
List of Common Bugs and

Programming Practices to avoid them

Vipindeep V, Pankaj Jalote
Indian Institute of Technology, Kanpur

{vvdeep, jalote}@cse.iitk.ac.in

March 30, 2005

Abstract

Software bugs are common in practice. Although there are large variety of bugs possible,
some bugs occur more commonly and are frequently the cause of software failures. In this
report, we describe some of the common programming errors with suitable examples for them.
The aim of this compilation is to make programmers aware of these errors, so they can avoid
them. This is an initial compilation which, with feedback 1 , we hope to enhance in future and
make it more comprehensive. The report also lists some poor programming practices that are
often the cause of many types of bugs.

1 Introduction

A software bug can be defined as that part of the code which would result in an error, fault or
malfunctioning of the program. Some bugs can be detected easily during development. But some
bugs will be found late in the development process. These are low probability errors which are
hard to detect and occur on very sparse set of inputs. According to IEEE standards, a ‘bug’ is an
incorrect step, instruction or data in a program. A failure is caused because of a bug and may alter
the external behavior of the program.

There have been many attempts to classify the bugs. Most of these represent the general classi-
fication which is valid in the cycle of software development and evolution. The classification scheme
given in Orthogonal Defect Classification [9] defines eight categories of defects as - assignment,
checking, algorithm, interface, timing/serial, function documentation, and build/pack/merge. Boris
Beizer [5] has given an extensive bug taxonomy which classifies bugs based on the possible places
in various phases of development cycle. Software bugs cause an increase in the cost of development
both in terms of time and revenue. The basic challenge which a programmer faces is to minimize the
introduction of defects , detect and remove existing bugs early in the development process. The de-
fects detected early will cause much lesser damage than those which are detected later in the usage.
In this report we focus on commonly occurring defects and their impact with simple classification.

The seriousness of a bug can be ascertained based on the damage caused to the functioning
system. A general classification of bugs can be done based on the frequency of the occurrence of that
bug and severity of that bug.

The severity of bug is a subjective measure depending on the software and the system. However
we can broadly have following classes for severity:

• Catastrophic: Defects that can cause very serious effects (system may lose functioning, security
concerns etc.)

• Major: Defects that could cause serious consequences for the system like losing some important
data.

1Suggestions to enhance the list of common bugs and programming practices can be sent to vipindeep.v@gmail.com.
Suggestions included will be suitably credited.

1

• Minor: Defects that can cause small or negligible consequences for the system. Ex. Displaying
result in some different format.

• No Effect: These may not necessarily hamper the system performance, but they may give
slightly different interpretation and generally avoidable. Ex. simple typographic errors in
documentation.

Goal of this TR:
In this TR we compile a list of bugs commonly found in programs. The compilation is based on

various published articles on the topic and users experience in programming. The aim is to educate
the programmers about frequent mistakes, so that they can avoid them. In addition, we also describe
some programming practices - both do’s and dont’s, that can in general help to reduce the incidence
of bugs.

2 Common Bugs

This section lists common bugs which occur during coding which directly or indirectly manifest
themselves to a larger damage to the running program.

2.1 Bugs with Pointers and Memory

The following are various possible bugs in dealing with pointers and memory.

2.1.1 Memory leaks

(frequent, catastrophic) [6]
Memory leak is a common programming bug which occurs frequently in the languages which

don’t have automatic garbage collection (like C, C++). A memory leak is a situation, where the
memory is allocated to the program which is not freed subsequently. This kind of situation can
cause ever increasing usage of memory and hence at some point of time, the program may have to
come to an exceptional halt because of the lack of free memory [22] [4] . An example of this error is:

char* foo(int s)
{

char *output;
if (s>0)

output =(char*) malloc (size);
if (s==1)

return NULL;
return(output);
/* if s>0 and s==1 then ,
* allocated memory for output
* is leaked */

}

2.1.2 Temporary values returned

(rare, catastrophic)
The variables declared in a function represents some data which is private to that function. If

the data is not dynamically allocated, it will be stored in the stack otherwise it will be stored in the
heap. If we return the statically allocated variables address, then we are giving access to programs
stack. If some data needs to be shared, then declare the variable as public and use that to access
the common data.

2

char * foo(){
char ch;
//some operations
return (&ch);
/* local variable from the stack is returned */

}

2.1.3 Free the already freed resource

(frequent, major) [26]
This a common form of error where the programmer tries to free the already freed resource. In

general the resources are first allocated and then freed. For example, memory is first allocated and
then deallocated. So we should not try to free the already freed resource.

main (){
char *str;
str=(char *) malloc (10);
if (global ==0)

free(str);
//Some statements
free(str); /* Here str is already freed

* on true branch */
}

This may be more erroneous, if we have some malloc statement between the two free statements.
There is a chance that the first freed locations are now allocated to the new variable. And the
subsequent free will deallocate the new variable. Hence dereferencing it may cause runtime error.

2.1.4 NULL dereferencing

(frequent, catastrophic) [13]
Improper initialization and missing the initialization in different paths leads to the NULL refer-

ence error. This can also be caused because of aliases (two variables refer to the same object, and
one is freed and an attempt is made to dereference the second variable).

To dereference a memory location, it should be initialized first and then dereferenced. The
following code pattern illustrates NULL dereference bug.

char *ch=NULL;
if (x>0){

ch=’c’;
}
printf ("\%c", *ch);
// ch may be NULL

Whenever an object is being dereferenced, take care to see that it has been initialized in all
possible paths to the point of dereferencing. Missing the initialization in any path may cause this
error on some input value, which follows this control path.

2.1.5 Exposure of private data to untrusted components

(rare, catastrophic) [26]
Sometimes it is most important to preserve the integrity and security of data. The data which

is supposed to be private should not be given access to external sources. The following example
illustrates this fact.

3

struct node{
char *ch;

};
char * foo(struct node nn){

return (nn.ch);
}

main (){
struct node n;char *ff;
n.ch=(char *) malloc (1);
*(n.ch)=100;
ff=f(n);
/*Here ff has an access to structure variable */

}

Do not use simple structures when fair amount of security is needed. Or take care that internal
data is not exposed to external resources.

2.2 Aliases

[16]
When there is unexpected aliasing between parameters, return values, and global variables, errors

may be inevitable. Aliasing problems sometimes lead to deallocation errors. Static analysis of all
feasible paths in the program can detect possible aliases.

2.2.1 Need of Unique addresses

(frequent, major) [16]
Aliasing creates many problems among them is violation of unique addresses when we expect dif-

ferent addresses. For example in the string concatenation function, we expect source and destination
addresses to be different.

strcat(src ,destn);
/* In above function , if src is aliased to destn ,
* then we may get a runtime error */

To avoid this, keep a check on the parameters before using them. This is more needed when the
function can cause a dangerous side-effect. Be cautious when dealing with functions which expect
parameters to be in certain format.

2.3 Synchronization Errors

[10] [25]
In a parallel program, where there are multiple threads which are accessing some common re-

sources, there is a great chance of causing synchronization problems. There should be some means
of controlling the execution of such concurrent threads and even more when there is a shared data.
These errors are very difficult to find as they don’t manifest easily, but are low probability events
causing serious damages to system. This type of errors are generally discovered late in the develop-
ment process. In general, there are three categories of synchronization errors and each of them may
occur under different circumstances.

1. Deadlocks

2. Race conditions

3. Live lock

4

2.3.1 Deadlock

(rare, catastrophic)
It is a situation in which one or more threads mutually lock each other. The most frequent

reason for the cause of deadlocks is inconsistent locking sequence. The threads in deadlock wait for
resources which are in turn locked by some other thread. The general way to detect deadlocks is to
construct a lock graph and analyze if it has a loop. Loop in the lock graph represents the presence
of a deadlock. Deadlock detection and avoidance are other possible strategies followed in general by
operating systems [14].

The following is a small JAVA code fragment which can give rise to a deadlock.

Thread 1:
synchronized(A){

synchronized(B){
}

}
Thread 2:

synchronized(B){
synchronized(C){

}
}

Thread 3:

synchronized(C){
synchronized(A){

}
}

2.3.2 Race Condition

(frequent, major)
This is an error which results when two threads try to access the same resource and the result

depends on the order of the execution of the threads. Consider the following example which illustrates
this error.

class reservation
{

int seats_remaining;
public int reserve(int x)
{

if (x <= seats_remaining) {
seats_remaining -=x;
return 1;

}
return 0;

}
}

If two threads simultaneously invoke reserve(x), then even though numbers of seats remaining
are not enough for both of them , they may both be returned ‘1’. Here, the function reserve should
be executed by one thread at a time and forms a critical section where the object of reservation is
shared resource.

Whenever some shared data has to be accessed by threads, the conditions of critical section
have to be satisfied (mutual exclusion, bounded waiting, progress)[25]. To ensure this, use the
synchronization constructs like monitor, semaphores etc.

5

2.4 Some common bug patterns dealing with synchronization

2.4.1 Inconsistent synchronization

(frequent, major) [13] [19]
This bug indicates that the class contains a mix of locked and unlocked accesses. So if there are

some locked accesses on shared variables and some other accesses are unlocked, then this may be
an alarm for improper synchronization. Here we may give more importance to writes than reads
of a shared variable. This is more often when we synchronize one of the methods in a class that is
intended to be thread safe and forget some other.

2.4.2 Incorrect lazy initialization of static field

(rare, major) [13] [19]
A volatile static field has a set of ‘release semantics’ and ‘acquire semantics’ for reading and

writing the data item. So if there is a lazy initialization of a non-volatile field shared by different
threads, then it can possibly cause a synchronization problem. This is because, the compiler may
reorder the execution steps and the threads are not guaranteed to see the expected initialization of
the shared object which was non-volatile.

Hence such data items have to be declared as static volatile to rectify this problem. If we declare
as static volatile, then the order of execution can be preserved by the semantics of the volatile field
[23].

2.4.3 Naked notify in method

(rare, minor) [13] [10]
This bug is not necessarily an indication of error, but it can act as a possible alarm. A call to

notify() or notifyAll() was made without any accompanying modification to mutable object state.
A notify method is called on a monitor when some condition occurs, and there is another thread
which is waiting for it has to be called. For the condition to be meaningful, it must involve a shared
object between the threads which has been modified [13].

2.4.4 Method spins on field

(rare, catastrophic) [10]
This method spins in a loop which reads a field. The compiler may legally take out the read

out of the loop, turning the code into an infinite loop. The class should be changed so that it uses
proper synchronization (including wait and notify calls). [10] [13]

lock =0;
while(true)
{

if (lock ==0)
/* if compiler moves this outside ,
* it causes an infinite loop*/

break;
}

So when such waiting is needed, it is better to use proper synchronization constructs like wait
and notify, instead of using primitive spin locks.

2.5 Data and Arithmetic errors

2.5.1 Uninitialised memory

(rare, major) [26]

6

Sometimes, it may be possible that a number of cases are included which initializes the data.
But some cases might have been skipped because they were not expected. But if such cases arise,
they impose problems like uninitialised memory.

switch(i)
{

case 0: s=OBJECT_1; break;
case 1: s=OBJECT_2;break;

}
return (s);
/* Object s is un-initialized for values other
* than 0 or 1 */

A simplest solution to such errors is to have a safety initialization. This may be after the
declaration. A more complex and a good strategy is to consider all the possible scenarios and paths
and make suitable initialization whenever required in each path.

2.5.2 Value outside the domain

(frequent, minor) [26]
If we have initializations to variable with a value which is not inside its range, then it may give

rise to unexpected results. This will be generally seen in type conversions.

int x,y
//some statements
if((p=x+y) < z)

return (1);
else

return (0);

Here if the value (x+y) is outside the range of an integer, it causes an overflow and sign bit is set
to 1. Hence the ‘if’ condition evaluates to true and 1 is returned instead of 0. Some special values
for floating point variables may give rise to exceptions (Ex. Not a Number) Understand the range
of variables used in the expressions.

2.5.3 Buffer overflow/underflow

(frequent, catastrophic) [11] [7]
Buffer Overflow is an anamolous situation where the data is written beyond the acceptable limit

of the given storage (buffer). In general, when an array is declared, we need to specify the size and
any access on that array should be limited to its valid indices. So we are not supposed to write
beyond this limit. Any code which puts data in some buffer without having any kind of checking
for the size can cause a buffer overflow.

main (){
char ch[10];
gets(ch);
/* can cause a buffer overflow */
}

A simple buffer overflow is capable of putting the security of the system at risk. It can cause
following vulnerabilities:

• Attacking Stack- Modify the return address to execute malicious code.

• Pointer overriding to get data on a specific location.

7

• It can cause an array index out of bounds.

• Heap overflow attack.

2.5.4 Arithmetic exceptions

(frequent, major-minor) [22]
Arithmetic exceptions are a class of errors. Some examples are: divide by zero, floating point

exceptions etc. The result of these may vary from getting unexpected result to termination of the
program.

2.5.5 Off by one

(frequent, major) [22]
This is a one of the most common error which can be caused in many ways. Starting a loop

variable at 1 instead of starting at 0 or vice versa, writing <= N instead of < N or vice versa and
so on are some examples of this error.

2.5.6 Enumerated data types

(frequent, major) [26]
Enough care should be taken while assuming the values of enumerated data types. This is more

needed when the value of enumerated data type is used for indexing an array. These can be prevented
by checking the values before performing the operation.

typedef enum {A, B,C, D} grade;
void foo(grade x){

int l,m;
l=GLOBAL_ARRAY[x-1];
/* Underflow when A */
m=GLOBAL_ARRAY[x+1];
/* Overflow when D and size of array is 4 */
}

2.5.7 Wrong assumptions on operator precedence

(frequent, minor) [26]
This is an error which is not directly visible and the results are not as expected. This is more

dependent on the programmer’s logic in coding. Learn the precedence rules of the programming
language. Do not write big and complicated expression. Use parenthesis to avoid the confusions.

2.5.8 Undefined order of side effects

In a single expression itself, we may not surely guess the order of the side effects [22]. As in the
following part of code, depending on the compiler used, I/++I might be either 0 or 1.

int foo(int n) {printf ("Foo got %d\n", n); return (0);}
int bar(int n) {printf ("Bar got %d\n", n); return (0);}
int main(int argc , char *argv [])
{

int m = 0;
int (*(fun_array [3]))();
int i = 1;
int ii = i/++i;

8

printf ("\ni/++i = %d, ",ii);
fun_array [1] = foo; fun_array [2] = bar;
(fun_array [++m])(++m);

}

The code prints either i/++i = 1 or i/++i=0; and either ”Foo got 2”, or ”Bar got 2”

2.5.9 String handling errors

[20]
There are a number of ways in which string handling functions like strcpy, sprintf, gets etc can

fail. Firstly, one of the operands may be NULL. Secondly they may not be NULL terminated
resulting in unexpected results. The source operand may have greater size than the destination.
This can create a buffer overflow which has many severe consequences .

2.6 Security vulnerabilities

2.6.1 Buffer overflow - Execute malicious code

Generally program code resides beside the data part of the memory. And hence buffer overflows are
a commonly exploited computer security risk. By means of a buffer overflow condition the computer
can be made to execute arbitrary and a potentially malicious code that is fed to the buggy program
as an input data [24]. The following code fragment exploits buffer overflow to execute a malicious
code:

char s1 [1024];
void mygets(char *str){

int ch;
while(ch=getchar () !=‘\n’ && ch!=‘\0’)

*(str ++)=ch;
*str=‘\0’;

}
main (){

char s2[4];
mygets(s2);

}

Here there is a possible buffer overflow attack. If we have malicious code in s1 and if return
address of mygets() is replaced by this address by overflowing the buffer s2, then we can have the
code in s1 executed. A good practice to prevent this error is by checking the ranges of the indices
before copying the data into buffers. There are techniques which can be employed to detect if the
return addresses are modified like stackgurad [15], stackshield [1] etc. By using them, we can avoid
such an attack.

2.6.2 Gaining root privileges

(rare, catastrophic) [8]
This is also not a functionality error but a security flaw which can be exploited by a threat. In

order to perform some operations, an application might be using some privileged commands which
are generally executed only in the root user mode. Hence the application is allowed to execute some
commands being in privileged root mode. An ordinary user will not have root privileges. Even
then, by exploiting the vulnerabilities present in the application and operating system, he can gain
privileged control by getting access to the root.

For example, consider the case of Linux operating system. Every user and hence the processes
created by him have a user id which will be used for the access control. The root has a user id of
‘0’. Each process possesses three user id’s - real uid (which is the uid of the owner process), effective
uid (which is the current uid of the process which will be used to get accesses over resources), saved

9

uid(the uid which has to be restored back). The effective uid is the most important identifier which
decides the access control for the current process. A process can drop its privileges by setting the
effective uid. The root has all these values set to ‘0’.

Now, an application program like sendmail which is running on behalf of the user may need some
privileged access like writing onto the user queue. For this, it has to run with root privileges even
though it is executing on behalf of a user. In order to do this, a special bit (USERID bit) is set.
When a user executes this process, it runs with privileges of the owner which set USERID bit. Hence
the required process (sendmail) which needs to write onto user queue has this bit set by kernel and
hence runs with root privileges. Now, the effective and saved uid of the send mail program is ‘0’
whereas the real uid will be that of user. So the sendmail program can do the privileged operations,
and while exiting it sets back the uid’s back to user by making a call to setuid(getuid()). Hence
after the necessary operations the user runs with his normal control.

But in Linux 2.2.16, the call setuid(getuid()) sets only effective userid. Hence saved uid will be
that of root. Now a malicious user can exploit this fact and by using some vulnerability (like buffer
overflow) of sendmail, he can execute setuid (-1,0) and gain the root permissions. Hence from being
an ordinary user, he could gain root permissions. The details of setuid and this vulnerability is in
[8].

This kind of attack is possible in any system using privileges. To perform some specific operations,
we need to elevate some of the privileges for the user/application. This may be for short duration
of time. Even then, it is prone to attack. One more important aspect to be taken care is regarding
the set of privileges given to an application should follow ‘principle of least privilege’ which ensures
that the application is given only necessary privileges and not more than that.

2.6.3 Exploiting Heap/BSS Overflows

(rare, catastrophic) [2]
A heap overflow is a genuine buffer overflow which writes beyond allocated storage in the heap.

This can be used to execute some malicious code and do some illegal operations. The same attacks
can also generated using stack based overflow techniques but now a days, stacks are being protected
by several means, for example using Stack shield like tools or by making stack segments as non
executable. So, heap based overflow attacks are more probable to work under this scenario.

The following code demonstrates dynamic overflow in heap. This code fragment is taken from
[2].

#define BUFSIZE 16
#define OVERSIZE 8 /* overflow buf2 by OVERSIZE bytes */

int main (){
u_long diff;
char *buf1 = (char *) malloc(BUFSIZE); *buf2 = (char

*) malloc(BUFSIZE);
diff = (u_long)buf2 - (u_long)buf1;
printf ("buf1 = %p, buf2 = %p, diff = 0x%x bytes\n", buf1 ,

buf2 , diff);
memset(buf2 , ‘A’, BUFSIZE -1), buf2[BUFSIZE -1] = ‘\0’;
printf (" before overflow: buf2 = %s\n", buf2);
memset(buf1 , ‘B’, (u_int)(diff + OVERSIZE));
printf ("after overflow: buf2 = %s\n", buf2);
return 0;

}

If we run this , we’ll get the following:
[root /examples]# ./ heap1 8
buf1 = 0x804e000 , buf2 = 0x804eff0 , diff = 0xff0 bytes
before overflow: buf2 = AAAAAAAAAAAAAAA

10

after overflow: buf2 = BBBBBBBBAAAAAAA

This works because buf1 overruns its boundaries into buf2’s heap space. But, because buf2’s
heap space is still valid (heap) memory, the program does’t crash. This is the basis of almost all
Heap-based overflow attacks.

Using this filenames, passwords, and a saved uids can be overwritten by exploiting this vulnera-
bility in appropriate privileged programs. This can also be used to write a malicious code at specific
locations of the heap. A function pointer allows a programmer to dynamically modify a function
to be called. A function pointer can be overwritten by using either stack based overflow or heap
based overflow vulnerability with the address of the malicious code in the heap. Now, when function
pointer gets executed, it calls the function we point it to instead.

2.6.4 Dealing with volatile objects

(rare, catastrophic) [26]
When we are dealing with global volatile objects which are going to be shared between several

threads, enough care should be taken to check that the intended operation is performed. If necessary
we might have to add extra checking to ensure this. Consider the following example: A file is shared
between the threads. Let us say that we performed enough access checks before gaining access to
file and performed some reading. If at some later point, the child got executed first, and because
of execution of some commands, files access structure have now been changed. Now the parent
thread should not assume the prior access check. It has to again check the access conditions before
reading/writing the file again. Otherwise there may be intermittent termination of the program if
it accesses without an additional check.

FILE *fin;
int pid;
fin=fopen(" inputfile", "rw");
//read some data from file
pid=fork (); /* create a new child process */
if (pid ==0) {
/* child process may execute some commands
* causing changes to file permissions
*/

}
else {

wait ();/* wait for child to complete */
/* do some read operations on fin
* Now permissions on file might have changed
* So accessing again without checking permission
* may cause an error */

fin.close ();
}

2.7 Redundant Operations

Redundancies prevail in a program because of too conservative programmer or carelessness which
often results in some kind of hard error. Flagged redundancies can be used to predict non redundant
errors [28].

2.7.1 Redundant Assignment

(rare, minor)

11

Redundant assignments which are never used are a result of defensive programming. These can
be found through a simple intra procedural analysis. The following code fragment illustrates the
error possible through an unexpected redundant assignment.

X[i]= X[i]++;
Here the value of X[i] depends upon the way compiler evaluates.
This can be modeled as:

X[i]=X[i];
/* Redundant assignment resulting in a harder bug */
X[i]++;

2.7.2 Dead Code

(frequent, major)
Dead code refers to that part of code which will be never executed. These reflect the false

beliefs of the programmer that some code which is unreachable, gets executed. Mistaken statement
terminators, single iteration loop (where next increment is never executed), unintentional fall through
may result in common dead code problems. An example is shown below.

for (i=0;i<10;i++)
{

if (i%3+i%2==0)
break;

else
continue;

x+=100; y--;
/* This code is never executed as either of break
* or continue is executed , skipping this step */

}

2.7.3 Redundant Conditionals

(rare, major-minor)
In some cases, the presence of if, while, switch can’t effect the flow of control in the program

because of redundant conditional statements. So this kind of programming is likely to be a serious
error. The type of bug can range from non sensical error (of type x=0 ; if (x==0)) to programmers
lack of understanding or missed conditions. The following fragment illustrates a case where the
programmer has missed an error condition and placed a wrong one.

if(x!=0) { -------}
else

if (x!=1) { ----- }
else

if (x!=0) { ----- }
/* This may be x!=2 */

The other type of redundant operation involve Redundant NULL’s (values returned from func-
tions to be checked against NULLs etc), idempotent operations.

2.8 Inheritance related bugs

This section lists some common bugs caused due to false belief on the inheritance hierarchy.

12

2.8.1 Virtual function is not overridden

(rare, major) [10] [22]
If there is a virtual function in the base class with some prototype, and there is another function

in the derived class with same name but with a mismatch in the prototype. Hence the virtual
function of base class is not overridden. The programmer may be in a false belief that the derived
class method is called when there is dynamic method dispatch.

class A{
public virtual void foo() {

}
}

class B extends A{
public void foo(int x) {
/* This might have been foo() */

}
}

The same bug can be viewed in reverse direction as a derived class specific method is not defined.
Hence the super class method is wrongly bound to the subclass. For example sub class level methods
like findArea(), which will be present in a set of derived classes, may not be overridden with necessary
derived class implementation resulting in the wrong logic in the program This type of bug can’t be
directly termed as a serious error. But it may manifest the error from design perspective.

2.8.2 Component of derived class shadows base class

(rare, major) [10]
If the derived class component has the same name as that of base class component, then there

will be two objects with different references sharing the same name. The methods in base class and
derived classes refer to the different components and hence subsequent derivations may tend to give
unexpected results. Here derived class component shadows the base class component [22].

class A{
int x;
public void foo() {
/* Here we have access to A.x */
}

}
class B extends A {

int x;
public void foo()
{
/* Here we have access to B.x not A.x */
}

}
class C extends B {

/* This has access to B.x and A.x is lost */
}

class A{
int var =100;
public static void foo(){

int var =10;

13

/*The class variable "var" is obscured here by
*the local variable and hence the value of "var"
*accessible here is 10 */

}
}

2.8.3 Override both equals and Hashcode

(frequent, minor) [13]
When we implement a hash table, it is suggested to override both public boolean Object.equals(Object

x), and public int Object.hashCode(). If this is not done we might have left both not defined.

2.8.4 Some other flaws

There may be some design flaws in the code while dealing with inheritance. Some of these are:

• A subclass may be incorrectly located in the hierarchy.

• Deeply built inheritances may lead to confusion and may be error prone [18].

• Same operation may be inherited in multiple paths of inheritance which leads to confusion and
even more when they are overridden in the paths.

• The invariants of base class may be violated by the computations of the derived class.

2.9 Some other common bug patterns include

2.9.1 Data can be lost as a result of truncation

(frequent, minor) [12]
This error is caused when significant bits can be lost as a result of conversion from large type to

smaller. Such conversions have to be always explicitly specified by programmer.[1]

int x = (int)(y >>> 32); // no error
short s = (int)(x & 0xffbf00); // truncation

2.9.2 Compare strings as object references

(rare, minor) [13]
In JAVA, when string operands are compared by == or != operator. ‘==’ returns true only if

operands point to the same object, so it can return false for two strings with same contents. The
following function will return false. So use of == instead of equals() can cause a serious error like
this.

public boolean bug() {
return
(Integer.toString (100)== Integer.toString (100));

}

2.9.3 Array index values

Take care to see that the array index values are never negative. Keep possible checks before using
index variable for arrays.

int len = -1;
char[] a = new char[len]; // negative array length

14

3 Some Programming Practices

3.1 Switch case with default

(frequent, major) [13] [26] [12]
If there is no default case in a ‘switch’ statement, the behavior can be unpredictable if that case

arises at some point of time, which was not predictable at development stage. It is a good practice
to include a default case.

switch (x){
case 0 : {----}
case 1 : {----}
}

/* What happens if case 2 arises and there is a pointer
* initialization to be made in the cases. In such a case ,
* we can end up with a NULL dereference */

Such a practice can result in a bug like NULL dereference, memory leak as well as other types of
serious bugs. For example we assume that each condition initializes a pointer. But if default case is
supposed to arise and if we don’t initialize in this case, then there is every possibility of landing up
with a null pointer exception. Hence it is suggested to use a default case statement, even though it
may be trivial.

3.2 Empty Catch Block

(frequent, minor) [13]
An exception is caught, but if there is no action, it may represent a scenario where some of the

operations to be done are swallowed. Whenever exceptions are caught, it is a good practice to do
some default action. It may be as trivial as printing of error messages.

try {
FileInputStream fis = new

FileInputStream (" InputFile ");
}
catch (IOException ioe) {

// not a good practice
}

3.3 Empty conditional statements

(rare, major) [26]
A statement is checked and nothing is done. This will happened due to some mistake and should

be caught. Other similar errors include empty finally, try, synchronized, empty static method etc.
It is better to avoid such useless checks unless it is implicitly doing some useful operation like spin
lock.

if (x == 0) {
/* nothing is done after checking x.
* So what is need for this check ?*/

}

15

3.4 For loop should be while loop

(rare, minor) [10]
Some for loops can be simplified to while loops which makes them concise and expressive. It is a

good practice to use more expressive constructs which will be more intuitive and easy to understand.
Consider the following example code:

for (;i<MAX;) {
foo ();

}
/* No initializations , increments.
* So better to have a while loop */

In the above case, while loop is more expressive than the for loop.

3.5 Read return to be checked

(rare, minor) [13]
This bug indicates that the result from read’s can be less than what is expected and hence that

value should be read before accessing the read variable [1]. It is not mandatory practice, but it is
suggested to check the consistency of the values returned by the functions before using them.

There may be some cases where neglecting this condition may result in some serious error. For
example, read from scanf is more than expected, then it may cause a buffer overflow. Whenever a
function returns a value, try to use it so as to handle alternate scenarios possibly giving exceptions.

3.6 Unnecessary temporary variable

(frequent, minor) [26]
Avoid unnecessary temporaries in a function. This is more devious if we consider string manip-

ulations.
On the other hand, we may use more variables to capture specific operations done in the functions

[17]. Also introducing new meaningful temporary variables may increase the readability of code.

3.7 Return From Finally Block

(rare, minor) [13] [26]
One should not return from finally block. In some cases it can create false beliefs.

public String foo() {
try {

throw new Exception("An Exception");
}
catch (Exception e) {

throw e;
}
finally {

return "Some value ";
/* May return on exceptions
* and non exceptions also */

}
}

The value is returned both in exception and non exception scenarios. Hence at the caller site, the
user might have been lead to a false belief. Another interesting case arises when we have a return
from try block. In this case, if we assume that there is a return in finally also, then the value from
finally is returned instead of the value from try.

16

3.8 Empty statement not in loop

(rare, minor) [28]
An empty statement in a program performs no useful operation. So this may be treated as an

error. Further if it happens after control structures, it may even cause bad behavior of the program.

public void f(){

// this is probably not what you meant to do
for (i=0;i<10;i++); x++;
// the extra semicolon here is not necessary

}

Such cases may not directly point us to an error, but check whether the intended logic is being
done.

3.9 Closing the Streams

(frequent, major) [12]
In JAVA, there is automatic garbage collection and streams are supposed to be closed by the

JVM. But the time when it may happen is not known. Input or output streams have to be closed
whenever they are opened. Otherwise the resource may end up being blocked and other processes
in need of it can’t use that.

FileOutputStream fout=new FileOutputStream ("File.txt ");
//some operations
fout.close ();
/* File stream should be closed so that other processes can
now use it */

3.10 Loop condition confusion

(rare, major) [26]
It may happen that there are multiple conditions checked in the loop statement. The next

statement after the loop may assume that one condition has become true while the other condition
of the loop might have become true.

for (int i=0; i<MAX_SIZE && ARRAY[i] ; i++);

/* Here the loop terminates after counting MAX_SIZE or upon
* reaching end of string */

strcpy (Destn , ARRAY);
/* Here if first condition is satisfied and the above
* statement assumes second condition to be satisfied ,
* then it may cause a buffer overflow */

A possible way to avoid such scenario is to be optimistic in assuming the result of the conditions.
Check the possible cases when you are supposed to get out of loop, instead of assuming that once
case has become true.

3.11 Correlated Parameters

(rare, catastrophic) [12]

17

The implicit correlation assumed between the parameters have to be validated before using the
same. In the example below, even though we assume that ‘length’ represents size of BUFFER,
we should check this. Otherwise we may run into a serious problem like buffer overflow which is
illustrated by the following code fragment.

void (char * BUFFER , int length , char destn []) {
if (length < MAX_SIZE)

strcpy (destn , BUFFER);
/* This may cause buffer overflow if
* length of BUFFER >MAX_SIZE > length.
* Hence we should check the correlation also */

}

It is therefore suggested to do some counter checks on implicit assumptions. Like in the above
case extra statements checking the consistency of the length of array ‘BUFFER’ with ‘length’ can
be added.

3.12 Trusted data sources

(frequent, catastrophic) [26]
Counter checks have to be made before accessing or assuming the input data. For example, while

doing the string copy operation, we should be assured that the source string is null terminated.
Similar is the case with some network data which may be sniffed and prone to some modifications.

Consider following example in which the function getContext() is a remote call:

SECURITY_OBJECT getContext(TIME t){
//Do some processing and return a security object
return (object);

}

ACCESS_CODE read (){
SECURITY_OBJECT s;
s=getContext(time);
//Now access secure data using structure
code=s->security_code;

}

If the data is modified in the network, the last dereference (s − > securitycode) may cause
Segmentation fault or give incorrect result. This is due to the possible change in the object s
returned from network remote call.

To avoid such a devious error, we have to put some checks on the correctness of the incoming
data. The simplest way we can assure this is some kind of parity check, computing hashes etc.
Enough care should be taken when we assume the data coming from unreliable sources like external
network.

For example consider the following code:

int remoteCall(char *str , int length){
if (length !=0){

strcpy(GLOBALDATA , str);
/* If we assume that length is corresponding to
* str which was supposed to be ensured by
* interface , and if length !=0 str==NULL , it
* causes an error */

18

}
}

3.13 Check for correct objects

When accessing the objects, we have to make sure that we are working with correct and expected
objects. For example, while dealing with files, we have to ensure that the correct FILE object is
being used. Naming conventions will be of great help here [12]. This is mostly a coding concern,
but following common naming conventions really help in associating various parts of the code.

3.14 Concentrate on the Exceptions

Most programmers tend to give lesser attention to the possible exceptional cases as these could cause
much damage to the application than some other possible bugs in the written code. There may be
innumerable ways in which one’s code may fail. So, it is the programmer’s job to intuitively see all
possible data paths in the program and write the suitable and necessary exception handlers [27].
When writing error handlers in the code, the following are some subtle guidelines which make the
code efficient and secure [21].

1. Pay attention to genuine exceptional cases and weird ones with equal care.

2. Analyze the state of the system during exceptional handling and see that the system will be
in allowed consistent state after the exception and handling.

3. Prepare test cases which fail the modules written by you. Hence it will give you possible
exceptions to be dealt with.

Here is a bad code example. More on such errors can be found at [3].

bool accessGranted = true; // optimistic!
try {

// see if we have access to c:\test.txt
new FileStream ("c:\test.txt",
FileMode.Open ,
FileAccess.Read). Close ();

}
catch (SecurityException x) {

// access denied
accessGranted = false;

}
catch (...) {

// something else happened
}

If access is granted based policies of CLR (common language runtime) and operating system,
then Security Exception is not thrown. If for some case, the discretionary access control list on the
file does’t grant access then different type of exception will be thrown. But due to our optimistic
assumption in the first line of code, this case is never known. A better way to write this code is to
be pessimistic:

bool accessGranted = false; // pessimistic!
try {

// see if we have access to c:\test.txt
new FileStream ("c:\test.txt",
FileMode.Open ,FileAccess.Read).Close ();

19

// if we’re still here , we ’re good!
accessGranted = true;

}
catch (...) {}

This is more secure than the previous case because of pessimistic assumption.

3.15 Use of finalize

Finazlizers incur an extra cost and do not perform predictably at all times. In some cases the use of
these constructs is unavoidable. Here are some ways in which finalizer can be misused [13]. Empty
finalizer

protected void finalize () { }

The finalizers which call only call super.finalize(). They can prevent some optimizations that
can be done at runtime

protected void finalize () { super.finalize (); }

Finalizers that do not call super.finalize() will negate effect of superclass finalizer. In general the
following format is suggested:

protected void finalize () { }
protected void finalize () {

try {
doSomeOperations ();

}
finally {

super.finalize ();
}

}

3.16 Use of simpler methods

Larger methods can be split into small, cohesive ones giving more intuitive idea of what is being
done. This improves readability of the code increasing reusability at the same time.

Building complex logic in a single method should be prevented. Otherwise, they include large
amount of logic, making them too specialized to perform some operations. Hence these will not be
good candidates for reuse.

3.17 Use of complicated expressions

It is a good practice to represent the expressions in a simple and proper way. Mixing up various
operations in single expressions complicates the scenario and may lead to unnecessary confusions.
Further, it may lead to harder debugging when required [17]. Consider the following statement

int c = 10 * a / b++ ;
int z = 100 + (10 * x / y) ;
if (c >= x)

// some operation
else

//some other operation

20

This is a better written code. Here if there was a problem with division in assignment to variable
‘c’ which we might have easily captured. But consider the following code where, the expression is
written in a complicated way mixing up the individual operations.

if ((10 * a / b++) >= (100 + (10 * x / y)))
//some operation

else
//some other operation

In the above code, it would be harder to interpret and debug when it is necessary.

3.18 Cryptography

It is very bad practice to store the secret data in the programs itself. It should be also avoided
to used ones own cryptography algorithm. The simplest way to get the stored secret data is by
guessing the variable names which in case of passwords may be ‘pwd’, ‘Password’, ‘crypt’, ‘salt’
and so on. So the attacker can first look for variable names and functions with such names. All
such hits, even though they may give false positives can be further analyzed among which some
may be interesting and yield embedded secret data for cryptography systems. When searching for
cryptographic algorithms, the simplest possible way to do is to search for XOR operations which
will be usually there in crypto systems. So one should be careful in designing such systems [3].

3.19 Miscellaneous practices

[22]

• Cyclomatic complexity exceeds specified limit. This makes analysis difficult.

• A class should have no public fields except ‘final’ or ‘static final’.

• Synchronize at the block level rather than the method level.

• Check to see if the for statement has an update clause. Otherwise, it may tend to give to some
infinite loop. If there is no updates, then better to use while loop.

• Too many parameters make the function complex.

• Avoid expressions like ? true : false

• Limit the amount of logical nesting.

• It is good practice to call in any case super() in a constructor.

• Make inner classes ‘private’.

4 Conclusions

This report tried to illustrate many common bugs which are generally committed by the program-
mers.We hope that awareness about these will help programmers prevent such bugs. We have also
discussed some programming practices that will help write good code.

21

References

[1] Stackshield: A ”stack smashing” technique protection tool.

[2] Heap Overflow Attacks. Homepage : http://www.w00w00.org/files/articles/heaptut.txt.

[3] Michael Howard and Keith Brown. ”defend your code with top ten security tips every developer
must know, homepage http://msdn.microsoft.com/msdnmag/issues/02/09/securitytips/”.

[4] IEEE Std 1044-1993. Ieee standard classification for software anomalies, institute of electrical
and electronics engineers.

[5] Boris Beizer. Software testing techniques (2nd ed). Van Nostrand Reinhold Co, 1990.

[6] William R. Bush, Jonathan D. Pincus, and David J. Sielaff. A static analyzer for finding
dynamic programming errors. Software Practice and Experience, 30(7):775–802, 2000.

[7] Cowan C., Wagle F., Calton Pu, Beattie S., and Walpole. Buffer overflows: attacks and defenses
for the vulnerability of the decade, 2000.

[8] H. Chen, D. Wagner, and D. Dean. Setuid demystified, 2002.

[9] Ram Chillarege, Inderpal S. Bhandari, Jarir K. Chaar, Michael J. Halliday, Diane S. Moebus,
Bonnie K. Ray, and Man-Yuen Wong. Orthogonal defect classification – A concept for in-process
measurements. IEEE Transactions on Software Engineering, 18(11):943–956, November 1992.

[10] Cyrelli Artho. Jlint homepage: http://artho.com/jlint.

[11] D. Cok and J. Kiniry. Esc java homepage : http://www.cs.kun.nl/sos/research/escjava/index.html.

[12] D Ddyer. The Top 10 Ways to get screwed by the ”C” programming language
http://www.andromeda.com/people/ddyer/topten.html.

[13] David Hovemeyer. Findbugs homepage: http://findbugs.sourceforge.net/.

[14] Dawson Engler. Racerx: Effective, static detection of race conditions and deadlocks.

[15] Crispan Cowan et al. Stackguard: Automatic adaptive detection and prevention of buffer-
overflow attacks. In Proc. 7th USENIX Security Conference, pages 63–78, San Antonio, Texas,
jan 1998.

[16] David Evans. Static detection of dynamic memory errors. In SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI ’96), 1996.

[17] Martin Fowler. Refactoring- Improving the design of existing code. Addison Wesley Publications,
2003.

[18] NASA group. Issues and Comments about Object Oriented Technology in Aviation .

[19] David Hovemeyer and William Pugh. Finding bugs is easy. In In proceedings of OOPSLA 2004,
2004.

[20] Michael Howard and David LeBlanc. Writing Secure Code (2nd ed.). Microsoft Press, 2002.

[21] MSDN. Expert Tips for Finding Security Defects in Your Code Homepage:
http://msdn.microsoft.com/msdnmag/issues/03/11/SecurityCodeReview/.

[22] Anonymous programmers and researchers.

[23] Various Researchers. MSDN library.

[24] O. Ruwase and M. Lam. A practical dynamic buffer overflow detector, 2004.

22

[25] Silberschatz, Galvin, and Greg Gagne. Operating System Concepts, 6th edition. John Wiley
Sons Inc., 2001.

[26] Microsoft Testing Unit. Common coding errors.

[27] unknown. MSDN,Exception handling Homepage: http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dv vstechart/html/exceptions2.asp.

[28] Yichen Xie and Dawson Engler. Using redundancies to find errors. SIGSOFT Softw. Eng.
Notes, 27(6):51–60, 2002.

23

5 APPENDIX

The following tabular will illustrate the relationship between the bad programming practices and the
real bugs. Each bug can be associated with a programming practice, which may not be necessarily
among the listed. And each bad practice can cause and error which may be not necessarily in
enlisted. Here we tried to capture some common mapping. In the table below, OTH refers to other
possible bugs/practices which are not listed here.

ID Coding Error (Bad) Coding
Practice

1 MEM LEAKS 1,8,9,13, 15,OTH SWITCH NO DE-
FAULT

1,4,12, 14,15,21

2 TEMP RETURN OTH EMPTY CATCH 12,15,22, 31,OTH
3 FREED FREE 9,OTH EMPTY CONDI-

TIONAL
3,OTH

4 NULL DEREF 1,5,9,10, 11,13,15,
OTH

FOR SHOLD BE
WHILE

OTH

5 EXPOSE TO UN-
TRUSTED

OTH CHECK READ
RETURN

4,12,14,15, 17,21,24

6 ALIASING ER-
RORS

1,5,8, 11,OTH UNNCECESSARY
TEMPS

OTH

7 DEADLOCKS OTH EMPTY LOOPS OTH
8 RACES OTH CLOSING

STREAMS
1,4, 6,OTH

9 INCONSISTENT
SYN

OTH LOOP CONDI-
TION CONFUSED

3,4,8,14,
21,26,OTH

10 NAKED NOTIFY OTH CORRELATED
PARAM

4,14,15,21,
13,24,OTH

11 SPINNING ON
FIELD

OTH TRUSTED
SOURCES

4,12, 21,22

12 UNINITIALISED
USE

1,2,5, 7,8,13,
15,OTH

CHECK OB-
JECTS

OTH

13 RANGE INCON-
SISTENCY

1,OTH DEAL ALL EX-
CEPTION CASES

4,6,8, 12,14,15,
21,25,OTH

14 BUFEFR OVER-
FLOW

1,2,9,10,
11,13,OTH

USE FINALIZE OTH

15 ARITHMATIC
EXCEPTIONS

1,9,10, OTH SIMPLER METH-
ODS

OTH

16 OFF BY ONE OTH COMPLECATED
EXCEPTIONS

OTH

17 ENUMERATED
TYPE ERRORS

OTH CTRYPTOGRAPHY OTH

24

Coding Error (Bad)
Coding
Practice

18 OPERATOR PRECI-
DENCE ERRORS

OTH

19 SIDE EFFECT MISCON-
CEPTION

OTH

20 USE OF & OTH
21 STRING ERRORS 5,8,9, 10,11,OTH
22 MALICIOUS CODE EX-

ECUTION
2,11,OTH

23 GAIN PREVILEGES OTH
24 HEAP OVERFLOWS OTH
25 DEALING VOLATILE

OBJECTS
13,OTH

26 REDUNDANT OPERA-
TIONS

OTH

27 INHERITENCE RE-
LATED ERRORS

OTH

28 USELESS FLOW OTH
29 UN CLOSED STREAMS 8, OTH

25

