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Abstract—There is an increased interest in using control charts for monitoring and improving software processes, particularly quality

control processes like reviews and testing. In a control chart, control limits are established for some attributes and, if any point falls

outside the limits, it is assumed to be due to some special causes that need to be identified and eliminated. If the control limits are too

tight, they may raise too many “false alarms” and, if they are too wide, they may miss some special situations. Optimal control limits will

try to minimize the cost of these errors. In this paper, we develop a cost model for employing control charts to software process using

which optimum control limits can be determined. Our applications of the model suggest that, for quality control processes like the

inspection process, the optimum control limits may be tighter than what is commonly used in manufacturing. We have also

implemented this model as a web-service that can be used for determining optimum control limits.

Index Terms—Software metrics, software process improvement (SPI), statistical process control (SPC), control charts, inspections/

reviews, software quality control.

�

1 INTRODUCTION

A process is an organization of man, machine, and
methods into work activities to produce desired

outputs [10]. The outputs produced by a process can be
characterized by some quality attributes, the values of which
generally show some variation. The causes of variation can
be classified as natural causes (also called common causes)
or assignable causes (also called special causes). Natural
causes are those that are inherent in the process and that are
present all the time. Assignable causes are those that occur
sometimes and that can be prevented. A process is said to be
under statistical control if all the variation in the attributes is
caused by natural causes [23], [33].

To keep a process operating under statistical control, it is

essential to continuously monitor its performance and

identify when it goes out of control. Control charts are

common tools that have been used for decades for

monitoring manufacturing processes. In a control chart,

some quality attribute is chosen and the values of the

attribute for samples taken from the production at some

time intervals are plotted. Some control limits are estab-

lished and, if a point falls outside the control limits, an

assignable cause is assumed to be present. The selection of

control limits determines how frequently “false alarms” will

be raised (i.e., a point falls outside the control limits even

though there is no assignable cause) and how frequently

assignable causes are missed (i.e., an assignable cause is

present but the point does not fall outside the control

limits). The control limits in manufacturing processes are
generally set to 3� (where � is the standard deviation)
around the mean. These control limits aim to minimize the
overall loss due to out of control processes and false alarms.

Though designed for manufacturing processes, SPC
concepts can be applied to software process and there is
now increased interest in the use of control charts for
software processes. Currently, the approach is to use
some control chart for some miniprocesses within the
overall software process. The process for which control
charts are being most commonly used is the inspection/
review process [8], [11], [12], [31]. SPC concepts have also
been used for testing [3], [4], [19], [31], maintenance [30],
[32], personal process [27], and other problems [5], [10].
The use of control charts for software processes is likely
to continue to grow, particularly since frameworks like
CMM [26] expect some usage of control charts at higher
maturity levels.

In software processes, as data points are not that
frequent, generally, each data point is individually plotted
and evaluated. Hence, charts like the XmR or the U charts
are more suitable for software [14], [31], [34] and are the
most commonly used charts, as reported in the survey [28].
On the other hand, in manufacturing, the �XXR chart, which
employs a sampling based technique, is most commonly
used. Consequently, modeling and analysis for selection of
control limits for optimal performance has also focused on
�XXR charts (a survey of some of the models for economic
design of control charts is given in [16], [24]). In addition,
there are two other differences between manufacturing and
software processes that have a bearing on proper design of
control charts:

. The primary focus of using control charts in
manufacturing is to bring the process back in control
by removing assignable causes so that the future
production losses are minimized. With software
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processes, besides improving the process, an im-
portant objective of using control charts is to control
the product also. For example, when using control
charts for an inspection process, if a point falls
outside the control limits, besides the process
improvement actions like improving the checklist,
inevitably, product improvement actions like rere-
views, scheduling extra testing is also taken. In [14]
(which is perhaps the first paper on the use of SPC in
software), Gardiner and Montgomery suggest “re-
work” as one of the three actions that management
should take if a point falls outside the control limits
The use described in [8] clearly shows this aspect of
product control. The survey of high maturity
organizations also indicates that project managers
also use control charts for project-level control [21].
Due to this use for product-control, project managers
are more likely to want potential warning signals to
be pointed out, rather than miss such signals, even if
it means more false alarms.

. The cost parameters that affect the selection of
control limits are likely to be quite different in
software processes. For example, if a manufacturing
process has to be stopped (perhaps because a point
falls outside the control limits), the cost of doing so
can be quite high. In software, on the other hand, the
cost of stopping a process is minimal as elaborate
“shutdown” and “startup” activities are not needed.
Similarly, the cost of evaluating a point that falls
outside the control limits is likely to be very different
in software processes as compared to manufacturing
processes.

Due to these differences, it is reasonable to assume that,
to get the best results, control charts will need to be adapted
to take into account the characteristics of the software
process. In this paper, we examine the issue of setting
control limits when control charts are used in software
processes. We will focus our attention on the quality control
processes, in particular, the review/inspection process.
(The reader is referred to [13], [15] for further information
on the inspection process.)

We develop a model for applying control charts to the
review process. Using this model, the total cost of process
control as a function of control limits is determined. This
cost function is then used to numerically compute the
optimum control limits at which the total cost is minimized.
We are now making the software available as a web service
that a process designer can use to determine the optimum
control limits by giving the values of the different
parameters. By using the model, a process designer can
set the control limits such that the overall cost of employing
control charts is minimized.

In the next section, we provide an overview of control
charts and their use in software process, including an
example. In Section 3, we describe our model and the
assumptions we make. The overall cost of using a control
chart and determining the control limits that will minimize
this cost is discussed in Section 4. The section also describes
how the model is numerically solved and gives the URL of
an experimental software that can be used by process

designers to apply this model to their process parameters.
Section 5 gives a few examples to illustrate the use of the
model. One example uses the data from a real organization
and discusses how that data was collected. Sensitivity
analysis of the model is discussed in Section 6 and Section 7
contains the conclusion.

2 STATISTICAL PROCESS CONTROL

The basis of statistical process control (SPC) is that, if a
process is used consistently, it will demonstrate consistent
results in key process attributes like quality, productivity,
etc. [5]. Consistency does not mean that the same results
will always be achieved—the results will vary as there are
some normal variations in the performance that are
inherent to all processes. The variation that is inherent in
the process is called noise or common cause variation. It is not
possible to control the variation due to common causes in a
process—to reduce the variation further, the process itself
has to be changed.

However, there are situations in which special factors are
at play when the process is executing. That is, besides the
common or inherent causes, there are special causes. These
special causes, when present, generally cause a large
variation in process performance. This change in perfor-
mance due to special causes can be thought of as the signal
through which these special causes can be identified and
later removed.

If the variation in performance of a process is only due to
common causes, then it is said that the process is under
statistical control, or that it is a stable process. The bounds
on the performance of such a process can be predicted. On
the other hand, if the process is not stable, its performance
cannot be predicted as the variation due to special causes is
unpredictable.

The key problem of SPC is how to identify the special
causes whenever they are present. This means that, from
the behavior of the process, the noise has to be separated
from the signal whenever there is a signal. Control charts
are a means to achieve this goal.

There are various types of control charts. In manufactur-
ing, the most common type of control chart is the �XXR chart
[23], [33]. For this chart, at regular time intervals, a sample
consisting of a few outputs of the process is taken. For a
sample, the mean ( �XX) is the mean of the value of the
attribute of interest for the outputs in this sample. The
range R is the difference between the maximum and the
minimum value of the attribute for the outputs in the
sample. The mean values for the samples collected at
different times are plotted on one chart, giving rise to the
( �XX) chart. The range for the samples is plotted as the
R-chart. These charts are used to identify the presence of
any special causes.

The control limits are generally set at 3� around the
mean (where � is the standard deviation). That is, the upper
control limit (UCL) is the mean value of �XX from the samples
plus 3�, while the lower control limit (LCL) is mean value of
�XX minus 3�. With these control limits, the chances that a
point will fall outside the control limits, even when there is
no special cause, is only 0.27 percent [23], [33]. Hence,
whenever a point falls outside the control limits, it is highly
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likely that some assignable cause is present in the process.
Therefore, a point falling outside the control limits is taken
to signify the presence of of an assignable cause. (Actually,
there are other rules also for identifying the presence of an
assignable cause [10], [23], [33].)

Note that control charts are only used to identify the
presence (with high probability) of special causes. They are
silent on what should be done in such a situation.

In the �XXR chart, the mean of the values in a sample is
plotted. In software, as outputs are fewer, it is usually
desirable to consider and plot the attribute value for each
ouptut separately. To achieve this, the XmR chart and the
U-chart are well-suited [23], [33]. In the XmR chart, the
value of the attribute is plotted individually to form the
X-chart. For range, the moving range of two consecutive
points is plotted. In the U-chart, the individual data point is
plotted, but there is no general control limit—a different
control limit is established for each point, depending on the
size of the work product (or the “area of opportunity”).
However, for a process like the inspection process,
approximate U-charts can be built with a single control
limit by working with the average size of code that is
inspected at a time [8].

Let us illustrate the use of control charts for the
inspection process through an example. We will focus on
the X-chart. The attributes generally plotted for inspections
are the preparation or inspection rate (LOC/hour) or
density of defects detected during the inspection (defects/
LOC). Suppose we plot defect density. Then, after each
inspection, the defect density will be plotted, giving rise to a
run chart. From data from previous inspections (either from
the same project or from across the organizations), control
limits are established. Suppose the control chart is as shown
in Fig. 1 (adapted from [8]).

As we can see, the defect density for inspection 20 is
more than the upper control limit. For this inspection, other
parameters, like coverage rate, preparation rate, previous
history of the module being reviewed, etc., are considered.
It may be found (as in [12]) that the assignable cause is that
new coding standards were introduced and that is why the
number of defects is too high. The action following this
identification could be to train the programmers in the new
coding standards, as was done in [12].

On the other hand, the examination might reveal that all
parameters for the process are as expected and the reason
the point fell outside the control limits is that the module
being inspected is defect prone (as in [8]). In that case, to
further control the quality of this module, action might be
taken to redesign or rework the module, reinspect it, or
schedule more testing [8].

In general, in software processes, if a point falls outside
the control limits, actions might be taken to improve the
work product and/or to change the process to remove the
special cause.

3 SYSTEM MODEL AND ASSUMPTIONS

For control charts to be effective, control limits have to be
chosen carefully so they separate the normal variation
from the variation caused by an assignable cause. The
distribution of variation due to natural causes (often
assumed to be normally distributed) is, generally, such
that there is a nonzero probability for the attribute to have
any value. Hence, it is not possible to set control limits that
will perfectly and reliably separate the two cases. Regard-
less of what control limits are set, two types of errors are
possible [23], [33]:
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1. Type 1 error: This error occurs when a point falls
outside the control limits because of variation due to
natural causes themselves. This forces us to search
for assignable cause (when none exists) and adds
extra cost to the process.

2. Type 2 error: This error occurs when a point falls
inside the control limits, although some assignable
cause is present in the process. In this case, we
ignore this point rather than taking corrective
actions and this leads to extra cost in downstream
processes.

It is not possible to reduce the probability of these two
errors to zero. In fact, there is a tradeoff—if one increases,
the other decreases. Hence, setting the control limits is a
balancing act. Generally, economic factors regarding the
costs of these two types of errors are considered to select the
control limits.

For formulating the economic model of a quality control
process, we make some assumptions about the process
behavior. We assume that the process starts from an
incontrol state, i.e., initially, all the variations in the process
performance are due to natural causes. We assume that the
main attribute being monitored is observed defect density
(ODD), which is the number of defects detected per unit
size (assume that size is measured in KLOC). For defect
density, U-charts are more suitable as they can easily
accommodate the different sizes of document/code being
reviewed. However, as suggested in [10], as control limits
often do not vary much for different data points, XmR
charts are a reasonable and simpler alternative. Here, we
consider the X-chart of ODD.

We assume that ODD is distributed normally with mean
�0 defects per KLOC and standard deviation �. That is, the
average number of defects detected by this process is �0 per
KLOC and the actual defect density of a review is normally
distributed with the mean �0 and standard deviation �.

The process is considered as a series of control cycles.
Each cycle begins with the quality process in an in-control
state. After operating for some time in the in-control state,
an assignable cause occurs and the process goes out of
control. We assume that, when out of control, the mean of
ODD shifts by ���, but the variance remains the same. For
some time, the presence of this assignable cause goes
undetected as the data points continue to fall within the

control limits. Eventually, a point falls outside the control
limits, generating a signal. On this signal, analysis is done to
identify the cause and actions are taken to “repair” the
process. Following a repair, the process returns to the in-
control state and a new cycle begins. This behavior of the
process is shown in Fig. 2.

We can also view this whole process as a failure-repair
process [29]. The process starts with an in-control state. In
this state, if a data point falls outside the limits, some
analysis is done, but the process continues to remain in the
in-control state. At some point, some assignable cause
occurs and the process goes in out-of-control state. It
continues in this state until a data point falls outside the
control limits that have been set for the process. On this
signal, some analysis is done. As the process has some
assignable cause, we assume that the analysis will reveal the
presence of the assignable cause and the process will be
repaired by removing the assignable cause. Once the
assignable cause is removed, the process goes back to the
in-control state. A state diagram of a control cycle is shown
in Fig. 3. One control cycle is: Starting from the initial in-
control state, it remains in this state for some time, goes to
the out-of-control state, and remains in it until a point falls
outside the control limits, then returns back to an in-control
state after process and product repair. A control cycle is
thus an interval between two successive repairs. An
optimization over a single control cycle will causes the
optimization of the whole quality process since the process
is a repetition of these control cycles.

A cycle in the process life consists of three different
stages. These stages are: process operating in an in-control
state (before arrival of assignable cause), process operating
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in an out-of-control state (between the arrival and detection

of assignable cause), and searching and repairing of the

assignable cause. All three stages add some cost to the

control cycle. (We do not model examining a false alarm as

a separate state as the cost of false alarms is taken as part of

the in-control state.) The cost in the in-control stage is due to

a Type 1 error that may occur and the cost in an out-of-

control stage is due to Type 2 errors. In the third stage, the

cost is due to process repair.
We assume that the average cost of analyzing a false

alarm is T and the average cost of correcting an out-of-

control situation is W . We assume that the process stays in

an in-control state for an average of � reviews. That is, on

average, an assignable cause occurs after every � controlled

reviews.
To compute the cost implications of not detecting an out-

of-control situation, we need to understand what the cost is

of removing a defect in the current stage versus what it will

cost to remove it in later stages. We assume that the mean

cost of removing a defect in this stage is C1 and the mean

cost of removing it later is C2. To compute the total cost, we

assume that the average size of the work product is � KLOC.

To summarize, we use the following parameters:

1. Control limit parameter k (the actual control limits
are �0 � k�).

2. When the process is operating normally, the average
ODD is �0 and its standard deviation is �.

3. Amount of shift, �, in ODD due to occurrence of an
assignable cause (the shift is ��).

4. Average number of reviews done in an in-control
state, �, before the process goes out of control.

5. Average cost of analyzing false alarm, T .
6. Average cost of correcting an out of control

situation, W .
7. Average cost of fixing a defect in this phase, C1.
8. Average cost of fixing a defect in later stages, C2.
9. Average size of a work product being reviewed, �.

4 SETTING CONTROL LIMITS

The total cost of a cycle is sum of cost of all three stages. The

contribution of these costs to total cost depends on the

probability of their occurrences of corresponding errors

which in-turn depend on control limits. The probability of a

Type 2 error increases with control limit and probability of a

Type 1 error decrease and vice versa. The sum of these costs

forms a U-shaped curve, which has a minimum at some

value of control limits. This cost minimizing value of

control limits economically balances the two costs and

minimizes the total cost.
Cost minimization is perhaps the most important criteria

while setting the control limits. Several methods for the

design of economically optimal control charts for manu-

facturing processes have been suggested in the quality

control literature. A detailed study of these models, most of

which focus on �XXR charts, is given in [7], [9], [25]. Here, we

present a simple cost model which is used to determine the

optimal control limits in software processes.

4.1 False Alarm Cost

When the process operates in an in-control state, with each
observed data point, there is an associated probability that it
may fall outside the control limits. The points which fall
outside the control limits, even when the process is actually
in an in-control state, are called false alarms or false positives.
On occurrence of a false alarm, the process is examined to
check whether the process is in the under-control state or
not. This extra examination is the False Alarm Cost (FAC).

If the control limits are set at �k� distance from the
mean �0, the probability that ODD of a quality process
exceeds the control limits, even though the process in
control is essentially the area in the probability density
function from 1 to LCL plus the area from UCL to 1. (A
parameter-like defect density does not have negative
values, leading to a truncated distribution. We assume that
errors due to this truncation on the probabilities are
negligible.) As the function is symmetric, this probability,
� is given by the following equation:

� ¼ 2�ð�kÞ; ð1Þ

where � is the cumulative distribution function of a
standard normal variable and is given by

�ðzÞ ¼
Z z

�1

exp�x2=2ffiffiffiffiffiffi
2�

p dx: ð2Þ

Pictorially, � can be represented as area under parts of
the normal distribution curve, as shown in Fig. 4. It can be
shown that, if control limits are set to 3�, then � is 0.0027; if
the limits are 2�, then � is 0.0455; and, if the limits are 1�,
then � is 0.3173.

As the process remains in an in-control state for an
average of � reviews, and the expected cost of handling a
false alarm is T person hours, the expected number of
reviews done in the in-control state is T � �. Hence, the
FAC in one control cycle is

FAC ¼ �� T � � person hours: ð3Þ

Note that, for computing FAC, we do not need to consider
the full length of a cycle, but only that part of the cycle
during which the process is operating normally. After the
shift takes place, the cost incurred till it is detected is
considered next. Here, we considered that the average
duration of the process staying in control is � reviews. From
a modeling perspective, it is perhaps better to consider
“going out of control” as a Poisson process with rate.
However, we have found, in our experiments, that, by
doing this, the final results do not change significantly.
Hence, we work only with the average.
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4.2 Undetected Failure Cost

The reviews done between the occurrence and detection of
an assignable cause are the ones in which the process is not
operating normally. Due to the process being out of control,
these reviews may fail to detect the expected number of
defects from the work product. These defects get trans-
ferred to later phases of development where the cost of
removal is higher. In general, the later defects are detected,
the higher the cost of fixing them. If the average cost of
fixing a defect in current development phase is C1 person
hours and the expected cost of fixing a defect after the
current phase is C2 person hours, then the additional cost
per such review due to this error is

M ¼ � � �� ðC2 � C1Þ � � person hours; ð4Þ

where � � � is the shift in ODD when the process is out of
control and � is the average size of work product being
reviewed in KLOC (� � �� � is the expected number of
defects that pass through this stage).

To get the total cost in a cycle, we need to determine the
expected number of reviews conducted while the process is
in an undetected out-of-control state. Let P be the
probability that, when an assignable cause is present, the
ODD will fall outside the control limits. P represents the
ability of the control chart to detect an assignable cause and
is ð1� Probability of Type II errorÞ. The probability of a
type II error represents the area in the shifted curve that
falls within the control limits, as shown in Fig. 5.
Mathematically,

P ¼ �ð�� � kÞ þ �ð� � kÞ: ð5Þ

If the shift is known, then P can be computed for a
control limit. For example, if the shift is 1�, then P is 0.022
with control limits set to 3�, 0.16 with control limits set to
2�, and 0.52 with control limits set to 1�. Similarly, if the
shift is 2�, then P is 0.158 with control limits set to 3�, 0.50
with control limits set to 2�, and 0.842 with control limits set
to 1�.

The expected number of reviews that take place with the
shifted process (i.e., after the shift occurs but before it is
detected) is 1=P . Therefore, the expected undetected failure
cost (UFC) for a cycle is

UFC ¼ M=P person hours: ð6Þ

4.3 Repair Cost

When an assignable cause is found, certain actions are taken
to remove the assignable cause and bring the process back
into control. We assume that this cost is fixed at W person
hour. As there is only one repair in each cycle, the total
repair cost (RC) is W .

4.4 Optimal Control Limits

Total cost (TC) of a control cycle is the sum of the false
alarm cost, undetected failure cost, and repair cost,

Total Cost; TC ¼ FAC þ UFC þRC

¼ �T�þM=P þW

¼ 2T� �ð�kÞ þ M

�ð�� � kÞ þ �ð� � kÞ
þW person hours:

ð7Þ

It is clear that the total cost depends on many parameters
and, if the value of the parameters are known, we can find
the cost of a cycle for a given control limits. The dependence
of the total cost on various parameters is shown in Fig. 6.

With the function for total cost known, we now address
the question of minimizing the cost. It should be clear that
the control limit parameter, k, is the one that influences the
cost the most. Furthermore, when using a process, k is a
parameter that is fully under the control of engineers and
they decide what it should be, unlike most of the other
parameters that are the properties of the process. For an
engineer or a process designer, then, the main question is
what value of k should be selected. Given the cost function,
the obvious answer is to select k that will minimize the total
cost. The value of k that achieves this is the optimal control
limit kopt.

It is hard to analytically differentiate the cost with
respect to k and then determine the value of kopt. We
therefore do it numerically. We have written a program
that, given the value of parameters, computes the cost for
different values of k and plots it. Besides the plot, it also
gives the value of kopt.

In one version of this implementation (available as a
service at www.cse.iitk.ac.in/research/software), to simpli-
fy the use of the model, for each k, we compute the cost for
different values of shift (between 0.5 and 3.0 times the
standard deviation) and then take the final cost as the
average cost. This cost is then used to determine the
optimum.

5 EXAMPLES

Let us now illustrate determining the optimal control limits
through some examples. First, let us take the data given in
[10] for a code review process. The average size of code
during review is 0.32 KLOC and the review process detects
on average 20.2 defects/KLOC with standard deviation 7.2.
We assume that the process shifts on an average after every
40 reviews. That is, the code review process remains stable
for on an average 40 reviews before some assignable cause
occurs. We assume that the cost of investigating a false
alarm is 10 person hours and for finding and repairing a
process is an additional 10 person hours. This assumption
says that, if the performance of a code review falls outside
the control limits, even when the review process is operating
normally, it takes 10 person hours to examine all the data for
that review and declare that there is no assignable cause.
And, if the analysis shows that there is an assignable cause,
the activities that need to be undertaken to modify the
review process are an additional 10 person-hours. We
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further assume that the average cost of fixing a defect in the
current phase is 15 person hours, while the expected cost of
fixing it after the current phase is 50 person hours (these
costs are based on data given in [1], [2]).

Now, we compute the cost of one control cycle at
different control limits [0:1 � k � 3:0, steps of 0.05] and
draw a graph between cost and value of k. Fig. 7 shows the
graphs for the different cost components and the total cost
when the process mean shift is 2�.

It is clear from the figure that the optimum value of k is
1.45. (The optimum value of k is 1.10, 1.15, and 1.3 for shifts
of 0:5�, 1:0�, and 1:5�, respectively.) In other words, the
optimal control limits for this process are (20:2� 1:45� 7:2)
defects/KLOC. It is also worth noting that, if the control
limits are set at 3�, which is the usual chosen number for
manufacturing, the total cost is about 3.5 times the cost at
optimal control limit. Clearly, choosing control limits
without considering their impact on cost can have a
significant impact on cost.

Let us now take the example of the code review process
from a real organization. Infosys is a high maturity
organization that heavily uses metrics for managing its
processes and projects. It uses some tools to record effort
and defect data. For most activity, it collects the activity
effort separately from the rework effort. The methods for
effort data collection and the data collected in reviews are
discussed in [19]. The data used here is from a set of projects
of one of the business units.

The average size of the code being reviewed, the average
defect density, and the standard deviation are easily
obtained from the review data of these projects. These
parameters are 0.9 KLOC, 9.2 defects/KLOC, and 7,
respectively. The average number of reviews for which
the process remains in control was estimated by discussing
with project managers how frequently they find the review
data to be too unexpected to warrant their attention and
further analysis. This was estimated to be about 10 reviews.

The average cost of fixing a defect during code reviews is
easily obtained from the rework effort after review and
the number of defects detected in reviews. This cost is
3.9 person-hours. The average cost of fixing a defect after
code review can be computed as the average cost for finding
a defect in unit testing, system testing, or acceptance testing.
This cost is approximately 4.8 person-hours.

Estimating the cost of false alarm and cost of bringing a
process back in control required more thought. In Infosys,
projects employ a structured defect prevention process [20].
This requires analysis of defect data, followed by a root
cause analysis, followed by implementing actions to
prevent the defects from occurring again. We estimated
that the cost of bringing the review process back in control,
which will involve analysis of defects and then implemen-
tation of the preventive actions, will be similar to the cost of
doing defect prevention as similar tasks with similar
objectives are performed in defect prevention. From the
defect prevention data, this came to about 5.2 person-hours.
We further estimated that the cost of a false alarm will be
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Fig. 6. Input and output parameters of our model.

Fig. 7. Cost as a function of k.



about 75 percent of this cost (as it will involve only analysis
but no further action), which came to 3.9 person-hours.

For this data, the optimum control limits come to be
1.45 times the standard deviation. That is, the upper control
limit should be set to 19.5 defects per KLOC and the lower
control limit should be set to 0 KLOC. (The optimum value
of k is 1.20, 1.25, 1.40, and 1.55 for shifts of 0:5�, 1:0�, 1:5�,
and 2:0�, respectively.)

We have tried various variations of published data and
the data obtained from Infosys as examples. Those exam-
ples indicate that the optimum limits value k increases with
increase in shift �, false alarm cost T , and number of
reviews in control state �, and decreases with undetected
failure cost M. We also saw that, in these examples, the
optimum control limits were consistently lower than the
frequently used 3� value and the cost at 3� limits is much
higher than the optimum cost. The examples also suggest
that, for software, the 3� limits are suitable if the shift due to
assignable cause is large (in the examples, more than 5:5�),
if the average number of inspections before the process goes
out of control is large (in our examples, above 15,000), if the
cost of examining a false alarm is high (above 2,500 person-
hours in our examples), or if the cost of missing an out-of-
control review is low (below 0.48 person-hours in our
examples). These suggest that 3� may not be optimum for
software processes.

It should, however, be clear that having a tighter control
limit implies that, even though fewer process shifts will
pass by, there will be more false alarms. The excessive false
alarms may have a detrimental effect on the people or the
process beyond the direct cost of analyzing these signals. If
this is the situation, then the cost of false alarms should be
suitably enhanced to accommodate the “loss” due to these
factors. Optimal control limits can then be established for
these new costs.

6 SENSITIVITY ANALYSIS

Sensitivity analysis in a model is the study of the variation
of its output with respect to its inputs. It is generally used to
determine which input parameters have a significant effect
on the output and their relative ranking.

In our model, there are five main factors that affect the
selection of optimal control limits. In many situations, the
value of these parameters will have to be estimated and
may not be accurately known. The sensitivity analysis will
help a process designer in understanding which parameters
need to be estimated more accurately and the impact of
inaccuracies on the outcome.

To perform the sensitivity analysis on our model, we
used the statistical approach suggested in [17], [18]. In this
approach, first, a set of values for the input parameters are
generated using hypercube sampling as follows: Each of the
input parameters is divided into some nonoverlapping
intervals. One value for each interval is selected randomly.
The values generated for the different variables are then
combined randomly to generate the input vectors. For the
generated input vectors, the output for the model is then
computed.

For ranking the input parameters, a stepwise regression
is performed on this set of input vectors and the

corresponding outputs. In stepwise regression, first, the
variable having the highest simple correlation with the
output is selected as having the highest rank (i.e., a rank
of 1). Then, of the remaining variables, the one having the
highest partial correlation (i.e., the variable that has the
highest correlation after adjusting for the variables that
have already been selected) is selected at the next rank.
This process continues till all variables have been added.

The ranking of the main input variables in our model is
shown in Table 1.

This ranking says that the optimal cost varies more by a
change in M and � than by changes in � and T . In other
words, an error in estimating the values of undetected
failure cost or shift will cause a larger deviation in the cost
and, thus, is more harmful than error in other parameters.
So, we have to be more careful about these two parameters
when using this model for setting control limits. Note that
the fifth factor W does not appear here as it is constant with
respect to k.

7 CONCLUSION

This paper discusses the use of statistical process control
and control charts to software quality control processes like
reviews and testing. As the use of control charts in software
has begun in recent years, standard charting techniques
from manufacturing are used. We argue that, for applying
control charts, software processes differ from manufactur-
ing processes since the focus is also on project level control
and the cost parameters are different. Due to these, the 3�
control limits that are frequently used in manufacturing can
become unsuitable for software.

To find the optimum control limits, a cost model of
software quality process is presented. The model estimates
the cost of a failure-repair cycle of quality process using
some process parameters like average cost of examining a
false alarm, average cost of detecting and fixing a defect,
expected cost of detecting and fixing a defect if it passes
through the current phase, applied control limits, etc. Then,
for a given set of process parameters, we compute the
control limits at which the total cost of process is minimum.

We have applied the model to some published data and
data on code reviews from one high-maturity software
organization. These examples suggest that using 3�may not
be suitable for software processes—in software processes,
tighter control limits are perhaps better.

During this analysis, we have made some simplifying
assumptions, like defect density for reviews having a
normal distribution, and have considered only the basic
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TABLE 1
Input Parameter Ranking by Sensitivity Analysis



rule of a point falling outside the control limits for detecting

an out-of-control situation. We have not considered the

impact of supplementary rules for detecting an out-of-

control situation, which can make control charts more

sensitive to process shifts [6].
We are currently web-enabling our analysis software,

such that any process designer can input the parameters for a

process and get the cost curve and the optimum control

limits. This facility will be publicly available shortly. A trial

version is available atwww.cse.iitk.ac.in/research/software.
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