
Overcoming the NAH Syndrome for Inspection Deployment 

Pankaj Jalote 
M. Haragopal 

Infosys Technologies Limited  
Electronics City  

Bangalore - 561 229; India 
91-80-852 0187 

jalote@inf.com 
 
 
 

 

ABSTRACT: Despite considerable evidence to 

show that inspections can help reduce costs and 

improve quality, inspections are not widely 

deployed in the software industry. One of the 

likely reasons for this is the “not applicable 
here (NAH)” syndrome - developers and managers 
believe that in their environment, inspections 

will not provide the benefits seen by other 

organizations. One of the big challenges for 

deploying inspections is to overcome this 

syndrome. In this report, we describe two 

experiments that can be conducted, with little 

effort, in an organization to obtain data from 

the organization to build a case for 

inspections. By conducting one of these 

experiments, we were able to effectively 

overcome the NAH syndrome in our organization - 

many developers and managers are now ready to 

try inspections in their projects. Though the 

purpose of the experiment was to overcome the 

syndrome, the data from the experiment also 

shows how code inspections compare with unit 

testing in terms of defect detection capability, 

and the effect of inspections on the overall 

cost of development. 

 

 
1  INTRODUCTION 
Inspections were introduced over two decades ago 

by M. Fagan [Fag76, Fag86]. Since then,  data 

has been collected showing the benefits of 

inspections, both in quality and cost [Rus91, 

Gil94, Gra94, Wel93]. Many experiments have been 

conducted to study the effect of various factors 

on the effectiveness of inspections ( e.g. 

[Joh97, Por95, Por95a, Por97, Sea97, Ste97] ). 

Different variations of the inspection process 

have been proposed to make inspection more 

effective (e.g. [Kni93, Mas93, Ste97, Vot93]). 

Experiments have also been conducted to study 

the use of the Web technology for inspections 

[Per97]. The software engineering and the 

process community is so convinced of the 

benefits of inspections, that inspections are a 

part of the Software Engineering Institute’s 
(SEI) capability maturity model, CMM [Hum89, 

Pau93], in which they form a separate Key 

Process Area (KPA). It is now widely believed 

that inspection is one of the best technologies 

for improving quality and reducing costs. 

Despite all this, and the presence of many 

consultants trying to preach and spread 

inspections among software developing 

organizations, inspections are still not 

deployed in most of the organizations. A report 

by the SEI indicates that only 22% of the 

software organizations deploy some form of 

inspections [Kit93]. 

So, the situation is that while software 

development organizations are always in need for 

 
 
 
 
 
 
 
 



methods to improve quality and productivity, and 

while much of the published work about 

inspections claim that inspections improve both 

quality and productivity, still inspections are 

not widely deployed in software organizations. 

Why does this seemingly paradoxical situation 

exist?  Though there can be many reasons for it, 

one likely reason is the “not applicable here 
(NAH)” syndrome. That is, most organizations 

believe that inspections are all right for IBM 

FSD, HP, or other places, but it is not 

applicable in their context as their business is 

different. In other words, people generally 

believe the published data, but do not believe 

that in their organization inspections will show 

results similar to the ones found by others.  

The lurking suspicion is that (in their context) 

inspections will only add to cost and will not 

show sufficient reduction in downstream testing 

costs to have an overall decreasing effect on 

cost. 

If inspections are to be deployed in an 

organization, then the NAH syndrome has to be 

overcome - both the managers and the developers 

have to be shown that even in their context, 

inspections can provide benefits. By definition, 

data from other organizations cannot be used to 

overcome the NAH syndrome.  The only way to 

overcome the NAH syndrome is to get data from 

within the organization itself to build a case 

for inspections. As the organization is not 

deploying inspections, and people are not fully 

in favor of inspection deployment, this data 

will have to be obtained by conducting some 

limited experiments. For this, an experimental 

setup is needed that can be quickly deployed in 

real-life scenarios to evaluate the suitability 

of inspections in the organization. In fairness, 

such an experiment cannot be conducted to “prove 
that inspections are useful” but to actually 

evaluate the suitability of inspections as a 

technique to improve quality and/or 

productivity. 

In this report we describe two simple 

experiments that can be used for this purpose. 

These experiments can be performed in a short 

duration in an organization and the data from 

the experiments can be used to evaluate the 

suitability of inspections. If the data from the 

experiments supports inspections, then the data 

from the experiments can be used to evangelize 

inspections throughout the organization. As the 

data is from within the organization, and from 

actual projects, building a case using this 

data, along with published data from other 

organizations across the world, becomes a 

considerably simpler task. And for the “doubting 
Toms”, such a case is much easier to accept. 

We describe the experiments and our experience 

in using one of them in our organization. Though 

the main purpose of these experiments is to 

build a case for inspections in an organization, 

the data from deploying the experiment in our 

organization also gives a somewhat different and 

interesting view of effectiveness of code 

inspections. 

The paper is organized as follows. In the next 

section we first give some general requirements 

for experiments that are to be used for 

overcoming the NAH syndrome, and propose two 

simple experiments for this purpose. Then we 

describe how we conducted the first experiment 

in our context, and present the data obtained 

during the experiment. Then we briefly describe 

the effect on the NAH syndrome of the 

experiment. 

2 EXPERIMENT DESIGN 
We decided to focus on code inspections as the 

coding activity always has a formal output (i.e. 

code),  coding is something that developers 

relate to more, and coding is  usually the 

source of most number of errors. Historically 

also, inspections started with code, and were 

later extended to design, requirements, test 

plans, etc. Once a strong case can be built for 

code inspections, and they can be deployed, then 

the advantages from inspections will themselves 

build a case for other inspections later on. 

There are a few key requirements for any 

experiment that is to be used to overcome the 

NAH syndrome. First, as building a case is the 

main purpose of the experiment, it is essential 

that the experiments be performed  on real 

projects from within the organization whose NAH 

syndrome is being tackled, rather than on 

practice exercises. Second, it is extremely 

important that experiments are easy to execute 



(i.e. they do not consume too much effort), 

otherwise finding volunteers will be hard. 

Third, as the goal is to counter the psychology 

of the NAH syndrome, a few data points may be 

enough to convince the developers and managers, 

that inspections are a useful and cost effective 

technique even in their context and that they 

should at least be tried. That is, an elaborate 

multi-team, multi-inspection experiment is not 

necessary to convince people to start trying 

inspections in earnest.  If this level of 

conviction is reached, the war is almost won.  

Once people try to use inspections in earnest, 

then they can determine whether they are useful 

or not.  Getting people to try in earnest is the 

hard part when NAH syndrome is at play. Finally, 

the data from the experiment should clearly 

quantify the effect on both quality and cost 

(i.e. effort), as both are important in deciding 

the usefulness of a technique. 

In a typical software development process which 

does not deploy inspections,  before the coding 

activity starts, the project is generally broken 

into “units”, which are scheduled for coding. 

These units typically undergo some unit testing, 

before they are put together to form a system or 

a sub system. The system or the sub system then 

undergoes testing of its own (integration 

testing, system testing, etc.). If code 

inspections are deployed, generally a piece of 

code is inspected before unit testing. That is, 

with inspections, a unit will undergo 

inspections before unit testing of that unit is 

done. Due to this, generally, another step is 

added in the process. (Though there has been 

some situations where inspections, when fully 

mature, replace unit testing, in the start, the 

most likely scenario is that inspection will be 

an additional step before unit testing). 

Two major factors driving any project (and a 

software organization) are cost (or effort) and 

quality. An organization, or a team of people 

doing a project, will only accept changes in 

processes if the changes can bring about a 

reduction in total effort or can catch more 

defects (i.e. fewer defects are present in the 

released software). And the case is much 

stronger, if the change is beneficial for both 

cost and quality. It is important to understand 

that frequently effort is a much more powerful 

driving force in a commercial software 

development setup and techniques that increase 

quality at a substantial increase in cost are 

not likely to be acceptable. Hence, if a case 

has to be built for code inspections through 

experiments, the experiments have to demonstrate 

a reduction in cost (without sacrificing 

quality), or improvement in quality with minor 

increase in cost, or that there is reduction in 

cost as well as improvement in quality. Clearly, 

the last scenario is the one that will build the 

strongest case. 

2.1 Experiment 1 

The purpose of the first experiment is to 

experimentally demonstrate how inspection 

compares with unit testing, as one of the main 

hindrances in accepting code inspection is that 

“we have unit testing, so why do we need code 
inspections; unit testing will catch all the 

defects inspection can hope to find”. There are 
two objectives of this experiment. First, to see 

how the defect detection capabilities of unit 

testing and inspection compare with each other 

in the context of the organization in which the 

experiment is to be conducted. Second, to study 

the impact of inspections on the overall cost of 

development. The surest way to compare the 

defect detection capability of the two 

approaches is to independently apply the two 

techniques on the same code and then compare the 

defects found by the two. This is what the 

experiment does. With some data about downstream 

testing effort, this type of experiment can also 

be used to study the effect on overall effort. 

The basic experiment steps are shown in the flow 

diagram shown in Figure 1. 



Code
Inspection

Unit
Testing

Program Units

Compare and
analyze

Effectiveness
analysis

Historical
Data for system
testing

defect, effort
data

defect, effort
data

 

Figure 1: Steps in Experiment 1 

 

For the experiment, first select a project that 

is reaching its coding phase and whose members 

are willing to try the experiment. Of course, a 

project will try an experiment only if it does 

not add substantially to its (usually already 

overloaded) work schedule. In the project, 

select some units at random. It is desirable to 

select a few groups of 3-5 units - then authors 

of code units in a group can form the inspection 

team (this helps in motivation as an inspector 

is not just inspecting someone else’s code - in 
return, his own code also gets inspected). 

For each unit, during the experiment, two 

independent paths are followed. In one, the unit 

is inspected, and in the other it is unit 

tested. Clearly, the people inspecting the code, 

and the people doing the unit testing should be 

different and should have no communication with 

each other. One way to organize the inspections 

is to form an inspection team of the authors of 

the code units in a group.  This team inspects 

all the units in the group. We have to make sure 

that in each inspection, the author is not the 

moderator or the paraphraser. If this approach 

is followed, unit testing of the module will 

have to be done by someone other than the 

author.  In other words, for the experiment, we 

need to have “independent unit testing”.  For 
both the paths, the effort spent, and the 

defects detected are recorded. Defects can also 

be classified to understand the impact of the 

nature of defects on the detectability of the 

two techniques. As inspections are not being 

regularly conducted in the organization, it is 

important to make sure that people have been 

properly trained in inspection and have done 

some exercises in inspection before they do the 

actual experiment. There is no similar 

requirement for unit testing as it is likely to 

be something people have experience with. 

If the sets of defects found by the two 

approaches are not the same and one set is not a 

subset of the other, then we can claim that 

inspections do indeed find a different set of 

defects than unit testing. The nature and volume 

of these defects are then used to determine if a 

sufficiently strong case can be built for 

inspection as far as defect detection is 

concerned. Defects detected per person-day, 

defects detected per KLOC are other measures 

that can be used to compare the two techniques 

in their defect detection capability. In 

general, it should not be too hard to show that 

strictly in terms of defect detection, adding 

inspections will be beneficial and more defects 

will be caught by introducing inspections. 

Understanding the impact on cost is harder (and 

where most doubts exist). For cost, we have to 

evaluate the effect on overall cost of the 

project if inspections are introduced as an 

extra step. This has to be estimated based on 

past data for system testing. Suppose, for a 

unit, inspection finds m defects, out of which n 
are ones that unit testing did not find. The 

actual inspection cost has been recorded. Now, 

we have to see how much cost saving will result 

by having detected these n extra defects in 

inspection. One way to estimate this is to 

assume that the defects that unit testing did 

not detect but inspection did, will be detected 

and fixed later during system and acceptance 

testing. By using the average effort for defect 

fixing for the organization, or for similar 

projects, we can estimate the saving that will 

be achieved later during system testing. If 

inspection were done before unit testing, then 

during unit testing, fewer defects will be 

detected and fixed (with the same set of test 

cases).  Effect on reduction in unit testing 

cost can be estimated by using the defect 

detection rate in unit testing and the number of 

common defects that were found both by 



inspections and unit testing.  The sum of these 

two savings is the estimated savings later in 

the process, if inspection is used.  This can be 

compared with the actual inspection effort to 

see how much overall saving (or additional cost) 

accrues by adding code  inspections. This 

approach can be generalized by assuming a 

distribution for detection of defects found in 

inspection, but not in unit testing, among later 

stages, and using the average cost of fixing a 

defect at each stage. 

It should be clear that this experiment is easy 

to conduct in almost any situation. Furthermore, 

the cost is quite low - the additional effort is 

the effort for conducting the inspections on the 

chosen units (this effort also is not strictly 

“additional” as it saves later testing costs and 
detects extra defects), plus the cost of 

analysis (which does not affect the project). 

The data from this experiment, if it is 

favorable for inspections, should be sufficient 

to convince developers and managers to at least 

start trying inspections. 

2.2 Experiment 2 

The second experiment is also one that can be 

done on a live project to study the impact of 

inspections on cost and quality. Unlike the 

previous experiment, this has no redundant 

activities and should actually reduce the 

overall development cost of the project on which 

the experiment is being executed. However, this 

experiment spans the entire life cycle of the 

project and analysis can be done only after the 

project is finished, unlike the previous 

experiment where analysis can be done after the 

units have been inspected and unit tested.  

A project with multiple programming units is 

selected for this experiment. After the design 

is done, and the programming units defined, some 

units are chosen randomly to undergo formal code 

inspection, followed by unit testing. Other 

units follow the regular approach of going 

through unit testing. The sizes of the units are 

also recorded. During later testing stages 

(integration, system, acceptance, etc.), the 

defects found are attributed to the programming 

units in which they are found, and the total 

effort in testing is recorded. Once the testing 

effort and defect data is available, we can 

analyze the effect of inspections on quality and 

cost. 

The impact of inspection on quality can be 

easily understood by looking at the defect rate 

(say, per KLOC) during later testing phases for 

the units that were inspected and the defect 

rate for the units that were not inspected. In 

general, the data is likely to show that defect 

rates during system testing and acceptance 

testing are lower in the modules that have 

undergone inspection before unit testing. 

The cost benefit analysis can be done as 

follows. We allocate the effort in later testing 

stages (i.e. integration and system testing) 

among units in the ratio of number of defects 

attributed to the units. That is, we consider 

testing (and debugging) as the activity that is 

done to identify and remove defects, and assume 

that its effort increases in proportion to the 

increase in the number of defects. Hence, we 

attribute the later testing effort to the units 

in ratio of the defects they contributed. This 

gives us the cost incurred in later testing 

stages for a unit. More refined and elaborate 

cost distribution models can be built, if 

needed. However, this simple and “fair” cost 

allocation approach should serve the purpose in 

most cases. The cost of unit testing of a unit 

is already known. Hence, once the cost of system 

and integration testing is distributed, we know 

the “total” cost of downstream testing for each 
unit. The inspection cost for units that 

underwent inspections is already known.  

The basic case for inspection is that it catches 

defects early, thereby reducing the costly 

testing and rework effort later. And it is 

generally believed and said that the longer a 

defect stays in the system, the more it costs to 

remove it. That is why identifying and removing 

defects early is considered advantageous. If 

this is true in this project, then we should 

find that the cost of inspection is lesser than 

the cost saved in defect removal in later 

testing stages.  To check the validity of this 

hypothesis and build a case for the cost 

effectiveness of inspections, we find out the 

cost per KLOC of all testing stages for units 



that were not inspected and the cost per KLOC 

for the units that were inspected using the 

approach mentioned above. As fewer defects are 

likely to be found in later testing stages in 

units that were inspected, the difference 

between the two testing costs (per KLOC) will 

give us the cost savings achieved due to 

inspections. This difference should be larger 

than the inspection cost per KLOC, if 

inspections are indeed cost-effective in this 

project. That is, if inspections are cost 

effective, then the cost per KLOC for conducting 

inspection and testing is lesser than cost per 

KLOC of performing just testing without 

inspections. The actual data about savings can 

then be used to build a case for inspections and 

overcome the NAH syndrome.  

 
3 DATA FROM DEPLOYMENT OF 
EXPERIMENT 
The banking unit of our organization has over 

150 software engineers and one major banking 

product that is continuously upgraded to include 

new features. A typical release cycle is of 

about 4 months duration. During preparation of a 

release, two type of changes are done to the 

software. One is to fix the defects found (in 

the field or otherwise), that is, to fix the 

software trouble reports (STRs). The other is to 

implement enhancements to the product, called 

the software enhancement requests (SERs), which 

are decided by the steering group giving 

direction to the product. 

It was noticed that during a development cycle, 

about 40% of the effort was spent in 

implementing the STRs. That is, the developers 

in the banking unit were spending 40% of their 

time fixing defects that were introduced in 

previous versions and were not removed. The need 

to improve development of SERs was very clear - 

if the implementation of SERs was of high 

quality, there will be fewer defects to fix in 

later releases. 

The basic development process is very heavily 

coding and testing oriented. SERs are assigned 

to developers, who implement them and then do 

some self testing. Then they are unit tested. 

Once all the SERs that had to be implemented in 

a release are done, system testing is done by 

the test group. After that the product is 

released to some Beta sites. 

It was clear to us that inspections have a great 

potential in this context to reduce the number 

of defects we deliver. However, as each 

development cycle was on a very tight schedule, 

there was resistance in “adding” inspections as 
a process step as it was feared it will add to 

cost without substantially improving quality. 

And as perhaps in most other organizations that 

do not deploy inspections, published data from 

industry was viewed as “not applicable here” or 
with some doubt and skepticism. In short, the 

NAH syndrome was very much present. It also 

became clear to us that the main problem in 

deploying inspections was not training of people 

but to counter this mind-set of the NAH 

syndrome.  

We decided to conduct experiment 1 first, as it 

can be completed quickly. For the experiment, we 

selected 6 SERs belonging to two different 

domains (the banking product has been divided 

into about 8 domains). Six developers, each with 

an experience of at-least 2 years, were assigned 

one SER each. These six developers were first 

trained in the inspection process, and for 

practice they were given the implementation of 

one earlier SER which had some defects seeded in 

it, to inspect. Once the developers were 

trained, they were given the specifications of 

the SER assigned to them. Each developer was 

assigned one SER to implement. The set was 

divided into two groups of 3 each. Each group 

formed an inspection team (the minimum size of 

an inspection team can be 3). 

Each developer was asked to implement the SER, 

compile his code and do some self test, before 

submitting it. Once submitted, as described 

earlier, it went through two independent paths - 

inspections and unit testing. For inspections, 

two groups of 3 inspectors was formed, each 

consisting of authors of three SERs. During the 

experiment, an inspection group inspected the 

code for the 3 SERs developed by the members of 

the group. In each inspection, it was made sure 

that the author is an inspector only and not the 

moderator or the paraphraser. Standard forms 

were used to collect defect and effort data for 



the individual inspection as well as the 

inspection meeting.  In parallel, the SERs were 

unit tested independently by the module leader 

for the domain to which the SER belonged. This 

module leader was not in any inspection team and 

did not interact with any of the inspectors. The 

sizes of the different SERs, the total effort 

and the number of defects found in the two paths 

the SER goes through are given in Table 1. 

 

  Inspections Unit Testing 

SER Size 

(in 

LOC) 

Total 

Effor

t (in 

Hr.) 

Total 

No. of 

Defects 

Total 

Effort 

(in Hr.) 

Total 

No. of 

Defects 

1 968 8.0 8 2.0 4 

2 432 5.0 8 1.5 3 

3 85 4.0 4 1.5 1 

4 667 6.5 26 1.5 7 

5 50 1.5 3 1.5 0 

6 408 2.5 5 2.5 5 

TOTAL 2610 27.5 54 10.5 20 

Table 1: Effort and Defect Data 

 

It is clear from the table that through the 

inspection route, more defects were detected as 

compared to the unit testing route. And this was 

consistently true for all the SERs. Overall, 

inspections caught about 2.5 times as many 

defects as unit testing did. However, 

inspections also consumed more effort as 

compared to testing, largely because inspection 

is a group activity while unit testing is a one-

person activity.  However,  if we look at the 

number of defects detected per person-hour, we 

see that inspection and unit testing are similar 

– both detecting about 1.9 defects per person-
hour. Now let us look at the nature of the 

defects found by the two approaches. This is 

shown in Table 2. 

This data shows that almost in all categories 

inspections caught more defects than unit 

testing, particularly for categories which 

related to quality attributes like 

“maintainability”,  “portability”, etc., (this 

is to be expected as testing generally focuses 

on errors in functionality). However, the data 

also shows that even in logic and interface 

defects (which unit testing focuses on), 

inspections do better than unit testing. This 

data was an eye-opener for many developers. They 

did not expect more logic defects to be caught 

during inspections.  From this data, the case 

for adding inspections to improve the error 

detection capability was abundantly clear and 

convincing. The data further shows that the 

defects that were found both by inspections and 

unit testing (i.e. the “common defects”) are not 
too many - only a total of 12 defects were 

common to both unit testing and inspections. 

This can be used to strengthen the case that 

unit testing and inspections are complementary 

and both should be deployed if defects are to be 

caught early. 

 

Defect Type Inspections Unit 

Testing

Common 

Defects 

Data 3 1 0 

Function 4 2 0 

Interface 14 11 7 

Logic 12 5 4 

Maintainability 11 0 0 

Portability 5 0 0 

Others 5 1 1 

Total 54 20 12 

Table 2: Defect Distribution 

 

This data, along with the data about average 

cost of identifying and fixing a defect in 

system testing, can be used to do the cost 

analysis also. As the number of common defects 

is low (which itself is a good enough reason to 

add inspection as a step before unit testing), 

we assume that the reduction in effort of unit 

testing due to inspection will be minimal (this 

is the worst case for inspections). From past 

experience and data we know that during system 

testing, it takes about 4 person hours (about 8 



times the per defect cost of unit testing) to 

identify and remove a defect. And if a defect 

goes past system testing, it takes about  2 

person-days  (17 person hours)  to identify and 

remove a defect (this data is for identifying 

and fixing the defect and does not include the 

fixed cost of testing). 

Testing will generally not catch maintainability 

and portability type defects. We assume that all 

the logic, interface, function, and data defects 

that are not caught by unit testing are caught 

later. The number of such defects (after 

eliminating common defects, which are also 

caught by unit testing) is 3 + 4 + (14 - 7) + 

(12 - 4) = 22.  Assuming that all the defects 

are caught in system testing, from our data we 

can say that if no inspections are done, then 

during system testing an additional 22 defects 

will have to be detected and fixed. That is, the 

system testing cost will increase by 22 * 4  = 

88 hr, or about 11 person-days. This is the 

“most benign” case - the defects are caught 

before the software is delivered. If we assume 

that about 25% of these defects will slip by 

system testing and will be caught later, the 

additional cost of system testing is then 0.75 * 

22 * 4 = 66 hr, or about 9.5 person days, and 

additional cost of fixing defects found later is 

0.25 * 22 * 2 = 11 person-days. That is, an 

additional 9.5 + 11 = 20.5 person-days be spent 

in fixing the extra defects, if no inspections 

are done. In other words, the cost saving due to 

inspections is 11 person days if all defects are 

caught in system testing, and 20.5 person days 

if 25% of the defects are not caught in system 

testing. And the cost of inspections, due to 

which these savings have been obtained, is about 

3.5 person days. The case is very clear - if we 

spend 1 additional day in code inspection, we 

can expect to save about 3 - 6 days in defect 

fixing later in the development cycle. 

The computation above gives estimates only for 

direct savings in testing and bug fixing in the 

later part of the same development cycle. In 

addition to this, there are other savings in the 

future (i.e. in later cycles) as inspections 

catch other quality defects (e.g. 

maintainability, portability, etc.). These may 

not immediately affect the working of the 

software, but generally do add extra work in 

future development cycles when code has to be 

ported or changed.  However, we cannot quantify 

these benefits. These are over-and-above the 

direct and immediate benefits in rework that we 

can estimate.  Of course, there are other long-

term benefits in terms of learning that comes 

from  inspection (developers inspecting others 

code learn from others; developers having their 

code inspected learn to avoid similar mistakes 

in future).  This also we are not able to 

quantify.  However, just by the saving on 

testing effort, which we can estimate, we can 

build a case for introducing inspections. 

4 IMPACT OF THE EXPERIMENT 
We were able to conduct the experiment, whose 

data we have given in the previous section, 

within two weeks. The impact of the experiment 

was very substantial on the organization. For 

some time the Software Engineering Process Group 

(SEPG) has been trying to deploy formal 

inspections in the organization. But, the 

resistance was quite stiff. And in the banking 

unit, due to the schedule pressure, developers 

were just not willing to believe that examining 

code written by others in a structured manner 

can help identify more defects and help save 

costs. 

With the results of the experiment, a sea change 

has come in the scene. The results of the 

experiment were enough to convince developers 

and managers alike that inspections need to be 

tried. The data from the experiment also 

indicated that the benefits of inspections are 

lesser if the code is simple or small (in 

smaller size SERs, the benefit was not much). 

Using this, a policy decision was taken to 

classify the SERs in three categories - simple, 

medium, and complex, and consider formal 

inspections for all the complex modules. 

So, overall, the climate for inspections changed 

considerably when the data from the inspections 

was presented to the developers and managers. 

The NAH syndrome was successfully overcome!  

To push inspections further, a working group was 

formed to look at suitability of inspections in 

other service oriented projects. In the training 

module that is being used for the rest of the 



organization, this is the main case study we 

present. Again, once the case study is presented 

by people who were part of the study, the 

acceptance is generally very high and the 

questions regarding the nature of the project, 

schedule pressure, capability of people, etc., 

which are generally used to doubt data from 

other organizations, are not raised.  

Overall, the effect of the experiment has been 

very positive in countering the NAH syndrome. 

The experiment has fully achieved its purpose. 

Now, the SEPG, and the working group for peer 

reviews, are tackling the main problem of how to 

train people and how to institute inspections on 

a company-wide scale, when a host of logistic 

issues also come up. In other words, now these 

groups are tackling the technical and logistic 

issues relating to inspections and not fighting 

a psychological battle against closed minds. 

Within a three month period the large banking 

unit has moved from no inspections to wanting to 

inspect all complex modules. And this change has 

not come in a top-down manner. Rather there is a 

general acceptance by the developers to use  

inspections. This is a big help when deploying 

inspections - they don’t have to be forced upon 
people, but the people are ready to employ them. 

Only the necessary changes have to be made to 

policies and processes, and relevant training 

has to be given. 

5 CONCLUSIONS 
Software inspections were proposed two decades 

ago. Since then, a wealth of information has 

been collected about effectiveness of 

inspections in improving quality and reducing 

cost. Despite the presence of over two decades 

of positive experience, inspections are not 

widely used in the software industry. A likely 

reason behind this resistance to deploy 

inspections is the “not applicable here (NAH)” 
syndrome - developers and managers of a company 

frequently feel that though inspections may be 

useful in some other organization’s context, 

they are not suitable for their context. The 

basic suspicion is that in their context 

inspections will add to cost by adding another 

step in the process.  

If inspections have to be deployed in an 

organization, then this NAH syndrome has to be 

overcome. The basis of the existence of the NAH 

syndrome is lack of data from within the 

organization. Hence, to overcome this, some data 

from within the organization  has to be 

obtained. The best way of getting this data is 

to conduct some limited experiments on real-life 

projects in the organization and then use the 

data from the experiments to build a case for 

inspections. As people in the organization are 

skeptical about inspections, it is important 

that the experiments be such that they are easy 

to conduct, do not consume too much effort, and 

clearly show the effect of inspections on both 

cost and quality. 

In this paper we have proposed two simple 

experiments, data from which can be used to 

build a case to fight the NAH syndrome. In the 

first experiment, some units of a project go 

through two independent paths - in one, the 

units are inspected and in the other they are 

unit tested. This experiment can be used to 

compare the effectiveness of unit testing and 

inspections. If inspections can be shown to 

catch different defects than unit testing, then 

it can be argued that having inspections will 

help improve quality. The effect on overall cost 

of the project can also be estimated through 

this experiment, if the average cost of removing 

a defect in later testing stages is known. In 

the second experiment, some units of a project 

are randomly selected. These units undergo 

inspections, while the rest of them don’t. The 
defects found in the later testing stages are 

attributed to the units. Using effort data, cost 

per KLOC of testing and defect fixing for units 

that were unit tested and units that were also 

inspected can be determined. This can then be 

used to understand the impact of inspections on 

overall development cost. The first experiment 

can be conducted in a short duration, but may 

have some extra overhead. The second experiment 

does not have any redundant activities (i.e. 

which do not directly contribute to the 

project), but the experiment is completed only 

after the project finishes. 

We conducted the first experiment in our Banking 

unit. We selected 6 program units to undergo the 

two paths. The data clearly showed that 



inspections found more defects than unit testing 

for each of the unit. Overall, inspections found 

about 2.5 times the number of defects that unit 

testing did. However, inspections also consumed 

about 2.5 times more effort than unit testing. 

The nature of defects showed that inspections 

found more defects in all defect categories, 

including logic, data, and interface, and found 

a lot more defects in other areas like 

maintainability, portability, etc. The number of 

common defects were also small. That is,  the 

number of defects found both by unit testing and 

inspections were not large. This clearly showed 

that the two approaches are actually 

complementary. Using the average cost of defect 

identification and removal in system testing and 

assuming that most of the defects that 

inspections found but unit testing did not will 

be found in system testing, we did the cost 

effectiveness analysis. The analysis showed that 

for each day spent in inspections, we saved 3-6 

days of effort in defect removal after system 

testing.  

Overall, the impact of the data on the 

developers and managers was tremendous. A sea 

change has occurred in the attitude of people. 

And now, in the banking group, a policy of 

inspecting all complex units is being 

considered. So, in a few months, from resistance 

to inspections we have been able to take the 

unit to a stage where they are excited about 

inspections and are formulating policies for 

inspections. The effect has been very positive 

on the rest of the organization also, and many 

groups now want to try inspections. In the 

training we give for inspections, the data from 

the experiments form the main “selling point”, 
and it does a good job of selling inspections. 

We are currently planning to execute the second 

experiment also to better understand the impact 

of inspections on quality and cost on different 

type of units. Experiments are also being 

conducted in other parts of our organization to 

study the effectiveness in their context and on 

different work products. We believe that such 

experiments can become an invaluable tool in the 

SEPG of an organization. 

6  REFERENCES 
[Fag76] M. E. Fagan, “Design and code 

inspections to reduce errors in program 

development”, IBM System Journal, (3):182-211, 

1976. 

[Fag86]  M. E. Fagan, “Advances in software 

inspections”, IEEE Transactions on Software 
Engineering, SE-12 (7): 744-751, July 1986. 

[Gil94] T. Gilb and D. Graham, Software 
Inspections, Addison-Wesley, 1994. 

[Gra94] R. B. Grady and T. V. Slack, “Key 
lessons learned in achieving widespread 

inspection use”, IEEE Software, pp. 48-57, July 
1994. 

[Hum89] W. E. Humphrey, Managing the software 
process, Addison-Wesley, 1989. 

[Joh97] P. M. Johnson and D. Tjahjono, 

“Assessing software review meetings: a 

controlled experimental study using CSRS”,  
Proc. 19th Int. Conf. on Software Engg., pp. 

118, 127, Boston, 1997. 

[Kitt93] D. H. Kitson and S. M. Masters, “An 
analysis of SEI software process assessment 

results: 1987-1991”, Proc. 15th Int. Conference 
on Sofware Engineering, Baltimore, Maryland, 

1993, pp. 68-77. 

[Kni93] J. C. Knight and E. A. Myers, “An 
improved inspection technique”, Communications 
of the ACM, Vol 36:11, pp. 51-61, Nov. 1993. 

[Mas93] V. Mashayekhi et. al., “Distributed 
collaborative software inspection”, IEEE 
Software,  pp. 66-75, September 1993. 

 [Pau93] M. C. Paulk et. al., Capability 

maturity model for software, version 1.1, 

Technical Report ESC-TR-93-177, Software 

Engineering Institute, Carnegie Mellon 

University, Pittsburgh, Feb 1993. 

[Per97] J. M. Perpich et. al., “Anywhere, 
anytime code inspections: using the web to 

remove inspection bottlenecks in large-scale 

software development”, Proceedings of 19th Int. 
Conf. on Software Engg., pp. 14-21, Boston, 

1997. 

[Por95] A. Porter, L. Votta, and V. Basili, 

“Comparing detection methods for software 



requirements inspections: a replicated 

experiment”,  IEEE Tran. on Software Engg., 
21(6), June 1995. 

[Por95a] A. Porter, L. G. Votta, H. P. Siy, C. 

A. Toman, “An experiment to assess the cost-

benefits of code inspections in  large scale 

software development” Third Symp. on the 
Foundations of Sw. Engg., Washington, DC, Oct. 
1995. 

[Por97] A. A. Porter, H. P. Siy and L. G. Votta, 

“Understanding the effects of developer 

activities on inspection interval”, Proc. 19th 
Int. Conf. on Software Engg., pp. 128-138, 

Boston, 1997. 

[Rus91] G. W. Russell, “Experience with 

inspection in ultralarge scale developments”, 
IEEE Software, Jan. 1991. 

[Sea97] C. B. Seaman and V. R. Basili, “An 
empirical study of communication in code 

inspections”, Proc. 19th Int. Conf. on Software 
Engg., pp. 96-106, Boston, 1997. 

[Ste97] M. Stein et. al., “A case study of 

distributed, asynchronous software inspections”, 
Proc. 19th Int. Conf. on Software Engg., pp. 

107-117, Boston, 1997. 

[Vot93] L. G. Votta, “Does every inspection need 
a meeting?”, Proc. of the ACM SIGSOFT Symp. on 
Foundations of Software Engg, Dec. 1993. 

[Wel93] E. F. Weller, “Lessons learned from 

three years of inspection data”, IEEE Software, 
pp. 38-53, Sept. 1993. 



 


