow path, which contain one of
the uncovered blocks for focused static analysis. It is guar-
anteed that there is always a path to one of return/exit basic
blocks. The three transformations will not cause undesired
paths to be added. Moreover, there is no data flow informa-
tion (incoming or outgoing) from the blocks included in our
analysis to the pruned blocks. Hence the correctness of our
approach is always preserved, while giving better results by
aggressively analyzing fewer paths.

2.4 Advantages of the proposed approach
The advantages of the proposed testing driven, focused

static analysis are:

• The paths which might not be analyzed during analysis
of the entire code may be analyzed by our proposed
approach which allows additional serious errors to be
detected.

• More aggressive static analysis can be done with lesser
number of paths, resulting in improved analysis of the
code.

• The testing effort is leveraged for better static analysis.

• The runtime of static analysis can be reduced.

• The number of warnings issued as well as the noise
should get reduced preventing serious errors from be-
ing missed by the programmer among false positives.
This makes the framework more usable, practically.

The proposed method can be used in a comparative frame-
work of static analysis before and after testing. Hence we



can focus on testing a few portions (which were reported
from static analysis) and use testing results for making fo-
cused static analysis. So we will not miss any serious errors
which can be reported by any of the frameworks.

The proposed approach has one potential limitation.

• We are relying on test suite for selection of paths for
further analysis. We are emphasizing on specific un-
explored paths which leads to incompleteness in other
paths. This can prevent defects from getting caught in
the paths that are pruned out. But this may not be se-
rious concern, as those paths might have been already
tested and hence the bugs in those paths would be
revealed. However this shortcoming can be overcome
either by analyzing the entire code before pruning or
by analyzing the pruned portion separately.

This approach will not help increase the efficiency of the
tools which does accurate and aggressive path sensitive anal-
ysis but, it would be helpful in the case of conservative static
analysis. Even in the case of path sensitive analysis, where
all paths are exhaustively analyzed, this methodology ben-
efits in following ways:

• For the tools which consider only a subset of paths
for analysis [2], our framework can act as a guide for
selection of these paths.

• It gives the possible bugs in fewer, untested paths and
hence we have lesser noise to deal with.

• The running time would be considerably reduced.

3. IMPLEMENTATION
Though our proposed approach is applicable for any lan-

guage, tool and bug category, to verify the applicability and
performance of our technique, we have implemented a pro-
totype for JAVA. An ideal way to implement our technique
is to use a coverage analyzer and a static analyzer which
work on the same control flow graph representation. Hence
we can force the static analyzer to look at specific paths
deduced from the coverage analysis. As we were working
with diverse tools, a uniform framework was not possible
and hence in the current implementation, we have changed
the JAVA class file so that it reflects the new program which
has only those paths which result from our path pruning.

The basic algorithm for our proposed approach is shown
in Figure 4. Let P be a program which needs to be verified.
The program is instrumented (P ′) to record the block cov-
erage. The test suite is prepared using which the program is
tested. Since the test suites are not exhaustive, not all parts
of the code are covered substantially. All the uncovered and
less explored blocks Ba are identified from the block cover-
age information, which are used to build the program paths
which need further analysis.

Control flow graph of the program P is generated. For
each of the blocks in Ba, we construct the paths from start-
ing block to the terminating block passing through one of
the blocks in Ba. This is shown in step 4. Hence we re-
tain the the paths in the program which are needed for the
analysis of the unexplored basic blocks. Once this informa-
tion is obtained, we will identify the basic blocks, Bp, which
are not needed in further analysis of Ba. Hence the paths
to Bp are pruned from future analysis. For this the class

1. Run the coverage analyzer.
2. Generate the CFG of the class.
3. For each function ‘F’

{
For each block ‘b’ of ‘F’
If(cover[b] < K)
list_uncovered[f].add(b)

}
4. For each function ‘F’ such that

list_uncovered is not empty
{
for each block b in list_uncovered[f]
{
Generate path(s) ‘P1 ’ from source block

to the basic block ‘b’ in ‘F’.
Generate path(s) ‘P2 ’ from basic block

‘b’ to the exit block.
Pf = P1 U P2

}
/* Pf is the list of blocks which
need to be included in analysis */

UnwatedBlocks[f] = AllBlocks - Pf
}

/* Now we have unnecessary blocks in the
list UnwantedBlocks */

5. Scan the class file
For each function ‘F’
{
get UnwantedBlocks and remove the
control paths containing these blocks.

}
6. Do the static analysis of the

transformed program using its CFG.

Figure 4: Algorithm for the process

file is modified by suitably replacing and/or adding jump
instructions so that only necessary paths are present in the
program. This is shown in step 5.

Finally, the modified classfile which reflects the program
with pruned paths is given as input to static analyzer. In
this prototype, we have used FindBugs as our static analy-
sis engine. Entire process after testing is automated. The
prototype is completely written in JAVA.

4. EXAMPLES
NULL dereference is one of the most frequent error com-

mitted by many programmers. Whenever an object is being
dereferenced, it has to be initialized in all possible paths to
the point of dereferencing. Missing the initialization in any
of the path may cause this error on some input value which
follows this control flow path.

There are many static analysis tools which detect possible
NULL dereferences [7, 3, 4]. But the rate of false positives
is generally high and hence a programmer may miss the
occurrence of real bug amongst the noise. Hence we have
considered this bug to prove the efficiency of our method.
To reduce the overhead of analysis, FindBugs will leave the
context information beyond a single branch. So the possible
NULL dereference after the next branch can’t be detected.
The code fragment in Figure 4 contains a NULL dereference
which is not reported by FindBugs.

It can be clearly seen that ‘s’ is initialized to ‘null’ at



1 public void foo(int x, int y) {

2 NullDeref n = new NullDeref ();
3 if (x<y)
4 s=null;
5 /*At this point we know s is null

*in some path*/
6
7 if (x > y)
8 System.out.println ("X > Y");
9
10 System.out.println ("After if

statement ");
11
12 /* at this point we don ’t know

* anything about the state of
*‘s’. So FindBugs won ’t generate
* a warning here .*/

13 int mk = s.hashCode ();
14 System.out.println ("argv.length

2");
}

Figure 5: Example of NULL dereference

statement 4. So if the path 2,3,4,7,10,13 is followed during
some execution, then there is a potential NULL dereference
at line number 13. As FindBugs does not carry the context
beyond a single if statement, this bug is not detected by the
tool. But if the code has been subjected to some test cases,
then we have two scenarios.

1. x is greater than y

2. x is less than y

If the test suite was exhaustive then both the above cases
would have been covered in testing and hence NULL derefer-
ence is identified. But if x < y is not tested, then this NULL
dereference is not identified even in testing. We can use the
partial test information to prune the tested path retaining
unexplored paths. Doing this way, we would have neglected
the intermediate branch i.e. the if statement along with its
true branch is pruned. Hence for single path, we would test
the program and detect the NULL dereference with Find-
Bugs, which succeeds this time.

We believe that the applicability of the proposed approach
can be easily extended for other bugs and tools whose analy-
sis depends on number of paths. It is expected that our pro-
posed approach would identify more defects with selective
path pruning. Even when exhaustive, path sensitive analy-
sis is employed, there is a great chance of missing the real
bug amongst noise. If the bug in Figure 5 was present in a
million lines of code, then among various other errors (along
with noise), this bug could have been easily left unidentified.
Reducing paths in a selective way, like this, may not miss
the real bug.

5. EXPERIMENTS AND OBSERVATIONS
We have seen the applicability of our approach on a few

programs of thousands of lines of code with FindBugs as
static analysis tool. We have not yet tried the approach on
other static analysis tools. The packages which we tested,
pruned and subsequently analyzed with FindBugs are:

• An instrumentation engine: This program is a part of
the coverage analyzer we have used to get statistical
data.

• Our prototype tool: The entire implementation of our
proposed approach

• A few custom built programs: These are smaller pro-
grams, containing known defects.

For each of the above, a test suite is built and some initial
testing is done. From the results of testing, we have recorded
coverage for each basic block and used that information to
identify the unexplored blocks and the blocks having less
confidence. The threshold value (K) for selection of the un-
examined blocks is varied from 1 to 5. The analysis time
for each of the program with pruning and without pruning
is compared.

Our proposed approach reduces the number of paths to
be analyzed and hence the time for analysis is observed to
be lower. As we deal with fewer paths, noise is subsequently
reduced and hence we have much lesser number of bugs to
check for reality. Hence the burden on the programmer is
reduced while probability of catching real bug is increased.

Let FP1 be false positives without pruning and FP2 be
false positives with pruning. Let E be the total errors which
are present in the program (real errors which may or may
not be identified by any analysis tool), Er1 be errors with-
out pruning and Er2 be the set of errors detected with our
framework. Now for the subset of paths we are consider-
ing in our framework, let Ers be the corresponding errors
from Er1. Let Ern be the new errors detected from our
framework. From our experiments we have observed that :

Ers ⊂ Er1

Er2 ⊂ Er1 ∪ Ern

Er2 ⊂ E
FP2 ⊂ FP1 ∪ FPn

During the experiments, it came to us as a surprise that
some noise FPn, is added because of our framework. But
this noise is comparatively negligible. The reason for the
noise is the possibility of new paths being explored which
was not done without our framework resulting in newer real
bugs along with few false positives. As stated in Section 2.3,
our framework does not add any new paths and programs
behavior is not altered. The new paths explored which re-
sulted in new real bugs, are part of all paths analysis which
were ignored because of conservative static analysis, as is
the case with FindBugs.

6. CONCLUSIONS AND FUTURE WORK
Coverage data from testing can be efficiently used to do

a better and more efficient focused static analysis by prun-
ing some unwanted paths for analysis. This approach re-
duces the time and space needed to analyze a program with
improved error detection capability. Another notable ad-
vantage observed is that, the errors for subset of paths are
less and hence these can checked without missing many real
bugs amongst the noise, otherwise. Path insensitive analy-
sis and the tools having conservative path assumptions will
gain from the idea, and at the same time, additional un-
covered errors may be explored. Of course, doing so means
that the best we can do is increase the soundness. The issue



of completeness still remains but no program analysis tech-
nique strives to be complete because it is too hard. This
approach looks to be viable for large softwares.

In this study, we applied the coverage analysis data from
testing for efficient static analysis of the program. We are
currently exploring more ways of using the results from test-
ing for focused static analysis. One approach is to use fail-
ures to identify the buggy paths in the program. These
paths can be subjected to exhaustive analysis.

It is also possible to have some runtime analysis along
with coverage analysis to effectively pinpoint the suspicious
points which would be later statically analyzed. We are also
exploring how data from static analysis can be used to do
more effective testing.
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