
Optimal Resource Allocation for the Quality Control Process

Pankaj Jalote
Department of Computer Sc. & Engg.
Indian Institute of Technology Kanpur

Kanpur, INDIA - 208016
jalote@cse.iitk.ac.in

Bijendra Vishal
Department of Computer Sc. & Engg.
Indian Institute of Technology Kanpur

Kanpur, INDIA - 208016

Abstract

Software development project employs some Quality
Control (QC) process to detect and remove defects. The
final quality of the delivered software depends on the effort
spent on all the QC stages. Given a quality goal, different
combinations of efforts for the different QC stages may lead
to the same goal. In this paper we address the problem of
allocating resources to the different QC stages, such that
the optimal quality is obtained. We propose a model for the
cost of QC process and then view the resource allocation
among different QC stages as an optimization problem. We
solve this optimization problem using non-linear optimiza-
tion technique of Sequential Quadratic Programming. We
also give examples to show how a sub-optimal resource al-
location may either increase the resource requirement sig-
nificantly or lower the quality of the final software.

1 Introduction

Software development is typically a multistage process,
each stage performing some defined transformations. De-
fects get injected in different stages of development. As the
cost of removing defects increases with latency [3], in an at-
tempt to detect and remove defects close to their injection,
quality control (QC) stages frequently follow the develop-
ment stages, in addition to the QC performed towards the
end before delivering the final product. Large amounts of
effort goes into these QC stages of a process for attaining
the desired quality of software at the end.

Large amount of effort is spent in a project on the QC
process, and this QC effort is distributed among the differ-
ent QC stages. For example the project effort data discussed
in [8] shows that on an average 12.5% of QC effort was
spent in Code Review, 16% in Unit testing and 28% in Sys-
tem Testing (remainder in other QC tasks). Most traditional
software reliability models focus on the last stages of test-
ing. Hence these models only capture the effort of the last

QC stage[12]. In this paper we discuss the issue of allocat-
ing effort to the different tasks in a QC process for achieving
some quality goal.

For the quality of the final software we will use the com-
monly used measure of delivered defect density - the num-
ber of defects present in the final product normalized by the
size of the product. One of the main objectives of a project
is to achieve the desired quality goal with least amount of
resources.

Using defects as the defining metric for quality, we can
view the process of a project as comprising of defect in-
jection and removal stages. There are some stages like the
requirements, design and coding, in which defects are in-
jected. These defects are removed in various QC stages. A
quality objective can be met by reducing the defect injec-
tion by defect prevention [8]. A complimentary approach
to achieve a quality goal is to remove the injected defects to
the desired level through different QC stages. In this paper
we focus on the latter approach.

A QC stage can be characterized by the defect removal
rate of that stage. There can be many possible combinations
of defect removal rates for the different QC stages that can
achieve the same overall quality goal. The different com-
binations will have different implications on the total QC
effort. Clearly, for a process designer or a project manager,
a key problem is to select the amount of effort to be spent in
each QC stage such that the desired quality goal is met with
the minimum cost. In this paper we address this problem of
allocating effort to different QC stages for a given total cost
such that the overall quality is optimal.

We propose a model for the cost of QC process. For cost,
we make the standard assumption that the main factor de-
termining cost is the effort requirement. That is, cost and
effort are same and we will use them interchangeably. The
average effort for detecting a defect in a QC stage increases
as the total number of defects remaining in the software de-
creases. The average effort of removing a defect also in-
creases if there is a high latency between the injection and
removal of that defect. We use non-linear increasing func-



tions to represent these efforts, and use them to derive ex-
pressions for the effort estimate of each QC stage, once the
defect injection rates are known. The problem of allocat-
ing resources then reduces to a optimal resource allocation
problem, which we solve using sequential quadratic pro-
gramming.

We give examples in this paper to show how optimal al-
location of effort to each QC stage can be done to achieve
a goal with minimum total effort. We also discuss how
the model parameters can be obtained from process per-
formance data that is often collected by organizations. We
have also built a software that, given the project parameters,
gives the optimal resource allocation schedule for any given
overall quality goal.

2 Process Model

A software development process consists of a series of
development activities, executed in some order to build the
desired software. Each development activity performs some
transformations on the inputs passed to it and generates
some outputs. During these transformations, some defects
get injected. Hence these development activities form the
defect injection points of the software development process.

As defects get injected into the system, the quality of
software being developed goes down. To deliver software
of good quality, these defects are removed by the differ-
ent QC activities before the software is delivered. The QC
activities include requirements review, design review, code
review, unit testing, integration testing, system testing, and
acceptance testing. This process of defect injection and re-
moval is shown in Figure 1 [8]. The injected defects are
either removed in the next QC stage or passed on to the
subsequent stages. We assume that the number of defects
injected in the QC stages can be ignored. A similar model
for injection and removal is used in [15].

In general, let there be m stages in the software process.
Out of the total m stages, let there be n QC stages, num-
bered from 1 to n according to the order in which they occur
in the process. Let the defect injection rate at an injection
stage i be Ii defects per unit size and defect removal effi-
ciency at some removal stage j be rj , i = 1, 2, . . . (m− n)
and j = 1, 2, . . . n. The defect removal efficiency (DRE)
of a QC stage is the fraction of defects present that are re-
moved by the QC stage [10]. Let the estimated size of work
product at stage i be Si units, measured in number of pages,
KLOC, or some other metric.

It is known that the effort for removing defects increases
with latency [3]. That is, the average effort for removing
an injected defect increases with the time it remains in the
system. So, for example, requirement defects (defects in-
jected during the requirement stage) may require an hour or
two each to remove if caught in the requirement review, but

take huge effort if they are detected during the final testing
stages.

This increase in cost due to increasing latency, clearly
suggests that it be may require lesser effort to have a QC
stage detect all (or almost all) the defects that exists at that
time. In other words, it suggests that the DRE of a QC stage
should be as close as possible to 100%.

However, we also know that detecting first few defects is
much easier than detecting defects when very few are left.
In general, the effort required for detecting defects in a QC
stage increases as the DRE increases, and may reach a very
high level when the DRE reaches 100%. This is the basis
of many software reliability models [6][7][14] – that cost of
detecting a defect increases as the number of defects present
in the system decreases. The model relating coverage and
number of test cases in [15] also suggests this non-linear
growth of effort as coverage and defects detected increase.
We capture these two effort drivers in the following cost
functions.

1. The average effort for removing a defect increases with
the defect removal efficiency. We refer to this cost as
C1(i, ri) – the average effort for removing a single de-
fect in stage i at DRE of ri.

2. The average effort for removing a defect also increases
with its latency i.e. the delay between the injection and
the removal of the defect. For a defect injected in stage
i and removed in stage j, the average effort for removal
increases by a factor of C2(i, j).

Note that by having C1 as a function of just the stage iden-
tity and the DRE, we are assuming that the average effort
for removing a defect in a QC stage is a function of its DRE
and changes as more defects are identified and removed. In
other words, this form of C1 implies that the average effort
for identifying and removing a defect when few defect has
been removed (i.e. the DRE is low) is different from the
average effort for identifying and removing a defect when
most defects have been identified by the QC activity and
there are few defects left in the system (i.e. the DRE is
high.) It should be clear that C1 will increase with DRE. It
is worth noticing that most reliability growth models make
this assumption for the system testing stage when they are
applicable, though they do not use the concept of DRE. The
reliability growth models assume that the effort to identify
and remove a defect increases as the number of defects that
have been identified and removed increases. (For a survey
of various reliability models, kindly refer to [11][17])

Note that these forms of C1 and C2 also assume that the
average effort for removal of a defect, or the increase in
removal cost due to latency, is same for different types of
defects. The model can be easily generalized to have differ-
ent cost functions for different types of defects, but then the
formulation and solution will get that much more complex.



Requirement

Design

Coding

Code Unit

Analysis

Requirement
Review

Design

Review Review Testing
System
Testing

Figure 1. Defect injection and removal

Most reliability growth models also make this assumption
of considering defects together.

The effort for removing defects in a QC stage clearly
depends on the number of defects removed in that stage,
which also depends upon the number of defects present at
the beginning of the QC activity for that stage. The total
number of defects present in the software at the start of the
QC stage is the sum of the defects injected in the preceding
defect injection stage, and the defects passed from earlier
stages. Let di be the number of defects injected in stage i,
which is the product of injection rate and size, if the injec-
tion rate is specified in terms of per unit size. If the injection
rate is specified in terms of per unit effort, as is sometimes
done for practical reasons [8], then di is the product of the
injection rate and the estimated effort for this stage.

Let Di be the number of defects present at the beginning
of the ith QC stage. The number of defects present in the
first QC stage is D1 = d1. Out of D1 defects r1D1 gets
removed at this stage and the remaining D1(1− r1) defects
pass onto the next QC stage. Thus, the number of defects
in second QC stage is D2 = D1(1 − r1) + d2. Similarly
for the 3rd stage, D3 = D2(1 − r2) + d3 or D3 = d1(1 −
r1)(1− r2) + d2(1− r2) + d3. By generalizing the formula
for any QC stage i in general, we get

Di = di +
i−1∑

j=1

dj(1− rj)(1− rj+1) · · · (1− ri−1)

Thus, given the defect injection estimates of the different
injection stages and the defect removal efficiencies of the
QC stages, we can compute the estimated number of defects
in the final software, and hence the quality of the delivered
software in terms of Defect Density. The number of defects
present at the end of the last QC stage (stage n) is Dn(1 −
rn). If the size of the final software is S, the final defect
density of the delivered software is Dn(1−rn)

S .
It is worth pointing out that the defect injection rates and

defect removal efficiencies of the different QC tasks can be
determined for a process. Mature organization that collect

metrics data often determine these parameters to character-
ize the capability of their process [9]. Examples of such
characterization from a real organization can be found in
[8]. In general for a particular project, the injection rates
and removal efficiencies will be estimated based on process
capability. Using past data to estimate for a project is com-
monly done in software organizations, and is a key require-
ment of CMM [16]. This approach rests on the foundation
that for a stable process, the range of results that can be ex-
pected by using the process can be predicted from its past
performance. (Formally this can be defined as the process
being under statistical control [5][20]).

3 Allocating Resources to QC Tasks

Given the defect injection and removal model, let us now
consider the problem of allocating resources, to the differ-
ent defect removal stages. If the cost functions C1 and C2

for each of the QC stages are given, then the total effort
required to achieve a DRE in a stage can be determined.
Note that, to determine the effort required for a QC stage,
we not only need the function C1, we also need the func-
tion C2, so as to estimate the impact of defects left in the
earlier stages on the total effort for defect removal in this
stage. In other words, given some formulations for these
cost functions we can construct a function that takes as in-
put the DRE of each of the QC stages and gives as output
the effort required for each of those stages. Similarly, given
the effort allocated for each of the QC stages, we can also
compute the DRE for those stages and hence the quality of
the final software. Let us see how the the total effort can be
determined using this.

3.1 Cost of the QC Process

One of the most commonly used function in cost estima-
tion [3][1] is the polynomial function of the form f(x) =
axb. Using this form for the cost function C1, we propose

C1(i, ri) = ai ∗ rbii



It is a very general function that should be applicable in
most situations. The function states that the average effort
for removing a defect in a QC stage increases as the defect
removal efficiency increases. The rate of increase depends
on the constants ai and bi of the function. This formulation
allows each QC stage to have a different function for captur-
ing how the effort for removing defects increases with the
defect removal efficiency. So, it is possible to say that for
one QC stage the effort increases linearly with DRE (i.e.
b is 1.0) while in another QC stage the effort requirement
quadruples when the DRE doubles (i.e. b is 2.0). Note
that though we are using a form of cost function used in
project effort estimation models like the COCOMO [3], this
function (and its constants) have no direct relationship with
them.

The cost of defect removal also increases with latency.
Figure 2[4], for example shows the relative cost of fixing
a requirement defect at the various QC stages. This factor
may be as large as 200 if detected an removed during the op-
eration stage. One simple way of viewing this cost function
is a constant scaling function i.e

C2(i, j) = M j−i
i

In other words, the relative effort required for removing
a defect increases by a factor of M − i for each stage it
remains undetected. That is, the cost escalation per stage
for detecting a defect injected in stage i is fixed to be Mi.
Hence, if a defect injected in stage i is detected in stage j,
the cost escalation will be by a factor given by C2. Note
again that the scaling factor can be different for different
defect detection stages. We use ~M to represent the Mis
for different values of i. By having one scaling factor for
each stage i, we are assuming that the average scaling factor
for these defects is the same for each stage for the different
stages j. Note that we can easily extend the function C2 to
have different scaling factors for different detection stages.
But that will complicate the representation of C2, and will
add more parameters in the model.

The total effort of a QC stage is computed in the fol-
lowing way. In stage 1, total of r1D1 are removed. The
expected effort for removal the first defect is a1(1/D1)b1 .
The effort for the second defect is a1(2/D1)b1 and so on.
Thus, the total effort expected to be incurred at stage 1, K1

is
∑r1D1

j=1 a1

(
j
D1

)b1
. In the second QC stage defects left

by the first QC stage as well as the new defects injected are
present. Out of the total D2 defects present at the begin-
ning, d2 are from stage 2, while d1(1− r1) are the ones that
remain from stage 1. The probability that a defect removed
is from stage 1 is d1(1−r1)

D2
and that it is injected in stage 2

is d1

D2
. Thus the expected effort for removing one defect at a

given DRE is M1d1(1−r1)+d2

D2
a2(DRE)b2 . So the total ef-

fort in the 2nd QC stage, K2 is,
(
M1 × d1(1−r1)

D2
+ d2

D2

)
×

Req Design Code Acc TestDev Test Operation

1

100

10

50

200

R
el

at
iv

e 
C

os
t T

o 
Fi

x 
E

rr
or

QC Stages

Figure 2. Defect With Latency

∑r2D2

j=1 a2(j/D2)b2 . For the ith QC stage in general the to-
tal effort Ki is

Ki =
1

Di




i∑

j=1

M
(i−j)
j dj

i−1∏

k=j

(1− rk)





riDi∑

j=1

ai(j/Di)
bi




It is clear that the overall effort for removal of defects
will depend on these two functions - C1 and C2. It should
also be clear that there is a tradeoff involved - if we increase
the DRE of a QC stage, we catch more defects and hence
reduce the effort increase due to latency. However, we also
increase the effort for this stage. Similarly, if we reduce the
DRE of a stage the QC cost of this stage reduces but the cost
due to latency increases. Clearly, by allocating resources
judiciously, we can reduce our overall QC effort.

3.2 Optimally Allocating Resources

The resource allocation problem in its generic form has
two variants. The first is to obtain best quality software for
a given total effort. That is, the total effort to be spent on the
entire QC process is given, and the goal is to allocate this
effort among the different QC tasks in the process such that
maximum number of defects are detected by the QC pro-
cess. This situation occurs commonly when during project
planning the overall resources for the project and the broad
distribution of these resources to major activities or stages
in the project are decided based on project properties and
constraints.

The other formulation is to obtain the minimum effort re-
quired to meet the given quality goal. That is, given a qual-
ity goal (in terms of defect density delivered), what is the
minimum effort required to achieve this goal, and how that
effort should be distributed among the different QC tasks.
It should be clear that these two problems are dual of each
other. Here, we present the first variant of the problem.



Mathematically the first problem can be stated as, given
the total effort for the QC process as K̄, and the final size
of software as S,

Minimize(
Dn(1− rn)

S
)

subject to the constraints

K1 +K2 + · · ·+Kn ≤ K̄

0 < ri < 1.0 for 1 ≤ i ≤ n
In other words given the total amount of resource we have
(K̄), we have to find the effort to be spent in the differ-
ent stages (i.e. the Kis) such that the overall quality is
maximum (i.e. Dn is minimum.) In this formulation,
K1,K2, · · · ,Kn are as defined above and can be deter-
mined for given ris, using C1 and C2 for the different
stages. In other words, the goal of this formulation is to
determine the ris, and then the Kis for these ris. The final
value of Kis will give the optimum distribution of the total
QC effort, which is fixed at K.

Observe that the cost functions C1 and C2 are nonlinear,
so the overall cost of defect removal is a nonlinear func-
tion in terms of per stage defect removal efficiency, DREi.
Therefore the optimization of this non-linear function can-
not be treated as a linear programming problem. Thus the
optimization problem we have to solve is a non-linear opti-
mization with linear constraints.

To solve this formulation, the main inputs are the number
of stages in the process, the cost functions C1 and C2 for
each stage (i.e. the value of the different ai, bi, andMi), the
defect injection in different stages (or the defect injection
rate and size estimate), the size S of the final software, and
the total QC cost K. In the alternate formulation, all input
parameters are the same except that instead of total effort,
the desired quality goal is specified.

4 An Example

To illustrate the approach, as an example, consider a pro-
cess consisting of requirement specification, design specifi-
cation and coding as the development sub-processes. The
estimated mean values of defect injection rates, and sizes of
the work products for these stages is shown in Table 1. Sup-
pose that from the past data it is determined that the cost of
removing requirement defects scale up by a factor of 1.6 for
every phase that it remains latent. Similarly, the scaling fac-
tor for design and coding defects is known to be 2.9 and 2.8.
Note that if the effort for defect removal is being logged and
defects are being classified based on the origin, (as is fre-
quently done), the scaling factors can be easily determined.
The scaling factors for the defects injected in these stages
are also shown in Table 1.

Stage Injection rate Size M
Requirements 8 defects/page 15 pages 1.6
Design 12 defects/page 30 pages 2.9
Coding 40 defects/KLOC 20 KLOC 2.8

Table 1. Defect injection phases

Suppose that the QC process being used in the project
consists of requirement review, design review, code review,
unit testing, and system testing. Parameters a and b for these
stages have to be estimated for defining the functionC1. Es-
timating these parameters from past data can be done using
statistical techniques, if suitable data is available. These pa-
rameters can also be estimated if two vectors consisting of
different DREs, etc are obtained from past data. In this
approach, the past data is stratified into two or more groups
using the final DRE obtained (or the final quality.) Then for
each group, the DREs for the different QC stages (i.e. the
vector of DREs) are obtained. Using these vectors, simulta-
neous equations can be constructed, which can then be used
to determine the estimates for ais and bis.

These parameters can also be approximated if the project
manager gives an estimate of average defect removal cost at
two or more DREs for each stage. In this approach, the
total cost for a DRE is computed as given earlier. If the av-
erage cost (and hence the total cost) for different DREs is
given for a QC stage, then for each DRE we can obtain an
equation. To simplify the equation for a particular QC stage,
we can assume that the DRE of the earlier stages is the aver-
age DRE for which the data is given. In this manner, we can
get a set of simultaneous equations, one equation for each
DRE for which the average cost is given. These simultane-
ous equations can then be solved to get the approximations
for a and b. Further details on these approaches is given in
[19].

For the data given in Table 2, the average cost at different
DRE is computed using the equations above in terms of a
and b. This is then equated to the actual average cost values
given in the table to get the simultaneous equations. Solv-
ing these equations gives the values of (a, b) as (23.8, 2.1),
(31.0, 2.7), (12.2, 3.2), (36.7, 3.8),(53.0, 4.0), for the five
QC stages listed in the table.

Now we have the complete specification of the functions
and we are ready for determining an optimum allocation. In
order to see the benefit of optimization, consider a project
manager who sets the DRE for the different stages as given
in Table 3. These DREs are quite reasonable and what a
project manager might choose - fairly high in the earlier
stages, but a heavy reliance on system testing for removing
defects. For the injection rates given in Table 1, the effort
for each QC stage can be computed as discussed in Section
3. This effort is also shown in Table 3. For this resource



QC activity 50% 70% 90%
Req. review 1.76 3.61 6.00
Design review 1.42 3.52 7.00
Code review 0.57 1.69 3.78
Unit testing 2.74 9.83 25.56
System testing 9.22 35.42 96.78

Table 2. Average Effort for Different DRE

allocation, the overall quality of the final software is 0.21
defects per KLOC and the overall effort required is 6740.7
person-hours.

Now we consider optimizing the resource allocation for
this project. We set our overall quality goal to be 0.21 de-
fects per KLOC (which is obtained by the resource alloca-
tion the project manager has done) and use the optimization
technique described earlier to determine the resource allo-
cation among different QC stages. The optimum resource
allocation schedule turns out to be as given in Table 4. For
this resource allocation schedule the overall effort required
is just 4183.6 person hours. In other words, the resource al-
location selected by the project manager (as shown in Table
3) is almost 60% higher than optimum, even though it re-
sults in the same quality! It is worth noting that the optimum
allocation suggests that code review consume the highest
amount of effort, while system testing is not allocated too
much resources. This is in contrast to the original effort dis-
tribution which was heavily in favor of system testing and
had far lesser effort on code reviews. Note also that the op-
timum distribution depends on the cost functions - clearly
if the cost function for code review is such that cost of de-
tecting defects is higher, the optimum allocation will show
lesser effort for code review.

QC activity DRE Effort
in % (person-hours)

Req. review 80.0 487.4
Design review 74.5 951.1
Code review 77.0 1160.0
Unit testing 80.0 1680.1
System testing 90.0 2462.0

Table 3. Quality control activities

Now suppose the project manager (who does not have
this optimization technique available) is told that he has
only 4183.6 person-hours available for the QC activities. To
get the best results from this, the project manager studies the
literature and finds that catching defects as early as possible
is considered a “best practice” and is suggested by many
consultants. He decides to follow this technique of catch-

QC activity DRE Effort
in % (person-hours)

Req. review 44.0 81.4
Design review 62.5 554.3
Code review 96.4 3321.3
Unit testing 70.5 155.8
System testing 58.15 70.8

Table 4. Optimum distribution of effort

ing defects early by “front loading” the process. Suppose
that he redistributes this effort as follows : Requirement
Review - 800 person hours, Design Review - 800 person
hours, Code Review - 800 person hours, Unit Testing - 800
person hours and System Testing - 983.6 person hours (for
a total of 4183.6 person hours). This distribution is again
quite intuitive for someone who believes that good require-
ment and design review will give him maximum benefits.
Using this effort distribution, the delivered defect density
can be computed as discussed earlier. For this resource al-
location, it turns out that the overall quality of the project
falls to 1.7 defects per KLOC - which is 8.3 times the de-
fect density achieved with an optimal resource allocation.
This further shows that even recommended practices may
not necessarily work - the effectiveness of practices depends
on the nature of QC processes and how the cost varies with
the different factors.

This example clearly illustrates the substantial impact of
a sub-optimal resource allocation. If the resources are not
judiciously allocated, either the cost rises considerably for
achieving the same quality, or the end quality suffers.

5 A Web-Service for Optimal Resource Allo-
cation

It is clear that software support will be needed to im-
plement the approach to determine the best resource allo-
cation. We have built a software for this purpose. In this
software, we have the provision of solving both the versions
of optimal-resource allocation problem. That is, using this
software, one can solve the problem of minimizing the cost
given a quality goal, as well as the problem of maximizing
the defects detected for a given QC cost.

The software supports two different functions for C1

and C2. Apart from the polynomial form for C1 discussed
above, the user can select C1 to be an exponential function
of the form C1(i,DRE) = ai(e

biDRE − 1). For C2, the
second function is of the form C2(i, j) = Mi × (j − i).
Which form to select depends on which one the user be-
lieves represent his process the best, and also what type
of data is available to estimate the parameters. We believe



that in the start, the polynomial form that we have discussed
above is sufficient for experimentation.

To estimate the parameters of C1, the user needs to pro-
vide the average cost of defect removal for different DREs
for each QC stage. For C2, the user has to provide the scal-
ing factors for each stage. With these inputs, the functions
can be determined by the software. To give the user a feel
for the cost functions, the plot of the cost functions is shown
to the user.

The defect injection data is provided in terms of the total
number of defects that are estimated to be injected for each
stage. By using the expected number of defects injected, we
are essentially bypassing the need for size as an input.

For optimization, if the final quality is fixed and cost is
to be minimized, then the user has to specify the required
quality, e. When the quality is to be maximized for a given
cost, then the total planned effort for the QC process has to
be supplied as input. With these inputs, the software formu-
lates resource allocation as a nonlinear optimization prob-
lem, solves it, and then returns the optimum allocation of
effort to different QC stages.

Standard methods exists in the literature to solve such
problems, like dynamic programming, multivariate search
methods, multi-criterion optimization etc. We have used the
Matlab[18] implementation of Sequential Quadratic Pro-
gramming(SQP) to get the optimal solution. The input to
the algorithm is the cost function and the constraint matrix
in terms of variables: (r1, . . . , rn). The output is a vector
(r∗1 , r

∗
2 , · · · , r∗n) for which the the overall cost is minimum

and all the constraints are satisfied. Having obtained the per
stage defect removal efficiency - DREi, the cost of each
QC stage can be computed using the equations derived in
Section 2. Details about SQP algorithm can be found in [2].
An experimental version of the website is available through
www.cse.iitk.ac.in/users/jalote/SDA.html.

6 Conclusion

Deciding the allocation of effort to different activities is
one of the most important tasks during project planning.
Though there are mature models available for estimating the
overall effort for a project, few models are available for dis-
tributing this effort among different tasks. In this paper we
have addressed the issue of building a model for distributing
the total effort for the QC process among the different QC
tasks.

We have used defect density as the metric for measuring
the quality of software at any stage and have used the de-
fect injection and removal stages as the basic model. We
assume that the cost of defect removal increases with the
latency between injection and removal and also with the de-
fect removal efficiency. Using these two assumptions we
have modeled the problem as an optimal resource allocation

problem. We have also developed the software to determine
the optimal resource allocation among different QC stage.

There are clearly many issues that need further explor-
ing. The current model seems to be too complicated, re-
quiring a lot of data for use. Clearly, one area that needs
to be explored is to design cost functions that closely repre-
sent reality but require lesser information about the process.
One possibility is to work with functions that deal with av-
erage cost at a DRE - parameters for such a function may
be easier to determine with lesser data. In general, there is
a need to explore different cost models.

Work also needs to be done to relate the different con-
stants used in the model to the software development pro-
cess, as has been done for many reliability models in [13].
We believe that this initial effort can lead to models for help-
ing resource allocation among different stages in a process
and to study the tradeoffs involved.

Finally, there is a considerable work needed to apply and
validate the models, once simpler and more intuitive mod-
els become available. Validation of such models, however,
is tricky as for any situation the correct optimal allocation
against which the results of a model can be validated are
not likely to be known. Hence, though empirical valida-
tion of the two cost functions is possible, any validation of
the overall resource allocation model will probably involve
some subjective evaluation, perhaps by experienced profes-
sionals and people in the field.

References

[1] V. R. Basili. Tutorial on models and metrics for software
management and engineering. IEEE Press, 1980.

[2] M. C. Biggs. Constrained minimization using recursive
quadratic programming. In Towards Global Optimization,
pages 341–349. North-Holland, 1975.

[3] B. Boehm. Software Engineering Economics. Prentice Hall,
1981.

[4] B. Boehm. Software Risk Management. IEEE Press, 1989.
[5] W. A. Florac and A. D. Carleton. Measuring the Software

Process: Statistical Process Control for Software Process
Improvement. Addison-Wesley, 1999.

[6] A. L. Goel. Software reliability models: Assumptions, lim-
itations, and applicability. IEEE Transactions on Software
Engineering, SE-11(12):1411–1423, Dec. 1985.

[7] D. Houston and J. B. Keats. Cost of software quality: A
means of promoting software process improvement. Quality
Engineering, 10(3):563–573, 1998.

[8] P. Jalote. CMM in Practice: Processes for Executing Soft-
ware Projects at Infosys. Addison-Wesley, 2000.

[9] P. Jalote. Use of metrics in high maturity organizations.
Software Quality Professional, 4(2), 2002. Also available
at www.cse.iitk.ac.in/users/jalote.

[10] S. H. Kan. Metrics and Models in Software Quality Engi-
neering. Addison-Wesley, 1995.

[11] M. R. Liu. Handbook of Software Reliability Engineering.
McGraw Hill, 1996.



[12] M. R. Lyu, S. Rangarajan, and A. P. van Moorsel. Optimal
allocation of test resources for software reliability growth
model in software development. IEEE Transactions on Re-
liability, 51(2), June 2002.

[13] Y. K. Malaiya and J. Denton. What do the software relia-
bility growth model parameters represent. In Proceedings of
the Eighth International Symposium on Software Reliabil-
ity Engineering (ISSRE ’97), pages 124–135, Albuquerque,
NM, USA, Nov. 1997.

[14] J. D. Musa, A. Iannino, and K. Okumoto. Software
reliability—measurement, prediction, application. McGraw
Hill, 1987.

[15] P. Piwowarski, M. Ohba, and J. Caruso. Coverage mea-
surement experience during function test. In Proceedings of
the 15th International Conference on Software Engineering
(ICSE), Baltimore, MA, USA, May 1993.

[16] Software Engineering Institute. The Capability Maturity
Model for Software: Guidelines for Improving the Software
Process. Addison Wesley, 1995.

[17] T. Thayer and M. E. Lipow. Software Reliability. North
Holland, 1978.

[18] The Mathworks Inc. http://www.mathworks.com/product/matlab.
[19] B. Vishal and P. Jalote. Allocating resources to quality con-

trol tasks in a software project. Technical report, Department
of Computer Sc. and Engg., I. I. T. Kanpur, India, 2003.

[20] D. J. Wheeler and D. S. Chambers. Understanding Statisti-
cal Process Control, 2nd edition. SPC Press, Knoxville, TN,
USA, 1992.


