
Assigning Tasks in a 24-Hour Software Development Model

Pankaj Jalote, Gourav Jain
Department of Computer Science & Engineering

Indian Institute of Technology, Kanpur, INDIA 208016
Email:{jalote, gauravj}@iitk.ac.in Fax:+91-512-590725/590413

Abstract

With the advent of globalization and the Internet, the
concept of global software development is gaining ground.
The global development model opens up the possibility of
24-hour software development by effectively utilizing the
time zone differences. To harness the potential of the 24-
hour software development model for reducing the overall
development time, a key issue is the allocation of project
tasks to the resources in the distributed team. In this paper,
we examine this issue of task allocation in order to mini-
mize the completion time of a project. We discuss a model
for distributed team across time-zones and propose a task
allocation algorithm for the same. We apply the approach
on tasks of a few synthetic projects and two real projects
and show that there is a potential to reduce the project du-
ration as well as improve the resource utilization through
24-hour development.
Index Terms: Global software development, 24-hour
software development, project scheduling, task allocation,
dependency graph, optimal schedule.

1 Introduction

With the advent of globalization, many companies have
started expanding their presence round the world, which
has resulted in a single organization with multiple geo-
graphically distributed units. With the evolution of internet
and other technologies, the communication among these
distributed units has become easier and more efficient.

Organizations that have units in different locations are
naturally considering models in which global software
teams collaborate across distributed locations. This idea
of global software development has evolved due to fac-
tors like cost advantage, availability of large labour pool,
proximity of local market and conditions etc. Importantly,
global software development also brings the possibility of
a 24-hour development model where the different time-
zones of different locations can be leveraged to reduce the

total development time of a project, through daily handoffs
of work [7].

The potential of 24-hour work day has been exploited to
some extent in software maintenance. For example, there
are many instances of products being supported in India
where the customer in USA logs the complaint at the end
of the day and finds the complaint resolved when the next
morning - the resolution takes place in India when it is
night in USA.

However, in development projects, global software de-
velopment makes a project multi-site and multi-cultural
and introduces a new set of communication, technical,
managerial, and coordination challenges [2, 7]. Some ex-
perience seems to suggest that the communication and co-
ordination difficulties may have a negative effect on the
project schedule [5, 6, 11]. Some studies have been done to
study the problem of communication in global software de-
velopment, and many suggestions have been made to miti-
gate these[2, 5, 3]. Tool support has also been suggested to
alleviate some of the problems [4].

Even if communication and coordination difficulties can
be solved through suitable tools and technologies, can dis-
tributed software development provide benefits, and if so,
to what extent? In this paper we address this question of
what potential benefits can global software development
bring in reducing the project execution time. For harness-
ing the benefits that may be possible, suitable communica-
tion and coordination systems will have to be put in place.
An understanding of potential benefits can help evaluate
whether the benefits are worth the costs of such systems.

We consider a 24-hour software factory model, where
multiple teams that are geographically distributed across
different time zones work on the same project. Intuitively,
since this model supports a 24-hour operation, it should
be possible to reduce the development time. However, the
potential of improvement is heavily dependent upon the
degree of inter-dependency between project tasks and na-
ture of their various constraints. For example, if the tasks
have fewer dependencies between them, then the develop-
ment time depends primarily on the number of resources
available, so a multi-site team provides no extra benefit

1

over a single-site team of the same size. Clearly, to maxi-
mize the reduction in completion time through the 24 hour
model, task assignment needs to be done carefully, so that
the project can be completed in minimum execution time
while satisfying all the constraints.

In this paper, we first present our model for 24-hour de-
velopment and then present a task scheduling algorithm.
The algorithm takes the task model for a project and the
set of available resources as input and produces a task-
schedule with minimal schedule length. We then apply the
approach to the task graphs of a few synthetically gener-
ated projects, and the task graphs of two real projects. We
show that not only there is a substantial reduction in the
completion time of a project, there is also an improvement
of the resource utilization in the project.

2 Project Execution Model

We view a software project as a set of activities or tasks.
A task is the smallest unit of work with a well defined func-
tionality and external interface with other tasks. For exam-
ple, a task could be developing a software module, writing
a technical document, testing a piece of code or any other
effort in the process of software development. A task is
characterized by the total effort it needs (we assume that
this is in person days). We also assume that the assignable
tasks are such that they are assigned to one team member
for execution, which is usually the case for the lowest level
tasks in a project. We assume that the task effort includes
all the time needed by the resource to perform the task, in-
cluding the communication time, and that this effort is the
same for the single-site development model, and the multi-
site, 24-hour development model.

Software development is a process of orderly execution
of these tasks. Since these tasks may have some relation-
ship among them, they cannot be executed independently.
The order of their execution is constrained by the inter-
dependencies between them and their individual require-
ments. We consider the following possible constraints on
the execution of a task:

1. Operational Constraint: A task τj is operationally
dependent on another task τi if task τj can start only
after the task τi completes its execution. For exam-
ple, testing a module is operationally dependent on
the coding of that module.

2. Skill Constraint: A task has a skill constraint for a
particular skill, if it can be assigned only to those per-
sons that possess the specified skill. For example, the
task of database design has a skill constraint that it can
be assigned to a person that has expertise in database.

0

1

6

10

11

8 9

5 7

32 4

exit node

0

1

43

7

9

10

11

6

2

5

8

(3,−)

2

(2, −)

1

(0, −)

(2, −)

(1, −)

(1, −)

(1, −)

(0, −)

(a) (b)

Task #

2

(1, S)

(2, S)

(3, S)

Processing time

Skill Constraint

entry node

(1, S)1

0

1

2

3
4

77

5

2

5

8

8

Figure 1: An example task graph

If a task does not have any skill constraint, then any
resource can execute this task.

3. Resource Constraint: A task τ has a resource con-
straint for the task τ ′ if τ must be executed by the
resource which has executed task τ ′. With this con-
straint, we cannot assign the resource to task τ until
task τ ′ has been completed. This type of constraint
usually comes in a project to maintain efficiency. For
example, it is desirable to assign the task of enhance-
ment of a software module to the person who had
written that module.

These constraints on the tasks in a project are the most
common ones that project managers usually consider while
scheduling. They need to be satisfied during the execution
of tasks. We assume that all the constraints remain same in
single-site and multi-site developments.

We represent the task set of a project by a task-graph
which is a directed acyclic graph (DAG) T = {N, E},
where N is the set of nodes and E is the set of directed
edges. Each node represents a task in the task set and
edge represents the Operational dependency between tasks.
For a node that represents a task τi, there is an associa-
tion (time(τi), Si), where time(τi) represents the time re-
quired for task τi for execution and Si is the set of skills for
which the task τi has the skill constraints. For simplicity,
we assume that each Si has atmost one skill. The null skill
set is represented by the character ’-’. The resource con-
straint of task τi for the resource that executed task τj is
represented in the graph by a dotted arrow from task τi to
task τj . We refer to the set of immediate predecessor tasks
of a task τi as P (τi) and the set of immediate successor
tasks of a task τi as S(τi).

Figure 1(a) shows a task graph having 12 tasks, each
represented by a node. We assume that T has a single entry
and single exit node. The entry node is considered as the
predecessor of all nodes and the exit node as the successor

2

of all nodes. Both nodes are considered as dummy nodes
with zero execution time.

The length of the path is the sum of execution times of
all the nodes on the path. The weight of a node is the largest
path length from the node to the exit node. In mathematical
term, the weight of node τ is

weight(τ) = max
k

∑

i∈φk

time(i)

where φk represents the kth path from the node τ to exit
node and i represents a task on this path. The individual
weight of each node of the example task graph is shown in
Figure 1(b). The path from the entry to the exit node whose
length is equal to the weight of the entry node is the critical
path of the task graph. A critical path of the example task
graph is shown by the dark arrows.

The weight associated with each task represents the
minimum time the schedule must take from this task to
complete the project. During scheduling, a task with a
higher weight will get the priority if other conditions are
satisfied. The selection of a node having the highest weight
from the ready to execute nodes will ensure that the critical
path of a project is being followed.

3 Resource Model

We assume that a 24 hour day is divided into three 8-
hours time slots, with a different resource-set for each time
slot. A resource-set comprises a set of individual resources
{r1, r2...rn}. Each resource (i.e. a person) has a set of
skills associated with it which represents the skills that
person has. The available resources can be modeled as a
resource-table, in which each resource is identified by a
number and for each resource, the resource-set it belongs
to, the skills it has, and its working period, are specified.

R1 R2 R3

. . .

t t+8 t+16

r r r1 2 n

Figure 2: Resource Model

Figure 2 represents our resource model with the three
resource-sets R1, R2, R3. Resource-set R2 only starts its
work when R1 completes its time slot and similarly R3
only starts when R2 completes its time slot. For model-
ing simplicity, we are considering the time slots that do not
overlap. In practice, however, an overlap between the time

slots of two successive resource-sets is likely. This over-
lap can be used effectively for the handing over of tasks,
providing clarification, and other activities that require in-
teraction.

We also assume that all the resources needed by a
project are assigned at the start of the project and are
available throughout the project duration. Theoretically,
the manpower buildup in a project follows a Rayleigh
curve[12]. However, in practice, in a software project,
the resources on a project undergo a few step increases
or decreases[9]. And many times, particularly for smaller
projects, resources are indeed all assigned in the start and
freed at the end. The slack time available in such an alloca-
tion can be used for activities like training, documentation
etc.

With these models for tasks and available resources, our
objective is to assign tasks to the available resources such
that the project completes in shortest duration. The bene-
fit of the 24-hour development model will depend on how
efficiently the schedule utilizes the advantage of different
time zones of the resource-sets to reduce the project com-
pletion time.

4 Task Scheduling

Our task schedule algorithm is a heuristic based on the
critical path method. It takes a task graph and a resource-
table as input and generates a project schedule for the given
project. The approach is to follow the critical path of the
task graph for scheduling.

A ready queue Q of tasks is maintained which contains
the tasks that are ready to execute. Initially, this queue
contains all the immediate successors of the entry node.
When a task completes its execution, all of its successors
which are ready to execute are added to this ready queue.

Clearly, at a given time, only tasks in the ready queue
can be assigned. However, instead of considering each task
in the queue and assigning it, we propose a resource per-
spective and assign these resources to tasks in an attempt
to keep the resources as busy as possible. The idea is that
if the resource utilization is high then the task graph will
be completed quickly.

The algorithm works as follows. Starting from time unit
t = 1, for each time unit, it considers each of the three time
slots in that time unit in order. In a time slot, it considers
the available resources of the corresponding resource-set
in order. A resource is available if it is not executing any
task at the current time unit. For the first available resource
r, it identifies two tasks from the ready queue− τq , which
is the highest weight task that has no skill or resource con-
straint, and τr , which is the highest weight task for which r

3

satisfies its skill or resource constraint. If both of the tasks
τq and τr do not exist then the algorithm moves to the next
available resource. In case if one of these tasks does not
exist, then the other is allocated to resource r.

If both tasks τq and τr exist then one of them will be
assigned to r. If τr has a higher weight, then it is assigned
to r because not only does it represent the longest path but
also because r satisfies its skill and resource constraints.
If, however, τq has a higher weight, then assigning it to r

might force task τr to wait for r till τq completes its ex-
ecution. It might lead to increase in the schedule length.
In an attempt to minimize the wait for τr, we compare
weight(τq)−weight(τr), which represents the difference
between two path lengths, with the execution time of τq .
If the execution time of τq is greater than the difference
in weights then τr is assigned to r since otherwise waiting
by the task τr will make the path length from τr to exit
longer than the path from task τq and may increase the to-
tal completion time. On the other hand, if the difference of
weights is greater than the execution time of τq , then task
τq is assigned to r since the difference in path lengths will
accommodate the waiting time of τr.

The algorithm is given in Figure 3. The final value of t

gives the total time required to execute the whole project.
This algorithm does not guarantee the optimal result but
it should provide near-optimal solutions. This algorithm
is based on the CP/MISF approach[10], which is regarded
as the most effective heuristic approach for multiproces-
sor scheduling problem. Our task scheduling problem can
be viewed as an extension of traditional minimal execu-
tion time multiprocessor scheduling problem [1]. With the
combined approach of following the critical path and keep-
ing the resources occupied, the final schedule length for the
given project will reduce considerably.

Let us see the working of the algorithm on the example
task graph of Fig 1(a). Since the entry and exit nodes are
dummy nodes, we do not consider them for allocation.
The weight of each task is shown in Figure 1(b). Suppose
the available resources are as shown in resource-table of
Table 1.

Resource # Resource-Set Skill-Sets Work-period
l1 R1 S1 00:00-08:00 GMT
l2 R1 S2 00:00-08:00 GMT
m1 R2 - 08:00-16:00 GMT
m2 R2 S2 08:00-16:00 GMT
n1 R3 S1 16:00-00:00 GMT

Table 1: Resources for example task graph

At the start of first time slot of t = 1, we put task 1
in the ready queue and consider the resources l1, l2 of the

Inputs: Task graph T , Resource-Table.

Initialization: Put all the successors of the entry node
in the ready queue Q. Set each resource as available.

Algorithm:
Repeat step 1 through step 6, for t = 1,2,3 :

1. Repeat step 2 through step 6, for each of the
three time slots (with resource-sets R1, R2, R3 respec-
tively).
2. If any task τ completes its processing in previous time
slot, then put all τ ′ ∈ S(τ) into ready queue Q provided
P(τ ′) has completed execution before this time-slot.
Set the resource r which was executing the task τ , as
available.
3. If Q 6= ∅ then repeat step 4 through 6 for all resources
r of the resource-set of this time slot in order, provided r

is available.
4. Let τq be the highest weight task in Q, which has no
skill and resource constraint and τr be the highest priority
task such that r satisfies its resource and skill constraint.
(If two tasks have same weight then preference is given
to task which has more immediate successors.)
5. If τq does not exist then assign τr to r. If τr does not
exist then assign τq to r. Remove the assigned task from
Q and set resource r as unavailable.
6. If tasks τq and τr both exist then,

a. if (weight(τq) − weight(τr)) > time(τq)
then schedule τq to r; remove τq from Q and set r as
unavailable.

b. else schedule τr to r. Remove τr from Q and set
r as unavailable.

Figure 3: Task Scheduling Algorithm

4

resource-set R1, in order. For the resource l1, τr is the task
1 since this is the only task in ready queue and l1 satisfies
its skill constraint for skill S1. As τq does not exist for
l1, thus task 1 is assigned to resource l1 (step 5). We now
consider the next available resource l2. Since there are no
ready tasks in ready queue, resource l2 remains idle in this
unit of time.

Now we move to the second time slot of t = 1. At the
end of the first time slot, task 1 has completed its execution
as it has one unit of execution time. So at the start of the
second slot of time unit t = 1, task 2, 3 and 4 are in the
ready queue. For the resource-set R2, both resources m1

and m2 are available. For resource m1, task 2 will be its τq

since it has the highest weight as well as more number of
immediate successor than task 3 (step 4). There is no τr for
resource m1, so task 2 is assigned to m1. For resource m2,
τq is the task 3 and τr is the task 4. As time(3)>weight(3)-
weight(4), task 4 is assigned to m2 (step 6b). At the start
of third time slot of t = 1, task 3 is the only task in the
ready queue. For resource n1, task 3 is τq and there is no
τr, so task 3 is assigned to n1. This completes the first time
unit. The schedule at the end of first time unit is shown in
Figure 4(a). It shows the start and end of the execution of
tasks in terms of time units.

At time unit t = 2, the ready queue will be empty at the
start of first and second time slot since no task has com-
pleted its execution in respective previous time slots. At
the end of second time slot, tasks 2 and 4 has completed
their execution, so tasks 5 and 7 are ready for execution.
As resource n1 is not available, no task can be assigned in
third time slot. Tasks 5 and 7 are assigned to resources l2
and l1 respectively at the first time slot in time unit t = 3,
since they are τr for respective resources and there is no
τq . At the second time slot of time unit t = 3, task 7 has
completed execution in first time slot and hence its succes-
sor, task 9 is put in ready queue. At this time unit, both
resources m1 and m2 are available. For resource m1, there
is no τq and τr in ready queue. For resource m2, task 9 is
τr since m2 has executed task 4 and satisfied the resource
constraint of task 9. Consequently, task 9 is assigned to
m2.

21 3 54

1

2

4

3

(a) After 1st time unit

1

2

4

3

7

5

8

1 2 3 4 5

(b) Complete Schedule

6

10

9

2

1

1

2

1

1

1

2

2

1l

n

m

l

m

l

l

m

m

n

Figure 4: Task Schedule for example task graph

Similarly, tasks 6, 8 and 10 are scheduled and the fi-
nal schedule is shown in Figure 4(b). The total schedule

% reduction → ≤ 10% 10%− 20% > 20%
p = 3 62% 26% 12%
p = 5 38% 48% 14%
p > 5 27% 52% 21%

Table 2: Reduction in Schedule duration

length is 5 time units. It is also the optimal solution for this
problem.

5 Experimental Evaluation

In order to evaluate the effectiveness of the task schedul-
ing algorithm, we did a few experiments. We generated
about 100 task graphs randomly, with the number of tasks
between 5 to 100. The time attribute of each task is uni-
formly distributed over the range of 1 to 20 time units.
The number of tasks that have been assigned a skill or re-
source constraints varies from the 10 percent to 70 per-
cent of the total number of task present in the task graph.
The whole set of task graphs is tested for three different
sizes of resource-sets, where the number of resources in
each resource-set are 3, 5 and more than 5 resources re-
spectively. We chose these resource-set sizes as we expect
that a large project will be broken into relatively indepen-
dent, smaller sub-projects at a top level, and the detailed
scheduling that we are focusing on will be applied to these
sub-projects, where the total team size is not likely to be
too large. It should be pointed out that a resource set size
of 5 implies that the total team size for that project is 15 in
our model

We applied the algorithm on these task graphs and cal-
culated the respective resultant schedule lengths. We also
calculated the schedule lengths this algorithm generates if
all the resources work at single location, and used that as
the basis to determine the reduction in schedule the 24-
hour model provides. The results are shown in Table 2.

The Table 2 shows, for different sizes of resource-sets,
in what percentage of graphs the reduction in schedule is
less than 10 percent, between 10 to 20 percent and more
than 20 percent. As we can see, the benefit increases as
the size of resource-set increases. The mean reduction in
schedule length for the resource-set sizes 3, 5 and more
than 5 are 11%,17% and 19% respectively.

We also studied the resource utilization in these
projects. Resource utilization is the percentage of time the
resources are occupied by project tasks. We found that the
resource utilization also improved from 67% to 78%, from
61% to 68%, and from 54% to 63%, respectively, for the
different resource-set sizes.

5

In order to study the potential benefits on actual
projects, we took two actual software projects from Infosys
Technologies Limited, a Bangalore based software orga-
nization. These projects have been executed in the tradi-
tional single-site manner and their detailed tasks and con-
straints are available. We took their actual task schedule,
and scheduled it using our approach to determine the over-
all schedule. In other words, for comparison of schedules,
we essentially simulated the execution of an actual single-
site project.

The first project is the Weekly Activity Report
(WAR)[8] system project and the second is ACIC devel-
opment project[9]. The detailed project schedule of both
projects were examined and various tasks and their depen-
dencies were identified. The task graphs were then gener-
ated and various constraints related to each task were fixed.
For effort, we used the estimated effort for each task as
given in the project schedule. Activities like training were
not included in the task graph. The projects were then
scheduled in two scenarios when all the resources work
in same time zone and when all the resources are evenly
distributed (to the extent possible) in three resource-sets.

The duration of completion of different phases in the
two scenarios is shown in Table 3 and Table 4 for the two
projects. (An X means that the phase was not considered
for detailed scheduling, mostly because these are phases
where one or two people are involved and detailed schedul-
ing is not an issue. They are there in planning largely be-
cause of effort estimation.) For the WAR project the overall
reduction in schedule is from 88 days to 72 days. That is,
the overall reduction in the completion time of the project
by using the 24-hour model is 18%. Similarly, the over-
all reduction in the ACIC project is 21%. Note that the
actual schedule of these two projects was 159 days and
140 days, respectively. We did not compare the schedule
with the actual, as the actual schedule does not represent
the best possible schedule for a single-site situation, but a
possible schedule based on the actual resources available
for the project. For a fair comparison, we have compared
the schedule for the 24-hour model with the schedule that
is generated for a single-site case if the same scheduling
technique was used.

6 Conclusions

The 24-hour global development model is the approach
where a distributed team works in different time-zones to
establish a 24-hour workflow in a single project. In this pa-
per we discuss the issue of scheduling of tasks to resources
for reducing the overall execution time of a project.

We consider a 24-hour development model which con-
sists of three teams working in 3 different 8-hour time slots.

Phases single resource-set multiple resource-sets
Requirement Analysis X X
Project Mngt & Scheduling X X
Screen Prototyping 9 7
Functional Spec. 11 9
Sample Application 11 9
Architecture & Database Design 12 10
Detail Design 9 7
Building 16 12
Unit testing 8 6
System testing & Deployment 12 12
Overall 88 72

Table 3: Results for WAR Project

Phases single resource-set multiple resource-sets
Project Initiation X X
Scheduling and Mngt X X
Elaboration Iteration 1 22 15
Elaboration Iteration 2 10 7
Construction Iteration 1 8 6
Construction Iteration 2 7 6
Construction Iteration 3 7 5
System Testing & Deployment 18 18
Overall 72 57

Table 4: Results for ACIC Project

A software project is viewed as a set of activities or tasks.
The project tasks have various constraints for its execution.
Operational dependency of a task constraints its execution
order with other tasks. Skill and resource constraint lim-
its the resource space for a task for execution. The goal
of task scheduling is to schedule these tasks for execution
such that the constraints are satisfied and the graph is exe-
cuted completely in the shortest possible time.

We presented a heuristic for scheduling based on the
critical path method. It takes the task graph of a project
and available resources as input and generates the minimal
length project schedule for the project. We have tried the
approach on some synthetic projects, and on two real-life
projects. For these two projects, using their actual task se-
quence, we obtained the schedule for the single-site case
and the schedule for the 24-hour model using our schedul-
ing approach. For the examples, the approach provides a
reduction of about 10% to 20%. However, the actual re-
duction in schedule depends on the nature of the graph.

There are many possible extensions of this work.
Clearly the model can be enriched by taking the commu-
nication overhead explicitly into account, so as to model
the extra communication cost of the distributed teams. We
have worked with non-overlapping time slots. A more re-
alistic model will consider time slots that are overlapping.
In some projects there may be some tasks that have col-
location requirement - i.e. engineers working on these
tasks should be together [4]. The model needs to be ex-
tended to incorporate this requirement also. Other con-
straints that may exist in some situations, also need to be

6

modeled. Overall, we believe that much more work needs
to be done to further enrich the model and then develop
suitable scheduling algorithms for them. With a better un-
derstanding of the benefits and constraints, proper commu-
nication and coordination environments can be developed
to support the tight coordination that is necessary to reap
the benefits of the 24-hour model.

References

[1] I. Ahmad, Y.K. Kwok. "Static scheduling algorithms
for allocating directed task graphs to multiprocessors".
ACM Computing Survey. Vol. 31, No. 4, Dec,1999. pp.
406-471.

[2] E. Carmel. "Global Software teams: Collaborating
across borders and time zones". Prentice Hall, NJ.
1999.

[3] E. Carmel and R. Agarwal, "Tactical approaches for
alleviating distance in global software development",
IEEE Software, March/April 2001, 22-29.

[4] C. Ebert and P. De Neve, “Surviving global software
development” IEEE Software, March/April 2001, 62-
69.

[5] J. D. Herbsleb and R.E. Grinter, "Splitting the organi-
zation and Integrating the Code: Conway’s Law Re-
visited" Int. Conf. on Software Engineering 1999, pp.
85-95.

[6] J. D. Herbsleb, et. al. "An emperical study of global
software development: distance and speed", Int. Conf.
on Software Engineering, 2001.

[7] J. D. Herbsleb and D. Moitra, "Global software devel-
opment", IEEE Software, March/April 2001, 16-20.

[8] P. Jalote. "CMM in Practice : Processes for Executing
Software Projects at Infosys". Addison-Wesley, 2000.

[9] P. Jalote. "Software Project Management in Practice".
Addison-Wesley, 2002.

[10] H. Kasahara, S. Narita. "Practical multiprocessor
scheduling algorithms for efficient parallel process-
ing". IEEE Transaction on Computers. Vol. C-33, No.
11, Nov,1984. pp. 1023-1029.

[11] A. Mockus and D. M. Weiss, "Globalization by
chunking: A quantitative approach", IEEE Software,
March/April 2001, 30-37.

[12] L.H. Putman. "A general empirical solution to the
macro software sizing and estimating problem." IEEE
Transactions on Software Engineering, Vol 4, No. 4,
1978. pp.345-361.

[13] A. Repenning et. al., "Using components for rapid
distributed software development", IEEE Software,
March/April 2001, 38-45.

7

