
Lessons Learned in Framework-Based Software Process Improvement

Pankaj Jalote
Department of Computer Science and Engineering

Indian Institute of Technology Kanpur
Kanpur, India – 208016

jalote@cse.iitk.ac.in

Abstract

Software process improvement (SPI) has emerged as a
critical area for organizations involved in software
development. There is now considerable evidence that
SPI can provide substantial gains in quality,
productivity, and cycle time. Currently, most
organizations that embark upon a SPI program tend to
use a framework like the Capability Maturity Model for
their process improvement. In this article we discuss some
of the lessons learned in using these frameworks for
software process improvement. First, three critical
success factors are discussed. The rest of the lessons have
been grouped into three categories – framework related,
process related, and SPI management related. For each
category we discuss a few key lessons. These lessons are
based on the experience of the author in implementing a
CMM-based SPI program in a large software
organization in India, and helping many organizations
in India and other countries (primarily the US and
Mexico) with their SPI programs.

1. Introduction

Technically, a process for a task comprises a sequence
of steps that should be followed to execute that task. For
an organization, however, the processes it recommends for
use by its engineers and project managers are much more
than a sequence of steps—they encapsulate what the
engineers and project managers have learned about
successfully executing projects. These processes help
managers and engineers emulate past successes and
avoid the pitfalls that lead to failures. Software process is
the collection of processes for the various tasks involved
in executing projects for building software systems.

As a result of changes in technology, knowledge, and
people’s skill, the processes for performing different tasks
change. In other words, processes evolve with time. With
knowledge and experience, processes can, and should, be
“fine tuned” to give better performance. Software process
improvement is concerned with this tuning of the software
process. There are many published reports showing the

benefits SPI can bring to quality, productivity, and cycle
time (for example [1, 3, 5, 6, 9, 11, 19]).

For an organization that wishes to embark upon a SPI
program, there are two clear approaches – totally internal
SPI and framework-based SPI. In the internal SPI, the
current processes of the organization are analyzed and
depending on the shortcomings discovered and the goals
of the SPI, initiatives are taken for improvement. A
framework-based SPI, on the other hand, uses an external
framework against which a process is analyzed and which
may be used to determine the course of action in the SPI
initiative.

Though SPI has been around for a long time, in the
recent years framework-driven SPI has gained a lot of
momentum. The most influential frameworks for SPI are the
Capability Maturity Model (CMM) for software [18] and
ISO9001 [12, 13]. Currently, CMM is, by and large, the
most widely used framework for software process
improvement. Some reports describe how the CMM based
initiatives were implemented and the key success factors
[4, 9, 10]; a detailed description of an implementation of
the CMM in an organization is given in [14].

Though the CMM and ISO have been around for many
years, organizations still find it hard to “implement” these
frameworks – i.e. improve the processes so that they also
satisfy the requirements of these frameworks. A survey
done by SEI suggests that over two-thirds of the people
responsible for SPI know what needs to be improved, but
needed more guidance on how to do it [10].

In this article we share some of the lessons learned
while using CMM or ISO as the framework for SPI, though
the article focuses more on the CMM as it is currently
more widely used and many people believe that it is better
suited for software. This article is based on the author’s
experience in implementing CMM in a large software
house in India, and then helping some others move up the
maturity ladder. These lessons should help the
organizations wanting to move up the maturity ladder in
making their SPI programs more effective.

First we discuss the three key success factors of an SPI
program: a dedicated group for performing process
management activities, a delivery system to deploy the
processes, and senior management sponsorship. Then we

group the other lessons learned in three categories –
framework related, process related, and SPI management
related. In each of the categories, we discuss a few key
lessons.

2. Critical Success Factors

For a framework-based SPI to deliver results there are

three critical success factors. In some sense, these form
the basic lessons we have learned – without them the SPI
initiative is not likely to succeed. These success factors
are (a) having a dedicated group responsible for the SPI
initiative with some full-time members, (b) having a
suitable delivery system in place for deploying processes,
and (c) senior management involvement and commitment.

The basic premise in SPI is that processes can be
improved. This clearly implies that the processes are not
static and will change (improve) over time. Improvement
generally requires analysis and evaluation of the existing
processes leading to identification of areas of
improvement. To facilitate analysis, it is important to have
a clearly defined definition of the processes being
analyzed. Analysis is then followed by enhancing
appropriate processes. This cycle of defining, analyzing,
and refining repeats itself. These tasks in the software
process improvement, which form the process
management process, need to be executed by some group.
As these tasks are fairly involved and require commitment
over a substantial period of time, a critical success factor
is to have a dedicated group to perform these tasks related
to process definition and management. This group is
frequently called the Software Engineering Process Group
(SEPG).

Our experience also indicates that having only part-time
members in this group who volunteer to this “extra” job
usually does not succeed. It is highly desirable to have a
core group of full-time people (whose strength is of the
order of 1% to 2% of the engineering staff), which should
be supplemented by volunteers across the organization
who participate on a part-time basis for specific tasks
during various SPI initiatives.

Frequently, it is assumed that process definition is the
main challenge in an SPI initiative. This stems from an
assump tion that defining “good” processes is the tough
part, and once such processes are defined, people will
follow them automatically because they are “good”. This,
unfortunately, is far from the reality on the ground. The
most difficult task in an SPI initiative is deployment of the
defined processes. A survey of some high maturity
organizations also supports the view that process
deployment is perhaps the most demanding task during
SPI initiatives [15].

So, besides putting effort into process definition, it is
imperative to have deployment mechanisms in place for
deploying the processes. If effective deployment
mechanisms are in place, then the task of changing
processes becomes considerably easier. And without an
effective deployment mechanism, regardless of how
“good” the processes are, they are more likely to remain
on-paper only. Hence, for a successful SPI, existence of an
effective delivery mechanism is a critical success factor. If
it does not exist, it has to be formed (and this is what the
Software Quality Assurance key process area at level 2 of
CMM and the internal audit clause of ISO9001 try to do.)

Deployment frequently requires a three-pronged
approach: training, consulting in use of processes, and a
formal audit system. Training involves educating
practitioners on the need for change and on the new
processes to be used. Consulting is needed since, when
time comes to deploy the processes, practitioners
sometimes run into difficulties. Having consulting help
available as and when needed is of great value for
deploying processes. And finally, despite best of
intentions, processes are sometimes not followed. A
formal audit system which checks for process compliance
is therefore essential to validate that processes are being
properly used.

The final success factor is commitment and
involvement of the senior management. SPI initiatives
typically involve a large number of people besides the
SEPG. And, as mentioned above, deploying processes
across the organization is difficult and requires support
from across the organization. Overall, an SPI initiative
does not get this support unless the senior management
shows strong commitment to the initiative.

The senior management commitment has two
components: providing the resources (both people and
financial) for the initiative, and spending their own time in
participating, monitoring, and resolving issues. Without
this commitment, the message goes that though the
organization desires the SPI, they are not serious about it.
Active involvement of senior management helps provide
visibility to the people participating in the initiative, which
is a strong motivator, particularly for those people who are
participating part-time on a voluntary basis. In the
author’s experience, in almost all organizations that were
very successful with their SPI, the initiative had the full
backing from the CEO, who actually personally monitored
the initiative. And in the situations where the SPI initiative
continues to linger on, the CEO does not regularly monitor
and drive the initiative, and does not allocate adequate
resources to the initiative, relying more on voluntary and
heroic effort of people.

3. Framework Related Lessons

When a framework like the CMM is used, sometimes
people take it literally and as “Gospel” and then try to
“implement” the key practices of the CMM (or the clauses
of ISO). Out experience is that to get the bet results in SPI,
the model being used has to be properly interpreted for
the organization. Some of the key lessons we learned
relating to the framework revolve around this concept.

Don’t work for the framework, let it work for you.
Frameworks like the CMM provide considerable flexibility
to effectively support the business goals of the
organization. For example, in the CMM, goals of each Key
Process Area (KPA) need to be satisfied, but not the
detailed key practices mentioned for that KPA. Even in
goals, sufficient flexibility is possible in interpretation.
(E.g. CMM defined for large defense systems but now
used by smaller organizations – the analyses of SEI’s data
reveals that most of the users are not defense based [17].)
Given that there is sufficient flexibility in the model, it is a
poor approach to start treating the model literally without
keeping the larger picture in mind. A simple-minded
implementation of CMM will start implementing the key
practices, which is likely to result in complicated
processes that may not be suitable for the organization.
The processes should be designed to solve the problems
faced in the organization and projects. The framework
should be used to guide this effort, but should not be
used as the main basis for designing the processes.

Once a framework is accepted, don’t argue with the
framework. A lot of energy is sometimes spent within an
organization in arguing for or against a model or regarding
the suitability of a particular model. Given that there is
sufficient flexibility in a model like the CMM, it matters
less which model you are using – most models will allow
reasonable practices. It is better to accept a framework and
focus the effort on how to leverage and interpret the
framework to provide benefits to the organization. If the
energies can be focused on how to use the framework
best, the result is likely to be better.

4. Process Related Lessons

Of course, the processes to be used by the
organization have to be properly defined. To achieve a
certain maturity level, these processes will have to satisfy
some properties required by the framework. In our
eagerness to implement the framework we may miss out on
the benefits the processes are supposed to provide. Some
of the process related lessons are given below.

Keep the processes simple. There is no point in having
detailed processes, as their implementation cannot be
verified. And as we have discussed, a key aspect of
deploying the processes is to be able to verify their
implementation on projects through audits. It is a mistake,
often due to over-enthusiasm, on the part of process
designers, to have a process that specifies even the
smallest task that has to be performed – such processes
are virtually impossible to verify. How do you check if the
small step mentioned in the process was done? Each
process step should have clear outputs which can be used
for validation. In this regard, it is best to separate
guidelines and checklists from processes. For example,
detailed steps for design are better kept as guidelines or
checklists, which are used by the designer but whose
execution is not necessarily to be validated by an auditor.
This makes the processes themselves simple and more
stable, and at the same time provides flexibility in
methodologies at the lowest level by providing different
checklists and guidelines. Keeping the processes simple
makes them verifiable and minimizes the desire by
practitioners to “fake it”.

Have the executors of the process define the process. It is
a bad idea for someone other than the users of the process
to define the process. So, to define a process, it is perhaps
best to have a task force that consists primarily of users of
the process, and which is given some high-level
guidelines and requirements by the SEPG. Processes
defined by the users themselves have a much better
chance at being accepted by the users. While defining
processes, wherever possible, it is best to “standardize”
processes that are being practiced by some in the
organization. In other words, it is best to leverage the
experience within the organization to define processes.
Frequently, for many of the problems, solutions have
already been found within the organization. In these
situations, the task of process definition becomes
identifying the solutions and then “packaging” them
properly for a wider use. If the processes being proposed
are substantially different from what has been practiced in
the organization, then it is best to pilot the process on
some project before “standardizing” it.

Keep metrics simple and with value for project
management. When organizations and people learn to use
metrics better, they can evolve their own metrics.
However, in the start, keeping the metrics program simple
and standard helps adoption of the metrics. The basic
metrics that should suffice in most cases are effort,
defects, schedule, and size [7, 16]. It is also important that
the metrics collected provide value for the project in which
they are being collected. Collecting metrics that are
primarily for historical analysis or for organization-level

analysis tends to be viewed as a “burden” by the project,
and may be resisted. If the metrics provide direct value to
the project, there is added incentive to collect them. At the
very least, they should help the project manager by
providing good visibility in how the project is progressing
on the three critical dimensions of cost, schedule, and
quality – for project management this is the main use of
metrics [2]. Tool support for metrics collection and
analysis should also be built early, so metrics collection
and analysis is not an overhead but an advantage for the
project

5. SPI Management Related Lessons

In a framework-based SPI initiative, one of the
objectives is to reach a certain level in the framework. This
initiative can be quite extensive. Perhaps most SPI
initiatives that do not succeed, like software projects that
fail, do so due to improper management of the initiative.
Here we give some of the lessons learned regarding
managing the CMM initiative in an organization [14].

Treat each SPI initiative as a project. Conceptually,
process improvement is an ongoing activity, with most
models for process improvement being cyclic (e.g. the
IDEAL model [8]). However, in practice, software process
improvement, at least in the initial stages, can be treated
like projects, with each process improvement initiative
being a project. The objective of the project can be to
satisfy some requirements of the framework, like achieving
a level I of the CMM. With this objective, the SPI is a
project which should end with an assessment
demonstrating the achievement of the objectives. This
project should be planned and managed just like any other
(software) project. The project should have a project
manager, who is assigned resources that are sufficient for
the scope of the project. It is best if the goal of the project
is articulated in terms of a maturity level – it is a clear and
measurable goal and provides an “icon” around which the
organization can be rallied.

Have a schedule of one year or less. Once the SPI initiative
is treated as a project with a well-defined goal, it makes
sense to achieve the goal quickly. A shorter time span for
the SPI project will help keep the attention of the senior
management as well as the people who are participating in
the initiative, and will provide early feedback on the
initiative. It is best to target a level that can be achieved in
a shorter time span; a schedule of about one year is
perhaps best.

Manage the risks to the SPI project. If the SPI is treated
as a project with a well-defined goal, then there will be

risks. Use of risk management, helps in achieving the SPI
goals. The risk management in an SPI project will deal with
those conditions which can cause the project to not
achieve the desired goal. With SPI projects, most of these
risks will be internal organizational issues. Through risk
management they are prioritized, their impacts understood,
and suitable measures taken to mitigate them. Like in
software project management, risk management is perhaps
one of the most important techniques that can help the
project succeed.

The “big bang” approach to deployment can work. If there
are multiple changes that are desired to achieve some
level, then it may be best to define methods for all of these
and then deploy them all together. This method makes the
task of training, hand holding, etc. for the SEPG a one-
time, though intense, task. By doing it in increments, the
deployment mechanism (which will generally involve
training, consulting etc.) will have to be activated each
time. The incremental approach can also create resentment
among practitioners due to the “stream” of changes they
are requested to implement. By implementing all changes
at once, the change may be substantial, but the end state
is reached quickly. However, the amount of change should
be such that it can be deployed in the span of about a
year, as discussed above.

6. Conclusion

There is a considerable interest in software

organizations in software process improvement (SPI) to
improve the quality and productivity of the organization.
The capability maturity model (CMM) and ISO9001 are
currently the most widely used framework for process
assessment and improvement. This article discusses some
of the lessons learned in framework-based SPI.

It is our experience that SPI is not very hard or complex.
It basically requires commitment from the senior
management of the organization and the will to do it. We
also believe that a framework-based improvement makes
the task of process improvement considerably easier and
provides the desired results. Whether or not the
framework is suitable for the business is frequently not a
very pertinent question as frameworks like the CMM
provide sufficient flexibility to match the business goals of
the organization. Hence, the organization has sufficient
flexibility in setting its processes while still satisfying the
requirements of the framework.

Our experience is that a suitable level of CMM should
be set as the target for SPI, and the duration for achieving
the goal should be kept reasonably short. Then the SPI
project should be planned and managed like a regular

project. Proper risk management for the SPI project can
help tremendously in achieving the goals.

In the end, we must keep in mind that SPI or the CMM
do not solve all the problems related to projects.
Processes and process improvement have limitations. For
overall improvement, it is clear that one has to consider
the other two aspects that determine the quality and
productivity of an organization, namely people and
technology.

7. References

[1] L. J. Arther, “Quantum improvements in software system
quality”, Commn. Of the ACM, 40:6, June 1997, pp. 47-52.

[2] N. Brown, Industrial-strength management strategies, IEEE
Software, July 1996, pp. 94-103.

[3] K. L. Butler, “The economic benefits of software process
improvement”, Crosstalk, July 1995, pp. 10-19.

[4] M. Daskalantonakis, “Achieving higher CMM levels”, IEEE
Software, July 1994, pp. 17-24.

[5] M. Diaz and J. Sligo, “How software process improvement
helped Motorola”, IEEE Software, vol. 14, no. 5, Sept/Oct 1997,
pp. 75-81.

[6] R. Dion, “Process improvement and the corporate balance
sheet”, IEEE Software, July 1993, pp. 28-35.

[7] R. Grady and D. Caswell, Software Metrics: Establishing a
Company-Wide Program, Prentice Hall, 1987.

[8] J. Gremba and C. Myers, The IDEAL model: A practical
guide for improvement,
http://www.sei.cmu.edu/ideal/ideal.bridge.html, 1997.

[9] T. J. Haley, “Software process improvement at Raytheon”,
IEEE Software, Nov. 1996, 33-41.

[10] J. D. Herbsleb and D.R. Goldenson, “A systematic survey
of CMM experience and results”, 18th Int. Conf. On Software
Engineering, Berlin, 1996, pp. 323-330.

[11] W. Humphrey, T. R. Snyder, and R. R. Willis, “Software
process improvement at Hughes aircraft”, IEEE Software, July
1991, pp. 11-23.

[12] ISO9001, Quality Systems – Model for Quality Assurance in
Design/Development, Production, Installation, and Services , Intl.
Standards Organization, Geneva, 1987.

[13] ISO9000-3: Guidelines for the application of ISO9001 to the
development, supply and maintenance of software, International
Standard, 1991.

[14] P. Jalote, CMM in Practice – Processes for Executing
Projects at Infosys, Addison-Wesley (SEI Series on Software
Engineering), 1999.

[15] P. Jalote, Use of metrics in high maturity organizations,
Software Quality Professional, Vol 4, No 2, March 2002.

[16] L. H. Putnam and W. Myers, Industrial Strength Software –
Effective Management Using Measurement, IEEE Computer
Society Press, 1997.

[17] “SEMA – Maturity Profile”,
www.sei.cmu.edu/sema/profile.html.

[18] Software Engineering Institute, contributors: M. Paulk, et.
al., “The Capability Maturity Model for Software, Version 1.1”,
Addison Wesley, 1995.

[19] H. Wohlwend and S. Rosenbaum, “Schlumberger’s software
process improvement program”, IEEE Tran. On Software Engg.,
20:11, Nov. 1994, pp. 833-839.

