
Neurocomputing 74 (2010) 239–255
Contents lists available at ScienceDirect
Neurocomputing
0925-23

doi:10.1

� Corr

E-m

(J. Misra
journal homepage: www.elsevier.com/locate/neucom
Artificial neural networks in hardware: A survey of two decades of progress
Janardan Misra a,�, Indranil Saha b

a HTS Research, 151/1 Doraisanipalya, Bannerghatta Road, Bangalore 560076, India
b Computer Science Department, University of California, Los Angeles, CA 90095, USA
a r t i c l e i n f o

Article history:

Received 22 November 2009

Received in revised form

22 January 2010

Accepted 5 March 2010
Communicated by A. Prieto
the overall progress in the field across all major ANN models, hardware design approaches, and
Available online 5 May 2010

Keywords:

Hardware neural network

Neurochip

Parallel neural architecture

Digital neural design

Analog neural design

Hybrid neural design

Neuromorphic system

FPGA based ANN implementation

CNN implementation

RAM based implementation

Optical neural network
12/$ - see front matter & 2010 Elsevier B.V. A

016/j.neucom.2010.03.021

esponding author.

ail addresses: janardan.misra@honeywell.com

), indranil@cs.ucla.edu (I. Saha).
a b s t r a c t

This article presents a comprehensive overview of the hardware realizations of artificial neural network

(ANN) models, known as hardware neural networks (HNN), appearing in academic studies as

prototypes as well as in commercial use. HNN research has witnessed a steady progress for more than

last two decades, though commercial adoption of the technology has been relatively slower. We study

applications. We outline underlying design approaches for mapping an ANN model onto a compact,

reliable, and energy efficient hardware entailing computation and communication and survey a wide

range of illustrative examples. Chip design approaches (digital, analog, hybrid, and FPGA based) at

neuronal level and as neurochips realizing complete ANN models are studied. We specifically discuss, in

detail, neuromorphic designs including spiking neural network hardware, cellular neural network

implementations, reconfigurable FPGA based implementations, in particular, for stochastic ANN

models, and optical implementations. Parallel digital implementations employing bit-slice, systolic, and

SIMD architectures, implementations for associative neural memories, and RAM based implementa-

tions are also outlined. We trace the recent trends and explore potential future research directions.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

Hardware devices designed to realize artificial neural network
(ANN) architectures and associated learning algorithms especially
taking advantage of the inherent parallelism in the neural
processing are referred as hardware neural networks (HNN).
Although most of the existing ANN applications in commercial
use are often developed as software, there are specific applica-
tions such as streaming video compression, which demand high
volume adaptive real-time processing and learning of large data-
sets in reasonable time and necessitate the use of energy-efficient
ANN hardware with truly parallel processing capabilities. Specia-
lized ANN hardware (which can either support or replace
software) offers appreciable advantages in these situations as
can be traced as follows [1]:
�
 Speed: Specialized hardware can offer very high computational
power at limited price and thus can achieve several orders of
speed-up, especially in the neural domain where parallelism
and distributed computing are inherently involved. For
ll rights reserved.

, janmishra@gmail.com
example, very large scale integration (VLSI) implementations
for cellular neural networks (CNNs) can achieve speeds upto
several teraflops [2], which otherwise is a very high speed for
conventional DSPs, PCs, or even work stations.

�
 Cost: A hardware implementation can provide margins for

reducing system cost by lowering the total component count
and decreasing power requirements. This can be important in
certain high-volume applications, such as ubiquitous consu-
mer-products for real-time image processing, that are very
price-sensitive.

�
 Graceful degradation: An intrinsic limitation of any sequential

uni-processor based application is its vulnerability to stop
functioning due to faults in the system (fail-stop operations).
Primary reason is the lack of sufficient redundancy in the
processor architecture. As some recent studies [3] suggest,
even with the advancement and introduction of the multi-core
PC processors architectures, the need for having effective fault-
tolerant mechanisms is still present. In contrast to this parallel
and distributed architectures allow applications to continue
functioning though with slightly reduced performance (grace-

ful degradation) even in the presence of faults in some
components. For those ANN application which require com-
plete availability or are safety critical, fault tolerance is of
utmost importance and in this respect parallel hardware
implementations offer considerable advantage.

www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2010.03.021
mailto:janardan.misra@honeywell.com
mailto:janmishra@gmail.com
mailto:janmishra@gmail.com
mailto:indranil@cs.ucla.edu
dx.doi.org/10.1016/j.neucom.2010.03.021


J. Misra, I. Saha / Neurocomputing 74 (2010) 239–255240
Mapping highly irregular and non-planar interconnection
topology entailing complex computations and distributed com-
munication on regular two dimensional surfaces poses significant
challenge for the (VLSI) HNN designers. Also since hardware
constraints (especially analog components) may introduce com-
putational errors, degradation of learning and lack of accuracy in
results become a major challenge while designing HNNs. These
errors can divert the trajectory of the learning process, generally
increasing the number of cycles required to achieve convergence.
Non-linearity of activation functions poses yet another challenge
while designing a compact hardware. To address these challenges
wide spectrum of technologies and architectures have been
explored in the past. These include digital [4–6], analog [7,8],
hybrid [9,10], FPGA based [11–13], and (non-electronic) optical
implementations [14–16]. At this point it is important to add that,
for practical purposes, a HNN realizing an ANN model alone is not
sufficient by itself and a fully operational system would demand
many other components, e.g., for sensor acquisition, for pre and
post processing of inputs and outputs etc.

Although not as widespread as ANNs in software, there do
exist HNNs at work in real-world applications. Examples include
optical character recognition, voice recognition (Sensory Inc. RSC
Micro controllers and ASSP speech recognition specific chips),
Traffic Monitoring (Nestor TrafficVision Systems), Experiments in
High Energy Physics [17] (Online data filter and Level II trigger in
H1 electron–proton collision experiment using Adaptive Solutions
CNAPS boards), adaptive control, and robotics. See Table 1 for
more examples.

With the advent of these technologies need of having timely
surveys has also been felt. There are indeed several surveys which
have appeared from time to time in the past. We will briefly
discuss these surveys next.

Related surveys: Ref. [7] by Mead, [4, Part IV] by Kung, and [49]
by Glesner and Poechmueller are some early references on the VLSI
implementations of the ANN models. Lindsey and Lindbad [1,50]
present one of earliest detailed overviews of the field covering
most of electronic approaches as well as commercial hardware.
Heemskerk [51] presents an overview of Neurocomputers built
from accelerator boards, general purpose processors, and neuro-
chips coming out from both industries and academia upto mid 90s.
Ienne et al. [52] present a survey of digital implementations by
considering two basic designs: Parallel systems with standard
Table 1
Examples of HNN applications.

Applications Examples (HNN types)

High energy physics [17] (Digital-neurochip)

Pattern recognition [18] (FPGA), [6] (Digital)

Image/object recognition [19,20] (RAM based), [21] (Optical)

Image segmentation [22] (FPGA), [23] (Digital), [24]

(FPGA)

Generic image/video processing [25] (RAM based), [26,27] (Analog),

[28] (Optical), [29] (FPGA)

Intelligent video analytics [30,31] (FPGA), [32,33] (Hybrid)

Finger print feature extraction [34] (Analog)

Direct feedback control [35] (Analog)

Autonomous robotics [36] (Digital), [37] (FPGA),

[38,39] (Hybrid), [40] (DSP)

Sensorless control [41] (FPGA)

Optical character/handwriting

recognition

[42] (Digital)

Acoustic sound recognition [43] (DSP)

Real-time embedded control [44] (Digital)

Audio synthesis [45] (Analog)

Assignment solver [46] (Analog), [47] (Digital)

Olfactory sensing [48]
digital components and parallel systems with custom processors.
They also discuss their experience with running a small ANN
problem on two of the commercially available machines and
conclude that most of the training times are actually slower or only
moderately faster than on a serial workstation. Aybay et al. [53] lay
out a set of parameters, which can be used to classify and compare
digital neurocomputers and neurochips. Moerland and Fiesler [54]
present an overview of some of the important issues encountered
while mapping an ideal ANN model onto a compact and reliable
hardware implementation, like quantization and associated weight
discretizations, analog non-uniformities, and non-ideal responses
etc. They also discuss hardware friendly learning algorithms.
Sundararajan and Saratchandran [55] discuss in detail various
parallel implementation aspects of several ANN models (back
propagation (BP) based NNs, ART NN, recurrent NN etc.) using
various hardware architectures including scalable general purpose
parallel computers and MIMD (multiple instruction multiple data)
with MPI interface. Individual chapters discuss reviews, analysis,
and experimental case studies, e.g., on implementations for BP
based NNs and associated analysis of network and training set
parallelisms. Burr [56,57] presents techniques for estimating chip-
area, performance, and power consumption in the early stages of
architectural exploration for HNN designs. These estimation
techniques are further applied for predicting capacity and
performance of some of the neuroarchitectures. Hammerstrom
[58] provides an overview of the research done in the digital
implementations of ANNs till late 90s. Reyneri [59] presents an
annotated overview of the ANNs with ‘‘Pulse Stream’’ modulations
including a comparative analysis of various existing modulations in
terms of accuracy, response time, power, and energy requirements.
Zhu and Sutton [60] survey Field Programmable Gate Array (FPGA)
based implementations of ANNs discussing different implementa-
tion techniques and design issues. Based upon the purpose of
reconfiguration (prototyping and simulation, density enhance-
ment, and topology adaptation) as well as data representation
techniques (integer, floating point, and bit stream arithmetic)
it provides taxonomy for classifying these implementations.
Reyneri’s survey on neurofuzzy hardware systems [61] is an
important paper discussing various technological aspects of hard-
ware implementation technologies with a focus on hardware/
software co-design techniques. Diasa et al. [62] is one of the latest
surveys with specific focus to commercially available hardware.
Schrauwen and D’Haene [11] provide a brief overview of some of
the recent FPGA based implementations of Spiking Neural Net-
works (SNN). Another more recent article by Maguire et al. [63]
also presents a detailed overview of FPGA based implementations
of SNN models and brings out important challenges ahead.
Bartolozzi and Indiveri in [64] provide a comparative analysis of
various hardware implementations for the spiking synaptic
models. Smith [65] surveys digital and analog VLSI implementation
approaches for neuronal models with or without explicit time.
Probably the most recent survey of the field with very interesting
critical historical analysis of the major developments and limita-
tions of digital, analog, and HNN approaches is presented by
Hammerstrom and Waser in [66]. Also Indiveri et al. [67] present a
survey of the recent progress in the field of neuromorphic designs
and discusses challenges ahead for augmenting these systems with
cognitive capabilities. Some of the HNN topics have found wider
audience and there are specialized volumes on these topics. An
edited volume by Austin [68] provides a detailed glimpse on the
RAM based HNN designs. Similarly another edited volume [69] by
Ormoindi and Rajapakse presents a recent update on FPGA based
ANN implementations including foundational issues, various
implementations, and lessons learned from a large scale project.
An edited volume by Valle [70] presents discussions on various
approaches to build smart adaptive devices.



J. Misra, I. Saha / Neurocomputing 74 (2010) 239–255 241
Even though there exist several reviews and edited volumes on
the subject, most of these either focus on specific aspects of HNN
research or may not be so recent. This paper attempts to survey on
all major HNN design approaches and models discussed in
literature and in commercial use. Primary objective is to review
the overall progress in the field of HNN over last two decades across
all major ANN models, hardware design approaches, and applica-
tions. We cover these topics by including most of the important
works which have appeared in the literature with an optimistic
perspective. However, owing to space limitations, there are topics,
which will not be covered in this survey including hardware friendly

learning algorithms (e.g., perturbation learning [71], constructive
learning [72], cascade error projection learning [73,74], and local
learning [75] with its special case of spike based Hebbian learning
[76]), HNN designs focused on specific ANN models (e.g., MLP with
back propagation [77,78], radial basis function networks [79,31,80],
and Neocognitron [81]), and neurocomputers [49,82].

Rest of the paper is organized as follows: Issues related to the
parameters used for evaluating an HNN system are highlighted in
Section 2. Section 2 also presents discussion on difficulties in HNN
classification. Section 3 deals with different electronic approaches
to implement a single neuron, whereas Section 4 provides a
presentation on complete HNN models available as chips. CNN
implementations are covered in Section 5. Neuromorphic systems
including implementations for spiking NNs are covered in Section
6. A discussion on optical neurocomputers appears in Section 7.
Finally Section 8 concludes the article by outlining some of the
possible future research directions.
2. Evaluation parameters and classification

An ANN is generally specified in terms of the network
topology, activation function (AF), learning algorithm, number
and type of inputs/outputs, number of processing elements
(neurons) and synaptic interconnections, number of layers etc.
For a hardware implementation, in addition, specifications may
include the technology used (analog, digital, hybrid, or FPGA),
data representation (fixed/floating-point), weight storage, bits of
precision, programmable or hardwired connections, on-chip
learning or chip-in-the-loop training, on-chip or off-chip transfer
function, e.g., look-up table, and degree of cascadability.

Based upon these parameters, various figures of merit are
derived to indicate the resultant hardware performance. The most
common performance ratings include
�
 Connections-per-second (CPS) for processing speed: Rate of
multiplication/accumulate operations and transfer function
computation during testing phase. This indicates how well the
specific algorithm suits the architecture.

�
 Connection-updates-per-second (CUPS) for learning speed: Rate

of weight changes during learning, involving calculation and
update of weights. This measures how fast a system is able to
perform input-output mappings.

�
 Synaptic energy: Average energy required to compute and

update each synapse. Measured as WCPS (watt per connection-
per-second) or J per connection [59].

Keulen et al. [83] propose an improved measure that also accounts
for accuracy by defining bit connection primitives per second:
CPPS¼bi� bw�CPS, with bi and bw denoting input and weight
accuracy in bits, respectively. For RBF, instead of these, pattern

presentation rate is actually used as a performance parameter.
Hardware constraints, such as weights/states precision, finite

arithmetic/quantization effects caused by discrete values of the
channel length, width of MOS transistor geometries, and AF
realization play a major role in HNNs. Cornu and Ienne [84] introduce
the notion of algorithmic efficiency for performance measurement
and evaluation of digital neurocomputers. Algorithmic efficiency is
defined as a measure of the effect of the hardware constraints on the
convergence properties of various ANN models to be simulated on a
neurocomputer. They argue that comparing relative speeds in MCUPS
is not sufficient and instead estimate global speedup of a neurocom-
puter as a product of its raw hardware speedup (corresponding to
MCUPS) and the algorithmic efficiency (w.r.t. a specific ANN model).

The non-linearity associated with the AFs represents one of the
major bottlenecks in digital VLSI implementation of ANNs,
involving large overheads in time and silicon area. Possible
solutions include use of look-up tables [85,86] and piecewise
linear approximating functions [87]. In case of look-up table, table
size again imposes an upper bound on the number of bits. A
statistical study by Holt and Hwang [88] on the precision
requirements for a two layer MLP with BP learning showed that
under certain assumptions (e.g., uniformly distributed input
variables) a fixed point encoding of 16 bit is sufficient and at
least 12 bits might be essential. Bieu [89] presents several upper
and lower bounds for the number-of-bits required for solving a
classification problem using neural networks. These bounds are in
turn used to devise ways for efficiently building the hardware
implementations. Use of 1st and 2nd order Taylor interpolation
also provides relatively high accuracy (up to 16–20 bits) even with
very small look-up tables (256 words).

For large scale neural network, synaptic storage density is very
important, and memory optimization plays an important role.
However, there is a trade-off between the memory size and power
consumption in the memory—one transistor DRAM has the highest
density, but consumes more power than SRAM, as DRAM memory
cells need to be refreshed due to leakage current, on the other hand
six transistor SRAM consumes the least power, but achieves
density which is factor 4 worse than one transistor DRAM.

2.1. Hardware neural network classification

Neural network hardware is becoming increasingly difficult to
classify in a way that the classification yields useful comparative
information for practical purposes. Primary source of difficulty
arises from the multitude of characteristics associated with any
such hardware implementation both arising from chosen hardware
as well as underlying ANN model. As mentioned before, Aybay et al.
[53] list several classification attributes including transfer function
characteristics: on-chip/off-chip, analog/digital, threshold/look-up
table/computation; cascadibility, clock and data transfer rates.
Based upon these attributes several HNN chips and designs were
classified. Though such a classification covers wide range of
attributes, extracting information for practical purposes using
comparative analysis is relatively difficult. For these reasons, we
do not attempt here to present another classification, though
instead structure the discussion under several themes—starting
with a discussion on basic neuronal level hardware designs, then
progressing to the chip level approaches for various ANN models,
followed by a discussion on several parallel implementation of
specific ANN models including CNN, and finally focusing discussion
on specific approaches including neuromorphic designs, and optical
neurocomputers. In Table 2, we present an overview of the
examples of various HNN implementations across wide range of
ANN models. Forthcoming sections provide further details on these.
3. Hardware approaches to neuronal design

The transmission of signals in biological neurons through
synapses is a complex chemical process in which specific



Table 2
ANN-HNN table.

ANN HNN

Digital Analog Hybrid Neuromorphic FPGA Optical

MLP [90] [91]

RBF [92] [79] [31]

[80]

SOFM [93] [94]

[92]

Feed-forward [77] [41] [95]

Network [92] [12] [96]

Spiking NN [23] [97] [37]

[98] [98]

[11]

Pulse [99] [99] [100]

Coded NN [101] [102]

CNN [103] [104] [38] [29] [15]

[105] [106] [107]

[39] [13]

Associative [108] [109] [18] [110]

Memory [111]

Recurrent NN [8] [112]

Stochastic NN [113]

[114]

[12]

J. Misra, I. Saha / Neurocomputing 74 (2010) 239–255242
neurotransmitter substances are released. Their effect is to change
the electrical potential in the receiving cell by changing the
Osmotic and ionic equilibrium across the cell membrane. If this
potential reaches a threshold, the neuron fires. Artificial neuron
models attempt to reproduce this phenomena at varying levels of
abstractions [115].

In this section we describe the basic structure of digital and
analog neurons used for HNN implementations and briefly discuss
the implementations of spiking neurons and their synaptic
dynamics. An analog implementation is usually efficient in terms
of chip area and processing speed, but this comes at the price of a
limited accuracy of the network components. In a digital
implementation, on the other hand, accuracy is achieved at the
cost of efficiency (e.g., relatively larger chip area, higher cost, and
more power consumption). This amounts to a trade-off between
the accuracy of the implementation and the efficiency of its
performance.

It is also important to add at this point that the HW designs to
be discussed throughout this paper involve significant manual ad-
hoc steps, which is a time-consuming and expensive operation
and a major factor in increasing ‘‘time-to-market’’. We will have
bit more to say on this in the conclusion section.

3.1. Digital neuron

In a digital neuron, synaptic weights are stored in shift
registers, latches, or memories. Memory storage alternatives
include one, two or three transistor dynamic RAM, or four or six
transistor static RAM [49]. Adders, subtracters, and multipliers are
available as standard circuits, and non-linear AFs can be
constructed using look-up tables or using adders, multipliers
etc. A digital implementation entails advantages like simplicity,
high signal-to-noise ratio, easily achievable cascadability and
flexibility, and cheap fabrication, along with some demerits like
slower operations (especially in the weight� input multiplica-
tion). Also conversion of the digital representations to and from
an analog form may be required since usually input patterns are
available in analog form and control outputs also often required to
be in analog form.

In a recent work Muthuramalingam et al. [116] discuss in
detail issues involved with the implementation of a single neuron
in FPGA including serial versus parallel implementation of
computational blocks, bit precision and use of look-up tables.
Hikawa [102] describes digital pulse-mode neuron which
employs piecewise-linear function as its AF. The neuron is
implemented on a FPGA rendering the piecewise-linear function
programmable and robust against the changes in the number of
inputs. In [117,118], Daalen et al. demonstrate through experi-
ments how linear and sigmoid AFs can be generated in a digital
stochastic bit stream neuron. The AF of the neuron is not built in
the hardware explicitly, rather it is generated by the interaction of
two probability distributions. Different AFs can be generated by
controlling the distribution of the threshold values provided to
each neuron.

Skrbek [119] presents an architecture and overview of
shift-add neural arithmetic, for an optimized implementation of
multiplication, square root, logarithm, exponent and non-linear
AFs at neuronal level for fast perceptron and RBF models.
Functions are linearly approximated, for example, 2x is be
approximated as 2int(x)(1+ frac(x)) where int(x) calculates the
integral part of x and frac(x) is its fractional part. Shift operation
calculates 2int(x), whereas linear approximation (1+ frac(x))
approximates remaining 2frac(x). Further an FPGA based imple-
mentation for the shift-add arithmetic is discussed involving only
adders and barrel shifters.
3.2. Analog neuron

In an analog neuron weights are usually stored using one of the
following: resistors [120], charge-coupled devices [121], capaci-
tors [122], and floating gate EEPROMS [123]. In VLSI, a variable
resistor as a weight can be implemented as a circuit involving two
MOSFETs [124]. However, discrete values of channel length and
width of the MOS transistors may cause quantization effect in the
values of the weight. The scalar product and subsequent non-
linear mapping is performed by a summing amplifier with
saturation [125].

In the analog domain the characteristic non-linear function-
ality of neuronal AF can sometimes be captured directly (e.g.,
above saturation level current and voltage characteristics of
transistors), yet a coherent set of all the basic elements is difficult
to achieve. As the AFs used in software ANN implementations
cannot be easily implemented in VLSI, some approximation
functions are instead considered to act as AFs [124]. Also analog
neuron implementations benefit by exploiting simple physical
effects to carry out some of the network functions [7]. For
example, the accumulator can be a common output line to sum
currents. Analog elements are generally smaller and simpler than
their digital counterparts. On the other hand, obtaining consis-
tently precise analog circuits, especially to compensate for
variations in temperature and control voltages, requires sophis-
ticated design and fabrication.

In analog modeling, signals are typically represented by
currents [79] and/or voltages [123] which work with real
numbers. Current flow is preserved at each junction point by
Kirchhoff’s Current Law, and during multiplication various



J. Misra, I. Saha / Neurocomputing 74 (2010) 239–255 243
resistance values can be used for the weighting operation of the
signal. Thus a network of resistors can simulate the necessary
network connections and their resistances are the adaptive
weights needed for learning. Besides, the non-linear voltage–
current response curve of field effect transistors (FETs) makes
them especially suitable for simulating neuronal AFs. However,
the encoding of signals as voltages makes certain operations like
addition rather difficult to implement as compared to multi-
plication and threshold activation. Also a major problem with this
representation scheme is that before performing any operation a
signal needs to be held constant for some time. The current which
flows between the source and sink depends linearly on the
potential difference between them, and the proportionality
constant is determined by the stored charge. Learning involves
weight updates corresponding to changes in the amount of charge
stored. Even if the power source is disconnected, the magnitude of
the weights remains unchanged. A different approach [26], with
charged coupled devices (CCDs), is used to store the charge
dynamically.

The main challenges for analog designs are the synapse
multiplier over a useful range and the storage of the synapse
weights. Moreover, there are some characteristics inherent to
analog computation like the spatial non-uniformity of compo-
nents (which are particularly troublesome when the training of
the network is done off-chip, without taking these component
variations into account) and non-ideal responses (that particu-
larly affect the implementation of a linear multiplication and
non-linear AF, like the standard sigmoid).

There are also attempts for designing digitally programmable
analog building blocks for ANN implementations. Almeida and
Franca [126] propose a synapse architecture combining a quasi-
passive algorithmic digital to analog converter providing a 7-bit
bipolar weight range and on-chip refreshing of the analog weight
followed by a four quadrant analog-digital multiplier with
extended linear range. Hamid et al. [127] discuss an approach of
including the effect of Deep Sub-Micrometer (DSM) noise in
MOSFETs for circuit-level and architecture-level simulations. They
show that that DSM noise has the potential to be exploited
for probabilistic neural computation architecture hardware
implementation. For example, they tested the effect of a noisy
multiplier on the performance of Continuous Restricted
Boltzmann Machine (CRBM) [128,129] and result demonstrate
that stochastic neuron implemented using noisy MOSFET can
produce performance comparable with that of a ‘‘perfect’’ CRBM
with explicit noise injected into it.
3.3. Silicon implementation of spiking neuron and its synaptic

dynamics

Actual communication between biological neurons happens by
short electrical pulses, which are known as action potentials or
spikes. Integrate and fire (I&F) neuron model is among the
simplest models with spiking dynamics. An I&F neuron model can
handle continuously time varying signals, support synchroniza-
tion, and is computationally powerful as compared to non-spiking
neuron models [130]. Leaky I&F model and its generalization as
spike response model, non-linear I&F model, Hodgkin–Huxley
model, Mihalas–Niebur model, and Morris–Lecar model are
among the better known extensions of the basic I&F model.
Networks of I&F neurons exhibit a wide range of capabilities
including feature binding, segmentation, pattern recognition,
onset detection, and input prediction [131]. We will next briefly
discuss some of the representative hardware implementations
(generally using mixed-mode circuits) for I&F model and some of
its extensions since they are often used while designing
neuromorphic systems as discussed later in the Section 6.

For adequately realizing an I&F model in hardware, it is
necessary that the realized hardware can set at least an explicit
threshold to define occurrence of a spike and implements spike-
frequency adaptation. One of the early designs meeting these
requirements was proposed by Schultz and Jabri in [132] which can
set an explicit threshold voltage and can realize spike-frequency
adaptation. Because these spiking neuron models are capable of
generating potentially varied functionalities, their detailed hard-
ware realizations naturally tend to consume relatively larger
silicon area and power. For example, Rasche and Douglas [133]
describe an analog implementation of Hodgkin–Huxley model with
30 adjustable parameters, which required 4 mm2 area for a single
neuron. Therefore, in order to be able to build larger neuromorphic
systems using these models, it is necessary that these designs are
optimized for area and power requirements. Schaik [98] presents a
circuit design for generating spiking activity. The circuit integrates
charge on a capacitor such that when the voltage on the capacitor
reaches a certain threshold, two consecutive feedback cycles
generate a voltage spike and then bring the capacitor back to its
resting voltage. The size of the presented circuit is small enough
that it can be used in designing the larger systems on a single chip.
Later, Indiveri and Fusi [76] present a design employing 20
transistors and 3 capacitors for the leaky I&F model with average
power consumption in the range of ½0:321:5�mW.

Models by Izhikevich [134] and Mihalas and Niebur [135] are
one of the recent attempts to define computationally simpler
models of a spiking neuron having biological accuracy for spiking
and bursting activity. The silicon realization of Izhikevich’s model
has been presented in a recent work by Wijekoon and Dudek
[136]. However, since Izhikevich’s model does not land itself
directly to parametric biological interpretation, it is bit difficult to
integrate in larger neuromorphic designs. Folowosele et al. [137]
on the other hand present the hardware realization of a simplified
Mihalas and Niebur’s model in terms of switched capacitor
circuits fabricated using 0.15 um CMOS technology, which could
be used in larger neuromorphic systems.

There have also been concentrated efforts in modeling and
implementing temporal dynamics of synaptic (ionic) current in a
biological neuron enabling learning of neural codes and encoding
of spatiotemporal spike patterns. Synaptic circuits implementing
synaptic dynamics operate by translating presynaptic voltage
pulses into postsynaptic currents injected in the membrane of the
target neuron, with a gain corresponding to the synaptic weight.
Briefly the implementations for the synaptic models can be
classified as presented by Bartolozzi and Indiveri in [64]:
�
 Multiplier synapse: For models representing synaptic informa-
tion in terms of mean firing rates, synapse is usually modeled
as a multiplier circuit.

�
 Pulsed current-source synapse: Synapse is implemented in

analog form using transistors operating in subthreshold region
such that an output pulsed current from the synapse circuit is
generated for the duration of the input voltage spike given to it
digitally. The underlying model represents synaptic informa-
tion in terms of mean firing rates (see [7,138]).

�
 Reset-and-discharge synapse: Using 3 p-EFT transistors and a

capacitor such implementation can give rise to a postsynaptic
excitatory current (EPSC), which can last longer then the input
voltage spike and decays exponentially with time (see [139]).

�
 Linear charge-and-discharge synapse: It is a variant of reset-

and-discharge synapse, where first the input voltage spike
decreases linearly as the postsynaptic excitatory current
increases exponentially. After this, input voltage pulse



J. Misra, I. Saha / Neurocomputing 74 (2010) 239–255244
increases to a reference power supply voltage and at the same
time postsynaptic current decreases (see [140]).

�
 Current-mirror-integrator synapse: It is a variant of linear

charge-and-discharge synapse where two transistors and a
capacitor form a current mirror integrator circuit. In contrast
to linear charge-and-discharge synapse, postsynaptic excita-
tory current increases in a sigmoidal fashion and later
decreases in a hyperbolic fashion with respect to time
(see [141]).

�
 Log-domain integrator (LDI) synapse: It is another variant of

linear charge-and-discharge synapse which utilizes the loga-
rithmic relationship between subthreshold MOSFET gate-to-
source voltage and the channel current. The resultant synaptic
circuit works like a linear low-pass filter. However, the circuit
area is relatively larger as compared to other models
(see [142]).

�
 Diff-pair integrator (DPI) synapse: Destexhe et al. [143]

proposed a macroscopic model for synaptic transmission and
the linear summation property of postsynaptic currents, for
which Bartolozzi and Indiveri [64] propose a VLSI synaptic
circuit—the diff-pair integrator—that implements this model
as a log-domain linear temporal filter and supports synaptic
properties including short-term depression to conductance
based EPSC generation. The synaptic circuit uses six transistors
and a capacitor and effectively works same as low-pass linear
filter. However, unlike LDI synapse, DPI synapse can give rise
to exponential dynamics for both excitatory as well as
inhibitory postsynaptic currents.

For further details, reader is suggested to refer to [64], where
authors present an overview and comparative analysis of existing
synaptic circuits proposed in the literature, e.g., [144,140,145],
including their own DPI circuit.
4. Hardware neural network chips

This section provides an overview of HNNs implemented as
chips, also known as neurochips, realizing complete ANN models.
These include digital neurochips, analog neurochips, hybrids,
neuromorphic implementations, FPGA-based neurochips, RAM
based neurochips, and neurochips for neural associative mem-
ories. A general-purpose neurochip is capable of implementing
more than one neural algorithm for a particular application, while
a special-purpose neurochip models a particular neural algorithm
for many applications.

Typically an activation block, performing the weight� input
multiplication and their summation, is always on the neurochip,
whereas other blocks, involving neuron state, weights, and
activation function, may be on/off the chip and some of these
functions may even be performed by a host computer. Neuron
states and weights can be stored in digital/analog form, and the
weights can be loaded statically or updated dynamically.
1 In a horizontally encoded instruction set, each field in an instruction word

controls some functional unit or gate directly, as opposed to vertical encoding

where instruction fields are decoded (by hard-wired logic or microcode) to

produce the control signals. A horizontally encoded instruction allows operation

level parallelism by specifying more than one independent operations and thus in

a single cycle multiple operations can be performed simultaneously. Because an

architecture using horizontal encoding typically requires more instruction word

bits it is sometimes known as a very long instruction word (VLIW) architecture

[150]. These architectures are especially suitable for HNN implementations.
4.1. Digital neurochips

The majority of the available digital chips use CMOS technol-
ogy. There are several categories of digital chips, like bit-slice,
single instruction multiple data (SIMD), and systolic arrays. The
advantages of digital technology include the use of well-under-
stood fabrication techniques, RAM weight storage, and flexible
design. The biggest challenge for designers is the synapse
multiplier, which normally is the slowest element in the network
processing.
In case of conventional bit-slice architectures, a processor is
constructed from modules, each of which processes one bit-field
or ‘‘slice’’ of an operand. They provide simple and cheap building
blocks (typically single neurons) to construct networks of larger
size and precision. An example is Micro Devices’ MD1220 Neural
Bit Slice [146], one of the first commercial HNN chips. It has eight
neurons with hard-limiting thresholds and eight 16-bit synapses
with 1-bit inputs. With bit-serial multipliers in the synapse, the
chip provides a performance of about 9 MCPS. Other examples of
slice architectures are the Philips’ Lneuro chip [147] and the
Neuralogix’ NLX-420 Neural Processor [148]. Slice architectures
generally include off-chip learning.

In case of SIMD, each of the multiple PEs run the same
instruction simultaneously, but on different data sets [149]. For a
better match with ANN requirements one has to turn to
programmable systems, and most such designs are SIMD with
minor variations. Instructions are often horizontally encoded, that
is, each field of the instruction word directly configures a part of
the PE.1 The two features, viz., no address/issue logic and reduced
instruction decoding, render the implementation suitable for the
resources required by general ANNs. In Adaptive Solutions’
N64000 [85] with 64 PEs, each PE holds a 9�16-bit integer
multiplier, a 32-bit accumulator, and 4 KB of on-chip memory for
weight storage. Kim et al. [42] propose a high performance neural
network processor based on the SIMD architecture that is
optimized for image processing. The proposed processor supports
24 instructions, and consists of 16 Processing Units (PUs) per chip.
Each PU includes 24-bit 2K-word Local Memory and one PE.

In case of systolic array based designs, each PE does one step of
a calculation synchronously with other PEs and then passes its
result to the next processor in the pipeline, thus making the
architecture very suitable for implementing efficient synapse
multiplier. For example, in Siemens’ MA-16 [151], fast matrix-
matrix operations (multiplication, subtraction, or addition) are
implemented with 16-bit elements for 4�4 matrices. The
multiplier outputs and accumulators have 48-bit precision.
Weight storage is off-chip RAM and neuron transfer functions
are off-chip via look-up tables. Generally systolic arrays are
application specific processing arrays for problems displaying a
large amount of fine-grained parallelism, and thus they are well
matched to ANNs having low data bandwidth and potentially high
utilization ratio of the processing units. Their disadvantage lies in
the high complexity of the system controlling and interfacing the
array with a host system. Some further examples of systolic
architectures for HNNs include vector processor arrays [152],
common bus architecture [49], ring architecture [5], and TORAN
(two-in-one ring array network) architecture [153]. Eppler et al.
[92] presented a cascadable, systolic processor array called simple
applicable neural device (SAND), designed for fast processing of
neural networks. The neurochip may be mapped on feed-forward
networks, RBF, and Kohonen feature maps. The chip is optimized
for an input data rate of 50 MHz, 16 bit data and could be
considered having low cost at the time of its design. The
performance of a single SAND chip that uses four parallel 16 bit
multipliers and 40 bit adders in one clock cycle is 200 MCPS. In
early nineties, Wang proposed an analog recurrent neural



J. Misra, I. Saha / Neurocomputing 74 (2010) 239–255 245
network [47] based on the deterministic annealing network for
solving the assignment problem. However, that analog imple-
mentation required mapping the massive number of interconnec-
tions and programming the parameters. Later Hung and Wang
[46] presented the digital realization of the same by mapping it to
a one dimensional systolic array with ring interconnection
topology. A scaled down version was realigned using FPGA based
devices. Interestingly, they demonstrate that regularities in the
data for the assignment problem could be used to eliminate the
need of multiplication and division operations.

Apart from the above, other digital HNN designs also exist.
Bagging [154] is a technique for improving classification perfor-
mance by creating ensembles. Bagging uses random sampling
with replacement from the original data set in order to obtain
different training sets. It is observed that bagging significantly
improves classifiers that are unstable in the sense that small
perturbations in the training data may result in large changes in
the generated classifier. Bermak and Martinez [6] present a 3D
circuit implementation of bagging ensembles for efficient pattern
recognition tasks. Individual classifiers within the ensemble are
decision trees specified as threshold networks having a layer of
threshold logic units (TLUs) followed by combinatorial logic
elements. The proposed architecture supports a variable precision
computation (4/8/16-bit) and configurable network structure
w.r.t. number of networks per ensemble or the number of TLUs
and inputs per network.

In self-organizing feature map (SOFM) the capability of
calculating the exact equation of the learning rule and the
distance required by a PE has a direct bearing on the chip area.
In particular, it becomes too large when large number of PEs are
to be considered. Rueping et al. [93] present a digital architecture
based on the idea that restriction on the learning algorithm may
simplify the implementation. In this architecture the Manhattan
Distance and a special treatment of the adaptation factor are used
to decrease the necessary chip area so that a high number of PEs
can be accommodated on a single chip. The hardware is
extendable and advantageous to realize map sizes of 10 �10 in
one chip with only 28 pins. With binary data, even higher
performance (425 GCPS for a 50 �50 map) can be achieved.

Recently, Dibazar et al. [43] discuss Texas instrument’s
TMS320C6713 DSP Starter Kit (a floating point DSP processor)
based implementation of a Dynamic Synapse Neural Network
model for acoustic sound recognition in noisy environments. The
developed hardware achieves an accuracy of 90% for classification
and localization task for gunshot recognition.
4.2. Analog neurochips

Some of early fully developed analog chips include Intel’s
ETANN and Synaptic’s Silicon Retina. Intel’s Electrically Trainable

Analog Neural Network (ETANN) 80170NX [123] is an elaborate
analog chip with 64 fully connected neurons. It is a general-
purpose neurochip where analog non-volatile weights are stored
on-chip as electrical charge on floating gates, and Gilbert-multi-
plier synapses provide four-quadrant multiplication. ETANN does
not support on-chip learning and only a chip-in-the-loop mode
using a host computer is used so that at the end of the learning
phase weights could be downloaded on the chip. The chip is
reported to achieve a calculation rate of 2 GCPS, accuracy of 4-bits
with a 64-bit bus, and 10,240 programmable synapses. ETANN
chips can be cascaded to form a network of upto 1024 neurons
with upto 81,920 weights, by direct-pin/bus interconnection. The
Mod2 Neurocomputer [155] is an early design employing 12
ETANN chips for real-time image processing. Later many other
systems utilized these ETANN chips including MBOX II [45], an
analog audio synthesizer with 8 ETANN chips.

Competition based ANNs such as Kohonen SOFM often need
calculating distances between input vectors and the weights. An
analog implementation for an SOFM generally results into a
compact circuit block that accurately computes the distances. In
early 90s, Churcher et al. [156] presented circuits for calculating
Euclidean distance measure. Later, Gopalan and Titus [94] provide
an analog VLSI implementation of a wide range of Euclidean
distance computation circuit which can be used as part of a high-
density hardware implementation of a SOFM.

Liu et al. [35] present a mixed signal CMOS feed-forward chip
with on-chip error-reduction hardware for real-time adaptation.
The chip was fabricated through MOSIS in Orbit 2mm n-well
process and weights were stored in capacitors targeting oscillat-
ing working conditions. The implemented learning algorithm is a
genetic random search algorithm, known as Random Weight
Change (RWC) algorithm, which does not require a known desired
neural-network output for error calculation and is thus suitable
for direct feedback control. In experiments, the RWC chip, as a
direct feedback controller, could successfully suppress unstable
oscillations modeling combustion engine instability in real time.
Nonetheless, volatile weight storage remains an issue limiting the
possible applications.

Ortiz and Ocasio [157], on the other hand, present a discrete
analog hardware model for the morphological neural network,
which replaces the classical operations of multiplication and
addition by addition and maximum or minimum operations.

Milev and Hristov [34] present an analog-signal synapse model
using MOSFETs in a standard 0:35-mm CMOS fabrication process
to analyze the effect of the synapse’s inherent quadratic non-
linearity on learning convergence and on the optimization of
vector direction. The synapse design is then used in a VLSI
architecture consisting of 2176 synapses for a finger-print feature
extraction application.

Brown et al. [8] describe the implementation of a signal
processing circuit for a Continuous-Time Recurrent Neural Net-
work using subthreshold analog VLSI in mixed-mode (current and
voltage) approach, where state variables are represented by
voltages while neural signals are conveyed as currents. The use
of current allows for the accuracy of the neural signals to be
maintained over long distances, making this architecture rela-
tively robust and scalable.

Bayraktaroglu et al. [158] discuss—ANNSyS—a system for
synthesizing analog ANN chips by approximating on-chip training
to provide the starting point for ‘‘chip-in-the-loop training’’. The
synthesis system is based on SPICE circuit simulator and a silicon
assembler and designed for analog neural networks to be
implemented in MOS technology.
4.3. Hybrid neurochips

Hybrid Chips combine digital and analog technologies in an
attempt to get the best of both. For example, one can use analog
internal processing for speed with weights being set digitally. As
an example, consider the hybrid Neuro-Classifier from the Mesa
Research Institute at University of Twente [159], which uses 70
analog inputs, six hidden nodes, and one analog output with 5-bit
digital weights achieving the feed-forward processing rate of 20
GCPS. The final output has no transfer function, so that multiple
chips can be added to increase the number of hidden units.
Similarly [10] presents a hardware efficient matrix-vector multi-
plier architecture for ANNs with digitally stored synapse
strengths.



J. Misra, I. Saha / Neurocomputing 74 (2010) 239–255246
Cortical neurons [160,161] whose major mode of operation is
analog can compute reliably even with the precision limitation of
analog operations owing to their organization into populations in
which a signal at each neuron is restored to an appropriate analog
value according to some collective strategy. Douglas et al. [162]
describe a hybrid analog-digital CMOS architecture for construct-
ing networks of cortical amplifiers using linear threshold transfer
function.

A hybrid architecture with on-chip learning has been pre-
sented in [9]. The overall circuit architecture is divided into two
main parts with regard to their operating modes, viz., analog and
digital. The analog ANN unit executes the neural function
processing using a charge based circuit structure. It is composed
of a 20 neuron layer, each with 10 bit vector inputs. The winner-

takes-all unit is devoted to the task of selecting one neuron as the
winner on the criterion of the best degree of match between the
stored pixel pattern and the current input vector. On the other
hand, the units for error correction, circuit control and clock
generation are kept purely digital.
4.4. FPGA based implementations

Reconfigurable FPGAs provide an effective programmable re-
source for implementing HNNs allowing different design choices to
be evaluated in a very short time. They are low cost, readily
available, and reconfigurable offering software like flexibility. Partial
and online reconfiguration capabilities in the latest generation of
FPGAs offer additional advantages. However, the circuit density
using FPGAs is still comparably lower and is limiting factors in the
implementation of large models with thousands of neurons.

Krips et al. [30] present an FPGA implementation of a neural
network meant for designing a real time hand detection and
tracking system applied to video images. Yang and Paindavoine
[31] present an FPGA based hardware implemented on an
embedded system with 92% success rates of face tracking and
identity verification in video sequences.

Maeda and Tada [100] describe an FPGA realization of a pulse
density NN using the simultaneous perturbation method
[163,164] as the learning scheme. The simultaneous perturbation
method is more amenable to a hardware realization than a
gradient type learning rule, since the learning rule requires only
forward operations of the network to modify weights unlike the
BP present in the gradient type rule. Pulse density NN systems are
also robust against noisy conditions.

In contrast to Custom VLSI, the FPGAs are readily available at a
reasonable cost and have a reduced hardware development cycle.
Moreover, FPGA-based systems can be tailored to specific ANN
configurations. For example, Gadea et al. [91] present the
implementation of a systolic array for a multi-layer perceptron
on a Xilinx Virtex XCV400 FPGA of a pipelined on-line BP learning
algorithm. Huitzil and Girau [24] map the integrate-and-fire
LEGION (Local Excitatory Global Inhibitory Oscillator Network)
spiking neural model for image segmentation [165,22] onto Xilinx
Virtex XC2V1500FF896-4 device. However, multiplication is bit
costly using FPGAs since each synaptic connection in an ANN
requires a single multiplier, and this number typically grows as
the square of the number of neurons. Mordern FPGAs, e.g., Xilinx’
Virtex II Pro [166] with embedded IBM PowerPC cores and Altera’s
Stratix III [167], though can have 100s of dedicated multipliers.

In a relatively recent work Himavathi et al. [168] have used
layer multiplexing technique to implement multi-layer feed-
forward networks into Xilinx FPGA XCV400hq240. The suggested
layer multiplexing involves implementing only the layer having
the largest number of neurons. A separate control block is
designed, which appropriately selects the neurons from this layer
to emulate the behavior of any other layer and assigns the
appropriate inputs, weights, biases, and excitation function for
every neuron of the layer that is currently being emulated in
parallel. Each single neuron is implemented as a look-up table. To
assess the effectiveness of the design a flux estimator for
sensorless drives [169] was used for testing with reported 50%
decrease in the number of neurons though adding an speed
overhead of 17.7% because of the control block.

Another recent study Rice et al. [170] reports that a FPGA
based implementation of a neocortex inspired cognitive model
can provide an average throughput gain of 75 times over software
implementation on full Cray XD1 supercomputer. They use the
hierarchical Bayesian network model based on the neocortex
developed by George and Hawkins [171]. Their hardware-
accelerated implementation on the Cray XD1 uses Xilinx Virtex
II Pro FPGAs with off-chip SRAM memory and software imple-
mentation uses 5 dual core 2.0 GHz Opteron processors.

An important problem faced by designers of FPGA based HNNs
is to select the appropriate ANN model for a specific problem to be
implemented using optimal hardware resources. Simon Jothson
and others provide interesting insights in [172] for this purpose.
They carried out a comparative analysis of hardware require-
ments for implementing four ANN models onto FPGA. The
selected models include MLP with BP and RBF network as
classical models, and two SNN models—leaky integrate and fire
(LIF) and spike response model. These models were then analyzed
on a benchmark classification problem for FPGA hardware
resources. The results of the study suggest that LIF SNN model
could be the most appropriate choice for implementation for
non-linear classification tasks.

FPGA implementations of stochastic ANN models: Practical
hardware implementations of large ANNs critically demand that
the circuitry devoted to multiplication is significantly reduced.
One way to reduce it is to use bit-serial stochastic computing
[173]. This uses relatively long, probabilistic bit-streams, where
the numeric value is proportional to the density of ‘‘1’’s in it. For
example, a real number rA ½�1,1� is represented as a binary
sequence such that probability of a bit getting set to 1 is (r+1)/2.
The multiplication of two probabilistic bit-streams can be
accomplished by a single two-input logic gate. This makes it
feasible to implement large, dense, fully parallel networks with
fault tolerance. Even though stochastic computation is simple, it
may not always be efficient (see [59] for comparison.)

Most of the stochastic ANN models have been implemented in
hardware using FPGAs [113,114,41,12]. Daalen et al. [113]
describe an FPGA based expandable digital architecture with bit
serial stochastic computing to carry out the parallel synaptic
calculations. Authors discuss that fully connected multi-layered
networks can be implemented with time multiplexing using this
architecture. FPGAs have also been used to implement stochastic
computation with look-up table based architecture for computing
AF [114]. Li et al. [41] discuss FPGA implementation of a feed-
forward network employing stochastic techniques for computing
the non-linear sigmoid AFs. Further it is used to design a neural-
network based sensorless control of a small wind turbine system.
Nedjah and Mourelle [12] describe and compare the character-
istics of two Xilinx VIRTEX-E family based FPGA prototype
architectures implementing feed-forward fully connected ANNs
with upto 256 neurons. The first prototype used traditional adders
and multipliers of binary inputs while the second instead has
stochastic representation of the inputs with corresponding
stochastic computations. They compare both prototypes in terms
of space requirements, network delays, and finally the time� area
factor. As expected, stochastic representation reduces space
requirements to a good extent though resulting networks are
slightly slower compared to binary models.



J. Misra, I. Saha / Neurocomputing 74 (2010) 239–255 247
4.5. Other implementations

Szabo et al. [174] suggest a bit-serial/parallel neural network
implementation method for pre-trained networks using bit-serial
distributed arithmetic for implementing digital filters. Their
implementation of a matrix-vector multiplier is based on an
optimization algorithm, which utilizes CSD (Canonic Signed Digit)
encoding and bit-level pattern coincidences. The resulting
architecture can be realized using FPGA or ASIC and can be
integrated into automatic neural network design environments.
The suggested matrix multiplier structure is useful for both in
MLP designs as well as cellular neural networks (CNNs).
4.5.1. Associative neural memories

Basic operation of an Associative Neural Memory (ANM) is to
map between two (finite) pattern sets using threshold operation.
Palm et al. [175] studied a very simple model of a neural network
performing this task efficiently, where the input, output, and
connection weights are binary. Ruckert et al. [108,109] thereafter
designed VLSI architectures for this model using analog, digital,
and mixed signal circuit techniques. Digital architecture is based
on a 16-Kbit on-chip static RAM, a neural processing unit, a coding
block including input/output logic, and an on-chip controller
providing 12 instructions for synchronizing, controlling, and
testing the modules. The learning rate estimated to be 0.48
GCUPS. The test chip contains a 16 neuron�16 synapse matrix
using 1:2-m CMOS technology. The designed chips can be scaled
up, for example, upto 4000 neurons, each having 16,000 inputs.
Cascading such chips would further enlarge the design. Willshaw
et al. [176] define a type of ANM model called correlation matrix
memory (CMM), where output pattern is a label associated with
the most similar stored pattern to the input. Justin et al. [18]
discuss an FPGA based implementation of the pipelined binary-
CMM with on-board training and testing for high-performance
pattern recognition tasks. For an accessible reference on various
ANM models the reader is referred to the edited volume by
Hassoun [177]—part IV discusses implementations of several
ANM models including an optical implementation.
4.5.2. RAM based implementations

First introduced by Bledsoe and Browning [178], RAM based
NN (RNN) (also known as weightless NN) [68,179] consists of PEs
(neurons), which have only binary inputs and outputs and no
weight between nodes. Neuronal functions are stored into look-
up tables, which can be implemented using commercially
available RAMs. Unlike other neural network models, they can
be trained very rapidly and can be implemented using simple
hardware. Instead of adjusting weights in the conventional sense
the RNNs are trained by changing the contents of the look-up
tables. RNNs have found applications including as a class of
methods for building pattern recognition systems. Refs. [68,179]
provide detailed overview on RNNs.

Aleksander et al. [19] provide the first hardware realization of
a general purpose image recognition system—WISARD, based on
RAM circuits. In [180], hardware implementation of the probabil-
istic RAM networks is presented, as well as the learning
algorithm. Kennedy and Austin [25] describe a SAT (Sum And
Threshold) processor; a dedicated hardware implementation of a
binary neural image processor. The SAT processor is specifically
aimed at supporting the Advanced Distributed Associative
Memory (ADAM) model. ADAM essentially is a two layered
binary weighted neural network aimed at recognizing and
extracting features from images. Austin et al. further design
C-NNAP (Cellular Neural Network Associative Processor) [20],
which is a MIMD array of ADAM based processors to provide a
distributed solution to the object recognition problems.
5. CNN implementations

Chua and Yang [181–183] introduced CNN as an regular array
of locally interconnected analog processing elements, or cells,
operating in parallel, whose dynamic behavior is determined by
the cell connectivity pattern (neighborhood extent) and a set of
configurable parameters. CNN by its very design is a circuit
oriented architecture and is conceptually suitable for hardware
implementation. After the inception of CNN, their implementa-
tions in hardware have attracted substantial interest covering
different types of CNN models differing in interaction type (e.g.,
linear, non-linear, dynamic, or delay), modes of operation (e.g.,
dense time versus discrete time, oscillating type versus dynamic),
and grid topology (e.g., planar, polygonal, circular etc.). There
exist analog [104,106], digitally programmable [103,105], hybrid
[38], FPGA [184,29,185,107], as well as optical [15] implementa-
tions for CNN. CNN implementations can achieve speeds upto
several tera flops and are ideal for the applications which require
low power consumption, high processing speed, and emergent
computation, e.g., real-time image processing [2]. We will only
briefly cover some of the recent representative implementations
here. For further details readers may look into the detailed
overview [186] and monographs [187,2,188].

Rodriguez-Vazquez et al. [32] discuss ACE16k, a mixed-signal
SIMD-CNN ACE (Analogic Cellular Engine) chips as a vision system
on chip realizing CNN Universal Machine (CNN-UM) [189]. ACE16k
is designed using 0:35mm CMOS technology with 85% analog
elements. Its design incorporates several advancements over its
predecessor ACE4k chip [190] including the use of local analog
memories and ACE-BUS enabling it to process complex spatio-
temporal images in parallel through a 32-bit data bus working at
120 MBPS with peak processing speed of 330 GOPS. The ACE16k
chip consists of an array of 128�128 locally connected mixed-
signal processing units operating under SIMD mode. Yalcin et al. in
[191] discuss the spatio-temporal pattern formation in ACE16k and
Carranza et al. [192] present design of a programmable stand-alone
system ACE16k-DB for real-time vision pre-processing tasks using
ACE16k together with Xilinx XC4028XL FPGA. ACE16k chips have
been used in commercial Bi-i [33] speed vision system developed
by AnaLogic Computers Ltd and MTA-SZTAKI. Also there exist many
recent topographic, sensory, and Cellular Wave Architectures and
corresponding hardware implementations based upon CNN-UM.
Zarandy et al. [193] present a brief overview of these implementa-
tions. An FPGA based emulated-digital CNN-UM implementation
using GAPU (Global Analogic Programming Unit) as discussed by
Voroshazi et al. [194] is a recent work in this direction. They discuss
design of an extended Falcon architecture using GAPU. Falcon
was earlier proposed as a reconfigurable multi-layer FPGA based
CNN-UM implementation employing systolic array architecture by
Nagy and Szolgay in [195]. In its original design, Falcon could
compute result of only one iteration (e.g., only one image in a video
sequence) so in [194] a high level embedded control and arithmetic
logic block (GAPU) is used which could support several interaction
together. Actual design of the GAPU employs Xilinx MicroBlaze
architecture. The comparative tests revealed that in comparison to
software based implementation using Intel core2 Duo T7200
processor with optimized C++ code, the FPGA based hardware
implementation could achieve 47 times speed up in time.

Arena et al. [38,39] discuss design of a CNN-based analog VLSI chip
for real-time locomotion control in legged robots. The analog chip
core solves the gait generation task whereas digital control modulates
the behavior to deal with sensory feedback. An experimental six cell



J. Misra, I. Saha / Neurocomputing 74 (2010) 239–255248
CNN chip is designed using a switched capacitors in CMOS AMS
0:8-mm technology.

One of the more recent works include the design of a stochastic
bit-stream CNN model by Rak et al. [13], which is implemented
using FPGA. Also Ho et al. [196] suggest design of a CNN simulator
using graphics processing unit (GPU) [197] consisting of high
performance parallel graphics accelerators, by parallelizing the
CNN computations so that they can be executed concurrently.
6. Neuromorphic HNNs

Neuromorphic refers to a circuit that closely emulates the
biological neural design. The processing is mostly analog,
although outputs can be digital. Examples include Silicon Retina
[7] and Synaptic Touchpad [198]. Another important category of
neuromorphic HNNs is Pulse Coupled Neural Networks (PCNNs)
[99,101]. These have been designed after the mammalian visual
system, and further implemented in hardware. Like many other
NN models, PCNNs can perform image preprocessing, such
as edge finding and segmentation. The time series output is
invariant to scaling, rotation and translation. A compact archi-
tecture for analog CMOS hardware implementation of voltage-
mode PCNNs is presented by Ota and Wilamowski in [99], which
shows inherent fault tolerance and high speed compared to its
software counterpart.

An important aspect of neuromorphic designs is the address
event representation protocol (AER). There has been a consider-
able effort to create larger neuromorphic neural networks with
point-to-point pulse/spike communication between neural as-
semblies. AER is used to emulate the point-to-point connections
for SNNs of considerable size. They are now quite popular in the
neuromorphic community. This work was initiated by Mahowald
[199] and Mortara [200]. Over the last years AER has been
perfected by Boahen [201] and a large AER neuromorphic network
system in hardware for visual processing has been presented in
Serrano-Gotarredona et al. [202], claimed to be the most complex
neuromorphic pulse communication network yet. In a more
recent work Bamford et al. [203] discuss design of a distributed
and locally reprogrammable address event receiver, which could
allow for arbitrarily large axonal fan-out.

Selective attention is a mechanism used to sequentially select and
process only relevant subregions of the input space, while suppressing
other irrelevant inputs arriving from other regions. By processing
small amounts of sensory information in a serial fashion, rather than
attempting to process all the sensory data in parallel, this mechanism
overcomes the problem of flooding limited processing capacity
systems with sensory inputs. Indiveri [141,204] presents a 2-D
neuromorphic hardware model called attention chip, which imple-
ments a real-time model of selective attention, for sequentially
selecting the most salient locations of its inputs space. It is
implemented on an analog VLSI chip using spike-based representa-
tions for receiving input signals, transmitting output signals and for
shifting the selection of the attended input stimulus over time.
Experiments were carried out using a 8�8 grid, demonstrating how
the chip’s bias parameters could be used to impose different
behaviors of the system. Also we should add the recent convolusion
chip by Serrano Gotarredona et al. [205], which can implement many
classical NN computations, specifically feature-maps.

The silicon retina are an important class of neuromorphic
hardware with a potential to have commercial success beyond
pure research. The earliest electronic retina was proposed by
Fukushima et al. [206] in 1970 itself and was subsequently
integrated onto an ASIC by Mahowald [199] in early nineties.
Besides spatial contrast/derivative retina, later focus has been
turned towards temporal contrast/derivative retina [207,208].
However, unlike the spatial contrast retina they do not commu-
nicate with their neighbors to attain a collective computation.
Recent and relatively popular studies on the design of a
neuromorphic model for mammalian retina include those by
Boahen’s group [209–212]. In these studies both outer and inner
retina were modeled such that outer retina model performs linear
band-pass spatiotemporal filtering and inner retina model per-
forms high-pass temporal filtering and can realize non-linear
temporal frequency adaptation as well as contrast gain control
[209]. The presented model was fabricated as actual chip having
90�60 photoreceptor, 3.5 �3.3 mm2 surface area using 0:35mm-
CMOS technology [210]. As authors report, the chip has photo-
receptor density only 2.5 times sparser that the human cone
density. However, in contrast to actual mammalian retina, such
designed retina chip does not respond at high temporal
frequencies (10 Hz and above) [211].

Another important topic of Neuromorphic hardware are the
silicon cochleae. The network aspect is somewhat weak for them,
although the sensor nodes do have connections to one neighbor
but more in the manner of a processing chain than a network.
Initial work in this direction was reported by Lyon and Mead
[213] and Lazzaro and Mead [214]. Recent improvements have
been reported by Sarpeshkar et al. [215] and Chan et al. [216].

Indiveri et al. [67] present current state of the are in the field of
neuromorphic engineering [217] and discuss the challenges for
designing cognitive-neuromorphic systems.
6.1. Spiking neural network hardware

Spiking (or pulsed) ANNs (SNNs), a class of ANNs, model neurons
on a level relating more closely to biology and have attracted
attention in many bio-sensing areas including image processing
applications [97] and olfactory sensing [48]. They incorporate
computation of membrane potentials, synaptic time delays, and
dynamical thresholds, in addition to the prevalent synaptic weighting,
postsynaptic summation, static threshold, and saturation. A SNN
model synchronizes by taking into account the precise timing of spike
events. A noteworthy characteristics of SNNs is that they have been
proven to be computationally more powerful than classical ANN
models with sigmoidal neurons [218]. However, computing large
networks of complex neuron models is a computationally expensive
task and leads to longer execution delays even with high-performance
workstations [219]. Hardware implementations of a single spiking
neuron model has been discussed in the Section 3.3. We next consider
relatively recent efforts on designing low power compact VLSI
architectures for large scale implementations of SNN models.

Schoenauer et al. [23] present a neuroprocessor, called
NeuroPipe-Chip, as part of an accelerator board, which ap-
proaches real-time computational requirements for SANNs in
the order of 106 neurons. For a simple SNN benchmark network
for image segmentation, the simulation of the accelerator
suggested nearly two orders of magnitude faster computation
time than a 500 MHz Alpha workstation and a performance
comparable to dedicated accelerator architecture consisting of 64
high-performance DSPs. The NeuroPipe-Chip comprising 100 K
gate equivalents is fabricated in an Alcatel five-metal layer
0:35-mm digital CMOS technology. To improve the speed of
computations weight caches are used to accumulate all weighted
spikes occurring in one time slot. To further speed up the
performance, the NeuroPipe-Chip design was augmented with
additional on-chip inhibition unit, which would apply equally
distributed negative potential to a large set of spikes. Floriano
et al. [36] also demonstrate the usefulness of hardware SANNs in
designing embedded microcontrollers for autonomous robots
which can evolve the ability to move in a small maze without



J. Misra, I. Saha / Neurocomputing 74 (2010) 239–255 249
external support. More recently, Bellis et al. [37] report using an
FPGA based implementation of SNN for building collaborative
autonomous agents.

Ros et al. [220] present a HW/SW codesign approach, where the
spike response model for a neuron is implemented in hardware and
the network model of these neurons and the learning are imple-
mented in software with a support for an incremental transition of
the software components into hardware. Neuronal synapses are
modeled as input-driven conductances and various stages of the
temporal dynamics of the synaptic integration process are executed in
parallel. Multiple PEs process different neurons concurrently. Effec-
tiveness of the proposed architecture is tested with a prototype
system using FPGA board and a host computer interacting with each
other using PCI bus on a real-time visual data with a time resolution
of 100ms. Similarly Zou et al. [221] also present real-time simulation
architecture for networks of Hodgkin–Huxley spiking neurons using a
mix of analog circuits and a host computer.

Vogelstein et al. in [222] describe a mixed signal VLSI chip with
on-chip learning for emulating larger SNN models. The experimen-
tally designed chip consists of 60�40 array of I&F neuron with
reconfigurable synaptic connectivity allowing arbitrary number of
synaptic connections to exist between neurons. The synaptic
connections are actually implemented using digital RAM enabling
reconfiguration of these connections and associated parameters (e.g.,
conductance value, post synaptic address) on-the-fly. The actual
neuron and its membrane dynamics are implemented in an analog
VLSI using a conductance based modeling. The chip has an area of
9 mm2 with 645mW of power consumption on 10 MCUPS activity.
The chip was demonstrated to emulate attractor dynamics observed
in the neural activity in rat hippocampal ‘‘place cells’’ [223].

Koickal et al. [224] present a spike-timing based reconfigurable
single chip architecture for neuromorphic designs. The presented
architecture uses only one type of event block designed as an analog
circuit, which can be configured to model the functionality of a leaky
I&F neuron, a summing exponential synapse, a spike time dependent
learning window, and for adaptively generating a compensating
current at the neuron input so that neuron firing synchronizes with
the timing of a target signal. The configurable event block uses a
programmable capacitor array designed earlier by the same authors
in [225] together with an operational transconductor, and a
comparator and occupies an area of 0.03 mm2.

Spiking models have also received a lot of attention in the context
of learning rules. Traditional ANNs process real numbers that are
inspired by average spiking frequency of real neurons. A fully
represented spike train from a neuron, however, can potentially
convey much more information content. Some neurophysiological
experiments investigating synaptic change, i.e., learning, for example,
indicate that relative spike timing of single spike pairs influences
direction and magnitude of change of synaptic efficacy, i.e., average
spiking frequencies are insufficient to describe the learning behavior
of real neurons. This was implemented in neuromorphic on-chip
learning synapses by Hafliger et al. [226] and recently advanced by
Fusi et al. [138] and Chicca et al. [227]. The latest publications by
these groups [228,229] also describe network experiments with those
synapses.

Attempts to realize (multiplier-less) SNN models include
works of Chen et al. [230,231] and of Ghani et al. [232]. A recent
article by Maguire et al. [63] presents a detailed overview of
conventional simulation based approaches to implement SNNs
and further details various FPGA based implementations of SNNs.
7. Optical neural networks

In this section we provide a brief overview on optical neural
networks (ONNs), designed on the principles of optical comput-
ing. Optical technology (see [233]) utilizes the effect of light beam
processing that is inherently massively parallel, very fast, and
without the side effects of mutual interference. Optical transmis-
sion signals can be multiplexed in time, space, and wavelength
domains, and optical technologies may overcome the problems
inherent in electronics. The results range from the development of
special-purpose associative memory systems through various
optical devices (e.g., holographic elements for implementing
weighted interconnections) to optical neurochips. Optical techni-
ques ideally match with the needs for the realization of a dense
network of weighted interconnections.

Optical technology has a number of advantages for making
interconnections, specifically with regard to density, capacity and
2D programmability. One of the early ONN design using optical
vector matrix product processor or crossbar interconnection
architecture is discussed in [234,235]. Similarly a spatial coding
method of dealing with input/output patterns as 2D information
is used to develop a neural network system with learning
capabilities in [111]. However, the lack of efficient optical
switches and high capacity erasable optical memories has been
the cause of a bottleneck in the growth of ONNs. Typically such
optical switch or spatial light modulator is designed as a set of
movable mirrors, called a deformable mirror device (DMD), which
is inherently difficult to design on large scale.

Hopfield networks are widely used for exemplifying optical
implementations. An optical 2D NN has been developed [112] using
a liquid-crystal television (LCTV) and a lenslet array for producing
multiple imaging under incoherent illumination. Multi-layer feed-
forward/feedback networks have also been optically implemented
with the threshold function getting evaluated electronically [95] or
approximately realized by optical devices [96]. In the second
approach, the architecture employs LCTVs to implement the inputs
and the weights, while liquid crystal light valves are used to
implement the non-linear threshold [14].

An example of optical neurocomputer is the Caltech ‘‘Holo-
graphic Associative Memory’’ presented in [110]. The goal of the
system is to find the best match between an input image and a set
of holographic images that represent its memory. Neurons are
modeled by non-linear optical switching elements (optical
transistors) that are able to change their transmittance properties
as the brightness of a light beam changes. Weighted interconnec-
tions are modeled by holograms, which are able to record and
reconstruct the intensity of light rays. A 1 in planar hologram,
produced on a tiny photographic film, can fully interconnect
10,000 light sources with 10,000 light sensors making 100 million
interconnections. The whole system, consisting of a set of lenses
and mirrors, a pinhole array, two holograms and an ‘‘optical
transistor’’, is realized as an optical loop.

As Lange et al. [28] discuss, both electronic and optical
technology could be useful to solve problems in real-time image
processing applications. They fabricated an optical neurochip for
fast analog multiplication with weight storage elements and
on-chip learning capability. The chip can hold upto 128 fully
interconnected neurons. They have also developed the ‘‘artificial
retina chip’’, a device that can concurrently sense and process
images for edge enhancement or for feature extraction. Applica-
tions of these optical devices are in the domains of image
compression and character recognition.

Silveira [236] presents recent review on various issues and design
approaches related to these optoelectronic NN implementations.

Lack of effective programmability is one of the major
limitation in optical implementations. Burns et al. [237] describe
an optoelectronic design to overcome this limitation using a
combination of optics and electronics with high fan-in and
temporal multiplexing of the weights. The layered network
design consists of electronically controlled optical input layer



J. Misra, I. Saha / Neurocomputing 74 (2010) 239–255250
using spatial light modulation with subsequent electronic
processing, though the multiplication of input pattern with
interconnection weight was still carried out using software. Their
design significantly reduced the photo-induced charge leakage of
the neuron activations stored dynamically on capacitors.

Tokes et al. discuss in [15] an optical CNN device, also known
as Programmable Optical Array/Analogic Computer (POAC), which
is based on modified Joint Fourier Transform Correlator and
Bacteriorhodopsin as a holographic optical memory. Later
Moagar-Poladian and Bulinski [238] presented a type of reconfi-
gurable optical neuron, in which weights can be dynamically
changed. Once a weight is set, it is memorized for a period of few
days. The optical neuron comprises a photoelectret as the
recording medium of the weights and an optical non-linear
crystal with transverse Pockels effect. First described in 1906 by
the German physicist Friedrich Pockels, Pockels effect is a linear
electrooptical effect, in which, the application of an electric field
produces a birefringence which is proportional to the field. To
achieve, transverse Pockels effect, the electro-optic crystal is used
in the transverse mode, i.e., the optic axis is set perpendicular to
the direction of propagation of the light. Shortt et al. [239]
demonstrate a bipolar matrix vector multiplier based optical
implementation of the Kak neural network [240]. For this, the CC4
algorithm was modified on the training phase for implementing
N-Parity problem. First proposed by Kak and Tang [241], CC4 is a
corner classification training algorithm for three-layered feed-
forward neural networks. A very recent work in this direction
include optical implementation of SNN using a thin film of
electron-trapping material by Pashaie and Farhat [242].

Llata and Rivera [243,244,16] have proposed design of vision
system based upon a CMOS image sensor and a hybrid
optoelectronic hardware architecture called optical broadcast
neural network (OBNN). An OBNN processor classifies input
patterns using Hamming classification using a set of reference
patterns. The input signals are sent in their temporal order to an
array of PEs for computing weight updates by means of an global
optical broadcasting, thus taking advantage of fast optical
communication as well as electronic computational processing.
The downside of the architecture is that it is sensitive to rotation,
translation, and scaling of the input images. To overcome these
limitations, recently in [21], they extend the design by introdu-
cing PCNN preprocessor stage, which converts an 2D input image
into a temporal pulsed pattern. These pulses are then applied as
inputs to the OBNN processor. The combined system is reported
to achieve the rate of 104 classifications per second on binary
input images of size 128�128 pixels.

Articles by Yu and Uang [245] and by Ahmed et al. [246] are
interesting reviews on the later advancements in the design and
implementation of ONNs. Ref. [246] has additional discussion on
the design of a portable POAC and optical template library.
2 Assuming the frame-rate of 100 fps, frame size of 1280 �1024 pixels with

3 bytes per pixel, and average number of basic imaging operation having

computational complexity of OðNÞ, (N is the frame-size) with 105 such operations

to be performed on each frame.
8. Conclusions and discussion

HNN research and applications have witnessed a slow and
incremental progress in last two decades. Even though ANN
hardware has been there for more than last two decades, the rapid
growth in general purpose hardware (microprocessors, DSPs, etc.)
did not let most of these implementations to outperform to the
extent of becoming commercially successful. Nonetheless, novel
application areas have steadily started appearing, e.g., embedded
microcontroller for autonomous robots [36,247], autonomous
flight control [248,249], proposed silicon model of the cerebral
cortex—neurogrid [250] (also see [251]), and silicon retina
[212,211]. In recent years several special issues dedicated to
HNN implementations have been published [252–254] as well as
a steady stream of Ph.D theses have appeared [255–257]
indicating the growing interest in the area.

However, in spite of the presence of expressive high-level
hardware description languages and compilers, efficient neural-
hardware designs still demand ingenious ways to optimally use
the available resources for achieving high speed and low power
dissipation. Judicious mapping of ANN models onto parallel
architectures, entailing efficient computation and communica-
tion, is thus a key step in any HNN design and there is a need to
design tools for automatically translating high level ANN models
onto hardware [258, Section 5.5].

As noted in [259], digital neurohardware tends to be more
algorithm specific requiring a good knowledge about algorithms
as well as system design that eventually results into a high time-
to-market as compared to conventional hardware. In this respect
general-purpose hardware seems more user-friendly, offering
more flexibility with uniform programming interfaces, and can
therefore profit more from advances in technology and architec-
tural revisions. However, many of the applications involving ANNs
often demand computational capabilities exceeding of work-
stations or personal computers available today. For example, a
typical real-time image processing task may demand 10 tera-
flops,2 which is well beyond the current capacities of PCs or
workstations today. In such cases neurohardware appears
attractive choice and can provide a better cost-to-performance
ratio even when compared to supercomputers because many
aspects of user friendliness vanish for the supercomputers which
are also relatively expensive.

Since currently many ANN applications use networks with less
than 104 neurons and/or inputs and only need occasional training,
software simulation is usually found to be sufficient in such
situations. But when ANN algorithms develop to the point
where useful things can only be done with 106–108 of neurons
and 1010–1014 of synapses between them [260,261], high
performance neural hardware will become essential for practical
operations. It is important to add that such large scale neural
network hardware designs might not be a distant reality as is
apparent from the recent work of Schemmel et al. on wafer-scale
integration of large SNN models [262,263].

It is observed that presently it is not always possible to exploit
the entire parallelism inherent in the ANN topology along with a
good cost-performance ratio, mainly due to the cost associated
with the implementation of the numerous interconnections,
control and mapping involved. In this scenario, optical imple-
mentations add a different dimension. Multi-Chip Modules or
Wafer-Scale Integration hold further promise for implementing
such large networks. IBM cell processor [264] with nine processor
cores or its recent variant QS22 PowerXCell 8i [265] with their
powerful vector processing capabilities hold good promise for
highly parallel large scale ANN implementations or their fast
emulations for comparative analysis. Also using 3D VLSI packa-
ging technology [266], large number of synaptic connection could
possibly be realized in small space. 3D VLSI classifier [6] as
discussed before in Section 4.1 is an example at hand.

CMOS/nanowire/nanodevice (‘‘CMOL’’) technology [267,268],
which combines both CMOS and nanotechnology, is one of the
important emerging technologies with high potential for large
scale HNN implementations. The basic idea of CMOL circuits is to
combine the advantages of CMOS technology including its
flexibility and high fabrication yield with the high potential
density of molecular-scale two-terminal nanodevices. Neuro-



J. Misra, I. Saha / Neurocomputing 74 (2010) 239–255 251
morphic Mixed-Signal CMOL Circuits (known as ‘‘CrossNets’’)
[269–273] are the first results of an active research by
K. Likharev’s Nanotechnology Research Group at Stony Brook
University. In a ‘‘CrossNet’’, CMOS subsystem realizes the neuron
core, whereas crossbar nanowires play the roles of axons and
dendrites (connections), and crosspoint latching switches serve as
elementary (binary-weight) synapses enabling very high cell
connectivity (e.g., 104) in quasi-2D electronic circuits.

Molecular technology is another relatively new approach for
possible hardware implementation. It combines protein engineering,
biosensors, and polymer chemistry in the efforts to develop a
molecular computer [274]. The computation uses the physical
recognition ability of large molecules, like proteins, which can change
their shape depending on the chemical interactions with other
molecules. Molecular computing is still in its infancy. The major
problem is to develop appropriate technology that would allow for
construction of bio equivalents of transistors. However, inherently
parallel generalization and adaptation capabilities perfectly match the
needs of neural networks implementations. Research in this direction
appears promising [275,276] and, in the future, molecular computers
with neural architectures appears to have a potential to become a
reality. Dan Ventura [277] presents an interesting discussion on the
possibility designing quantum neural computing devices utilizing
quantum entanglement effects. In a recent work Alibart et al. [278]
report feasibility of designing a hybrid nanoparticle-organic device, a
nanoparticle organic memory FET, which uses the nanoscale
capacitance of the nanoparticles and the transconductance gain of
the organic transistor to mimic the short-term plasticity of a
biological synapse.

HNN models hopefully will have the respected place in coming
years when industry will face demands imposed by ubiquitous
computing with learning and autonomous decision making
capabilities, e.g., autonomous robotics and assistive technologies.
These applications demand dealing with large amounts of
real-time multimedia data from interacting environment, using
lightweight hardware with strict power constraints, without
letting the computational efficiencies go down. The DARPA
initiative [261]—‘‘Systems of Neuromorphic Adaptive Plastic
Scalable Electronics’’—towards building cognitive-neuromorphic
systems [67] is indicative of such emerging directions.
References

[1] C. Lindsey, T. Lindblad, Review of hardware neural networks: a user’s
perspective, in: Proceedings of Third Workshop on Neural Networks: From
Biology to High Energy Physics, Isola d’Elba, Italy, 1994, pp. 195–202.

[2] M. Hänggi, G. Moschytz, Cellular Neural Networks: Analysis, Design, and
Optimization, Kluwer Academic Publishers, Norwell, MA, USA, 2000.

[3] L. Zhang, Y. Han, H. Li, X. Li, Fault tolerance mechanism in chip many-core
processors, Tsinghua Science & Technology 12 (Suppl. 1) (2007) 169–174.

[4] S.Y. Kung, Digital Neural Networks, Prentice-Hall, Upper Saddle River, NJ,
USA, 1992.

[5] P. Ienne, Digital hardware architectures for neural networks, Speedup
Journal 9 (1) (1995) 18–25.

[6] A. Bermak, D. Martinez, A compact 3-D VLSI classifier using bagging
threshold network ensembles, IEEE Transactions on Neural Networks 14 (5)
(2003) 1097–1109.

[7] C. Mead, Analog VLSI and Neural Systems, Addison-Wesley, Boston, MA,
USA, 1989.

[8] B. Brown, X. Yu, S. Garverick, Mixed-mode analog VLSI continuous-time
recurrent neural network, in: Proceedings of International Conference on
Circuits, Signals and Systems, 2004, pp. 104–108.

[9] A. Schmid, Y. Leblebici, D. Mlynek, A mixed analog digital artificial neural
network with on chip learning, IEE Proceedings—Circuits, Devices and
Systems 146 (1999) 345.

[10] T. Lehmann, E. Bruun, C. Dietrich, Mixed analog/digital matrix–vector
multiplier for neural network synapses, Analog Integrated Circuits and
Signal Processing 9 (1) (2004) 55–63.

[11] B. Schrauwen, M. D’Haene, Compact digital hardware implementations of
spiking neural networks, in: J. Van Campenhout (Ed.), Sixth FirW Ph.D.
Symposium, 2005, in CD.
[12] N. Nedjah, L. de Macedo Mourelle, Reconfigurable hardware for neural
networks: binary versus stochastic, Neural Computing and Applications 16
(3) (2007) 249–255.

[13] G.C. Adam Rak, B.G. Soos, Stochastic bitstream-based CNN and its
implementation on FPGA, International Journal of Circuit Theory and
Applications 37 (4) (2002) 587–612.

[14] P.D. Moerland, E. Fiesler, I. Saxena, Incorporation of liquid-crystal light valve
nonlinearities in optical multilayer neural networks, Applied Optics 35
(1996) 5301–5307.

[15] S. Tokes, L. Orz �o, G. Vr, T. Roska, Bacteriorhodopsin as an analog holographic
memory for joint fourier implementation of CNN computers, Technical
Report DNS-3-2000, Computer and Automation Research Institute of the
Hungarian Academy of Sciences, Budapest, Hungary, 2000.

[16] H. Lamela, M. Ruiz-Llata, Optoelectronic neural processor for smart vision
applications, Imaging Science Journal 55 (4) (2007) 197–205.

[17] B. Denby, The use of neural networks in high energy physics, Neural
Computation 5 (1993) 505–549.

[18] M. Weeks, M. Freeman, A. Moulds, J. Austin, Developing hardware-based
applications using PRESENCE-2, in: Perspectives in Pervasive Computing,
Savoy Place, London, 2005, pp. 469–474.

[19] I. Aleksander, W.V. Thomas, P.A. Bowden, WISARD: a radical step forward in
image recognition, Sensor Review 4 (3) (1984) 120–124.

[20] J. Austin, S. Buckle, J. Kennedy, A. Moulds, R. Pack, A. Tumer, The cellular
neural network associative processor (C-NNAP), in: Associative Processing
and Processors, 1997, pp. 284–299.

[21] M. Ruiz-Llata, H. Lamela-Rivera, Image identification system based on an
optical broadcast neural network and a pulse coupled neural network
preprocessor stage, Applied Optics 47 (2008) 10–47.

[22] D. Wang, D. Terman, Image segmentation based on oscillatory correlation,
Neural Computation 9 (4) (1997) 805–836.

[23] T. Schoenauer, S. Atasoy, N. Mehrtash, H. Klar, NeuroPipe-Chip: a digital
neuro-processor for spiking neural networks, IEEE Transaction on Neural
Networks 13 (1) (2002) 205–213.

[24] B. Girau, C. Torres-Huitzil, Massively distributed digital implementation of
an integrate-and-fire legion network for visual scene segmentation,
Neurocomputing 70 (7–9) (2007) 1186–1197.

[25] J.V. Kennedy, J. Austin, A hardware implementation of a binary neural image
processor, in: Proceedings of the IV International Conference on Microelec-
tronics for Neural Networks and Fuzzy Systems, Torino, Italy, 1994, pp.
178–185.

[26] A.M. Chiang, et al., A CCD programmable image processor and its neural
network applications, IEEE Journal of Solid State Circuits (1991)
1894–1901.

[27] R.R. Harrison, A low-power analog VLSI visual collision detector, in: S.
Thrun, L. Saul, B. Scholkopf (Eds.), Advances in Neural Information
Processing Systems, vol. 16, MIT Press, Cambridge, MA, 2004.

[28] E. Lange, Y. Nitta, K. Kyuma, Optical neural chips, IEEE Micro (1994)
29–41.

[29] J. Lopez-Garcia, M. Moreno-Armendariz, J. Riera-Babures, M. Balsi, X.
Vilasis-Cardona, Real time vision by FPGA implemented CNNs, Proceedings
of the 2005 European Conference on Circuit Theory and Design, vol. 1, 2005,
pp. 281–284.

[30] M. Krips, T. Lammert, A. Kummert, FPGA implementation of a neural
network for a real-time hand tracking system, in: Proceedings of First IEEE
International Workshop on Electronic Design Test and Applications, 2002,
pp. 313–317.

[31] F. Yang, M. Paindavoine, Implementation of an RBF neural network on
embedded systems: real-time face tracking and identity verification, IEEE
Transaction on Neural Networks 14 (5) (2003) 1162–1175.

[32] A. Rodriguez-Vazquez, G. Linan-Cembrano, L. Carranza, E. Roca-Moreno, R.
Carmona-Galan, F. Jimenez-Garrido, R. Dominguez-Castro, S. Meana,
ACE16k: the third generation of mixed-signal SIMD-CNN ACE chips toward
VSoCs, IEEE Transactions on Circuits and Systems I: Regular Papers 51 (5)
(2004) 851–863.

[33] A. Zarandy, C. Rekeczky, Bi-i: a standalone ultra high speed cellular vision
system, IEEE Circuits and Systems Magazine 5 (2) (2005) 36–45.

[34] M. Milev, M. Hristov, Analog implementation of ANN with inherent
quadratic nonlinearity of the synapses, IEEE Transactions on Neural
Networks 14 (5) (2003) 1187–1200.

[35] J. Liu, M.A. Brooke, K. Hirotsu, A CMOS feed-forward neural network chip
with on-chip parallel learning for oscillation cancellation, IEEE Transactions
on Neural Networks 13 (2002) 1178–1186.

[36] D. Floreano, N. Schoeni, G. Caprari, J. Blynel, Evolutionary bits‘n’spikes, in:
Proceedings of the Eighth International Conference on Artificial Life, MIT
Press, Cambridge, MA, USA, 2003, pp. 335–344.

[37] S. Bellis, K. Razeeb, C. Saha, K. Delaney, C. Mathuna, A. Pounds-Cornish, G. de
Souza, M. Colley, H. Hagras, G. Clarke, V. Callaghan, C. Argyropoulos
C. Karistianos, G. Nikiforidis, FPGA implementation of spiking neural
networks—an initial step towards building tangible collaborative autono-
mous agents, in: Proceedings of the IEEE International Conference on Field-
Programmable Technology, 2004, pp. 449–452.

[38] P. Arena, L. Fortuna, M. Frasca, L. Patane, A CNN-based chip for robot
locomotion control, IEEE Transactions on Circuits and Systems I: Regular
Papers 52 (9) (2005) 1862–1871.

[39] P. Arena, L. Fortuna, M. Frasca, L. Patane, M. Pollino, An autonomous mini-
hexapod robot controlled through a CNN-based CPG VLSI chip, in: 10th



J. Misra, I. Saha / Neurocomputing 74 (2010) 239–255252
International Workshop on Cellular Neural Networks and Their Applica-
tions, 2006, pp. 1–6.

[40] G. Pazienza, X. Ponce-Garcia, M. Balsi, X. Vilasis-Cardona, Robot vision with
cellular neural networks: a practical implementation of new algorithms,
International Journal of Circuit Theory and Applications 35 (4) (2007)
449–462.

[41] H. Li, D. Zhang, S. Foo, A stochastic digital implementation of a neural
network controller for small wind turbine systems, IEEE Transactions on
Power Electronics 21 (5) (2006) 1502–1507.

[42] D. Kim, H. Kim, H. Kim, G. Han, D. Chung, A SIMD neural network processor
for image processing, Advances in Neural Networks 3497 (2005) 665–672.

[43] A.A. Dibazar, A. Bangalore, H.O. Park, S.T. George, W.M. Yamada, T.W. Berger,
Hardware implementation of dynamic synapse neural networks for acoustic
sound recognition, in: Proceedings of the International Joint Conference on
Neural Networks, Vancouver, BC, Canada, 2006, pp. 2015–2022.

[44] M. Chiaberge, L.M. Reyneri, Cintia: a neuro-fuzzy real-time controller for
low-power embedded systems, IEEE Micro 15 (3) (1995) 40–47.

[45] Camalie, Box 2—an analog audio synthesizer: architecture and procedures
guide, 1994. URL: /http://www.camalie.com/MusicBox2/guide.docS.

[46] D.L. Hung, J. Wang, Digital hardware realization of a recurrent neural
network for solving the assignment problem, Neurocomputing 51 (2003)
447–461.

[47] J. Wang, An analog neural network for solving the assignment problem,
Electronic Letters 28 (11) (1992) 1047–1050.

[48] T. Koickal, A. Hamilton, S. Tan, J. Covington, J. Gardner, T. Pearce, Analog
VLSI circuit implementation of an adaptive neuromorphic olfaction chip,
IEEE Transactions on Circuits and Systems I: Regular Papers 54 (1) (2007)
60–73.

[49] M. Glesner, W. Poechmueller, Neurocomputers: An Overview of Neural
Networks in VLSI, Chapman and Hall, London, 1994.

[50] C. Lindsey, T. Lindblad, Survey of neural network hardware, Proceedings of
the First International Conference on Applications and Science of Artificial
Neural Networks, The Society of Photo-Optical Instrumentation Engineers
(SPIE), vol. 2492, 1995, pp. 1194–1205.

[51] J. Heemskerk, Overview of neural hardware, in: Neurocomputers for Brain-
Style Processing, Design, Implementation and Application, 1995.

[52] P. Ienne, T. Cornu, G. Kuhn, Special-purpose digital hardware for neural
networks: an architectural survey, Journal of VLSI Signal Processing Systems
13 (1) (1996) 5–25.

[53] I. Aybay, S. Cetinkaya, U. Halici, Classification of neural network hardware,
Neural Network World 6 (1) (1996) 11–29.

[54] P.D. Moerland, E. Fiesler, Neural network adaptations to hardware
implementations, in: E. Fiesler, R. Beale (Eds.), Handbook of Neural
Computation, Institute of Physics Publishing and Oxford University
Publishing, New York, NY, USA, 1997, pp. E1.2:1–E1.2:13.

[55] N. Sundararajan, P. Saratchandran, Parallel Architectures for Artificial
Neural Networks: Paradigms and Implementations, IEEE Computer Society
Press, Los Alamitos, CA, USA, 1998.

[56] J.B. Burr, Digital neurochip design, in: K.W. Przytula, V.K. Prasanna (Eds.),
Parallel Digital Implementations of Neural Networks, Prentice-Hall, Upper
Saddle River, NJ, USA, 1992, pp. 223–281.

[57] J.B. Burr, Energy, capacity, and technology scaling in digital VLSI neural
networks, NIPS’91 VLSI Workshop, May 1991.

[58] D. Hammerstrom, Digital VLSI for neural networks, in: The Handbook of
Brain Theory and Neural Networks, 2003, pp. 304–309.

[59] L. Reyneri, On the performance of pulsed and spiking neurons, Analog
Integrated Circuits and Signal Processing 30 (2) (2002) 101–119.

[60] J. Zhu, P. Sutton, FPGA implementations of neural networks—a survey of a
decade of progress, Field-Programmable Logic and Applications, vol. 2778,
2003, pp. 1062–1066.

[61] L. Reyneri, Implementation issues of neuro-fuzzy hardware: going
toward HW/SW codesign, IEEE Transactions on Neural Networks 14 (1)
(2003) 176–194.

[62] F.M. Diasa, A. Antunesa, A.M. Motab, Artificial neural networks: a review of
commercial hardware, Engineering Applications of Artificial Intelligence
17 (2004) 945–952.

[63] L.P. Maguire, T.M. McGinnity, B. Glackin, A. Ghani, A. Belatreche, J. Harkin,
Challenges for large-scale implementations of spiking neural networks on
FPGAs, Neurocomputing 71 (1–3) (2007) 13–29.

[64] C. Bartolozzi, G. Indiveri, Synaptic dynamics in analog VLSI, Neural
Computation 19 (10) (2007) 2581–2603.

[65] L. Smith, Implementing neural models in silicon, in: Handbook of Nature-
Inspired and Innovative Computing: Integrating Classical Models with
Emerging Technologies, 2006, p. 433.

[66] D. Hammerstrom, R. Waser, A survey of bio-inspired and other alternative
architectures, Nanotechnology: Information Technology—II 4 (2008) 251–285.

[67] G. Indiveri, E. Chicca, R. Douglas, Artificial cognitive systems: from VLSI
networks of spiking neurons to neuromorphic cognition, Cognitive
Computation 1 (2) (2009) 119–127.

[68] J. Austin (Ed.), RAM-Based Neural Networks, World Scientific, Singapore,
1998.

[69] A.R. Ormondi, J.C. Rajapakse (Eds.), FPGA Implementations of Neural
Networks, Springer-Verlag, Dordrecht, Germany, 2006.

[70] M. Valle, Smart Adaptive Systems on Silicon, Springer, Dordrecht, The
Netherlands, 2005.
[71] M. Jabri, B. Flower, Weight perturbation: an optimal architecture and
learning technique for analog VLSI feedforward and recurrent multilayer
networks, Neural Computation 3 (4) (1991) 546–565.

[72] F.J. Smieja, Neural network constructive algorithms: trading generalization
for learning efficiency? Circuits, Systems, and Signal Processing 12 (1993)
331–374.

[73] T.A. Duong, Cascade error projection: an efficient hardware learning
algorithm, in: Proceedings of the IEEE International Conference on Neural
Networks, vol. 1, Perth, Australia, 1995, pp. 175–178.

[74] T.A. Duong, A.R. Stubberud, Convergence analysis of cascade error
projection: an efficient hardware learning algorithm, International Journal
of Neural System 10 (3) (2000) 199–210.

[75] Z. Chen, S. Haykin, S. Becker, Theory of monte carlo sampling-based alopex
algorithms for neural networks, in: Proceedings of IEEE International
Conference on Acoustics, Speech, and Signal Processing, 2004, pp. 17–21.

[76] G. Indiveri, S. Fusi, Spike-based learning in VLSI networks of integrate-and-
fire neurons, Proceedings of IEEE International Symposium on Circuits and
Systems (ISCAS), vol. 2007, 2007, pp. 3371–3374.

[77] V. Kumar, S. Shekhar, M.B. Amin, A scalable parallel formulation of the back-
propagation algorithm for hypercubes and related architectures, IEEE
Transactions on Parallel and Distributed Systems 5 (10) (1994) 1073–1090.

[78] A. d’Acierno, Back-propagation learning algorithm and parallel computers:
the CLEPSYDRA mapping scheme, Neurocomputing 31 (2000) 67–85.

[79] M. Verleysen, L. luc Voz, J. Madrenas, An analog processor architecture for a
neural network classifier, IEEE Micro 14 (1994) 16–28.

[80] S.M. Fakhraie, H. Farshbaf, K.C. Smith, Scalable closed-boundary
analog neural networks, IEEE Transactions on Neural Networks 15 (2004)
492–504.

[81] L.M. Patnaik, R.N. Rao, Parallel implementation of neocognitron on star
topology: theoretical and experimental evaluation, Neurocomputing 41
(2001) 109–124.

[82] A. Strey, N. Avellana, A new concept for parallel neurocomputer architec-
tures, in: Proceedings of EuroPar’96, Lyon, France, 1996, pp. 470–477.

[83] E.V. Keulen, S. Colak, H. Withagen, H. Hegt, Neural network hardware
performance criteria, in: Proceedings of the IEEE International Conference
on Neural Networks, 1994, pp. 1885–1888.

[84] T. Cornu, P. Ienne, Performance of digital neuro-computers, in: Proceedings
of the Fourth International Conference on Microelectronics for Neural
Networks and Fuzzy Systems, 1994, pp. 87–93.

[85] D. Hammerstrom, A VLSI architecture for high-performance, low-cost, on-
chip learning, in: Proceedings of the International Joint Conference on
Neural Networks, San Diego, CA, 1990, pp. 537–544.

[86] B. Noory, V. Groza, A reconfigurable approach to hardware implementation
of neural networks, in: Proceedings of Canadian Conference on Electrical
and Computer Engineering, 2003, pp. 1861–1864.

[87] H. Amin, K.M. Curtis, B.R. Hayes-Gill, Piecewise linear approximation
applied to nonlinear function of a neural network, in: IEE Proceedings of
Circuits Devices and Systems, 1997, pp. 313–317.

[88] J. Holt, J.-N. Hwang, Finite precision error analysis of neural network
hardware implementations, IEEE Transactions on Computers 42 (3) (1993)
281–290.

[89] V. Beiu, How to build VLSI-efficient neural chips, in: E. Alpaydin (Ed.),
Proceedings of the International ICSC Symposium on Engineering of
Intelligent Systems, Tenerife, Spain, 1998, pp. 66–75.

[90] M. Witbrock, M. Zagha, An implementation of back-propagation learning
on GF11, a large SIMD parallel computer, Parallel Computing 14 (1990)
329–346.

[91] R. Gadea, J. Cerda, F. Ballester, A. Macholi, Artificial neural network
implementation on a single FPGA of a pipelined on-line back-propagation,
in: Proceedings of the 13th International Symposium on System Synthesis,
2000, pp. 225–230.

[92] W. Eppler, T. Fischer, H. Gemmeke, T. Becher, G. Kock, High speed neural
network chip on PCI-board, 1997.

[93] S. Rueping, K. Goser, U. Ruckert, A chip for self-organizing feature maps, in:
Proceedings of Fourth International Conference on Microelectronics for
Neural Networks and Fuzzy Systems, 1994, pp. 26–33.

[94] A. Gopalan, A.H. Titus, A new wide range Euclidean distance circuit for
neural network hardware implementations, IEEE Transactions on Neural
Networks 14 (2003) 1176–1186.

[95] J.S. Jang, S.G. Shin, S.W. Yuk, S.Y. Shin, S.Y. Lee, Dynamic optical
interconnections using holographic Lenslet arrays for adaptive neural
networks, Optical Engineering 32 (1993) 80–87.

[96] I. Saxena, E. Fiesler, Adaptive multilayer optical neural network with optical
thresholding, Optical Engineering 34 (1995) 2435–2440.

[97] T. Lindblad, J.M. Kinser, Image Processing Using Pulse-Coupled Neural
Networks, Springer-Verlag New York, Inc, Secaucus, NJ, USA, 2005.

[98] A. Schaik, Building blocks for electronic spiking neural networks, Neural
Networks 14 (2001) 617–628.

[99] Y. Ota, B.M. Wilamowski, Analog implementation of pulse-coupled neural
networks, IEEE Transactions on Neural Networks 10 (1999) 539–544.

[100] Y. Maeda, T. Tada, FPGA implementation of a pulse density neural network
with learning ability using simultaneous perturbation, IEEE Transaction on
Neural Networks 14 (3) (2003) 688–695.

[101] J.M. Kinser, T. Lindblad, Implementation of pulse-coupled neural networks
in a CNAPS environment, IEEE Neural Networks 10 (3) (1999) 584–597.

http://www.camalie.com/MusicBox2/guide.doc


J. Misra, I. Saha / Neurocomputing 74 (2010) 239–255 253
[102] H. Hikawa, A digital hardware pulse-mode neuron with piecewise linear
activation function, IEEE Transactions on Neural Networks 14 (5) (2003)
1028–1037.

[103] F. Sargeni, V. Bonaiuto, A fully digitally programmable CNN chip, IEEE
Transactions on Circuits and Systems II: Analog and Digital Signal
Processing 42 (11) (1995) 741–745.

[104] H. Harrer, J. Nossek, R. Stelzl, An analog implementation of discrete-time
cellular neural networks, IEEE Transactions on Neural Networks 3 (3) (1992)
466–476.

[105] M. Salerno, F. Sargeni, V. Bonaiuto, A dedicated multi-chip programmable
system for cellular neural networks, Analog Integrated Circuits and Signal
Processing 18 (2) (1999) 277–288.

[106] P. Kinget, M. Steyaert, A programmable analog cellular neural network
CMOS chip for high-speed image processing, IEEE Journal of Solid State
Circuits 30 (3) (1995) 235–243.

[107] G. Pazienza, J. Bellana-Camanes, J. Riera-Babures, X. Vilasis-Cardona, M.
Moreno-Armendariz, M. Balsi, Optimized cellular neural network universal
machine emulation on FPGA, in: Proceedings of the 18th European
Conference on Circuit Theory and Design, 2007, pp. 815–818.

[108] U. Ruckert, An associative memory with neural architecture and its VLSI
implementation, in: Proceedings of Hawaii International Conference on
System Sciences, 1991, pp. 212–218.

[109] A. Heittmann, U. Ruckert, Mixed mode VLSI implementation of a neural
associative memory, Analog Integrated Circuits and Signal Processing 30 (2)
(2002) 159–172.

[110] Y.S. AbuMostafa, D. Psaltis, Optical neural computers, Scientific American
255 (1987) 88–95.

[111] M. Ishikawa, N. Mukouzaka, H. Toyoda, Y. Suzuki, Optical association: a simple
model for optical associative memory, Applied Optics 28 (1989) 291–301.

[112] F.T.S. Yu, T. Lu, X. Yang, D.A. Gregory, Optical neural network with pocket
sized liquid crystal televisions, Optics Letters 15 (1990) 863–865.

[113] M.V. Daalen, P. Jeavons, J. Shawe-Taylor, A stochastic neural architecture
that exploits dynamically reconfigurable FPGAs, in: D.A. Buell, K.L. Pocek
(Eds.), IEEE Workshop on FPGAs for Custom Computing Machines, IEEE
Computer Society Press, Los Alamitos, CA, 1993, pp. 202–211.

[114] S.L. Bade, B.L. Hutchings, FPGA-based stochastic neural networks—imple-
mentation, in: Proceedings of IEEE Workshop on FPGAs for Custom
Computing Machines Workshop, Napa, CA, 1994, pp. 189–198.

[115] S. Haykin, Neural Networks: A Comprehensive Foundation, third ed.,
Prentice-Hall, Upper Saddle River, NJ, USA, 2008.

[116] A. Muthuramalingam, S. Himavathi, E. Srinivasan, Neural network imple-
mentation using FPGA: issues and application, International Journal of
Information Technology 4 (2) (2007) 2–12.

[117] J. Shawe-Taylor, P. Jeavons, M. Daalen, Probabilistic bit stream neural chip:
theory, Connection Science 3 (3) (1991) 317–328.

[118] M. Daalen, T. Kosel, P. Jeavons, J. Shawe-Taylor, Emergent activation
functions from a stochastic bit stream neuron, Electronic Letters 30 (4)
(1994) 331–333.

[119] M. Skrbek, Fast neural network implementation, Neural Network World 5
(1999) 375–391.

[120] H.P. Graf, L.D. Jackel, R.E. Howard, B. Straughn, J.S. Denker, W. Hubbard, D.M.
Tennant, D. Schwartz, VLSI implementation of a neural network memory
with several hundreds of neurons, in: AIP Conference Proceedings 151 on
Neural Networks for Computing, American Institute of Physics Inc., Wood-
bury, NY, USA, 1987, pp. 182–187.

[121] A.J. Agranat, C.F. Neugebauer, A. Yariv, A CCD based neural network
integrated circuit with 64k analog programmable synapses, in: Interna-
tional Joint Conference on Neural Networks (IJCNN), 1990, pp. 551–555.

[122] T. Morishita, Y. Tamura, T. Otsuki, G. Kano, A BiCMOS analog neural network
with dynamically updated weights, IEICE Transactions on Electronics 75 (3)
(1992) 297–302.

[123] M. Holler, S. Tam, H. Castro, R. Benson, An electrically trainable artificial
neural network (ETANN) with 10240 ‘‘floating gate’’ synapses, in: IEEE
Computer Society Neural Networks Technology Series, 1990, pp. 50–55.

[124] B.M. Wilamowski, J. Binfet, M.O. Kaynak, VLSI implementation of neural
networks, International Journal of Neural Systems 10 (3) (2000) 191–197.

[125] J. Zurada, Analog implementation of neural networks, IEEE Circuits and
Devices Magazine 8 (5) (1992) 36–41.

[126] A.P. Almeida, J.E. Franca, Digitally programmable analog building blocks for
the implementation of artificial neural networks, IEEE Transactions on
Neural Networks 7 (2) (1996) 506–514.

[127] N. Hamid, A. Murray, D. Laurenson, S. Roy, B. Cheng, Probabilistic
computing with future deep sub-micrometer devices: a modeling approach,
in: IEEE International Symposium on Circuits and Systems, 2005, pp.
2510–2513.

[128] H. Chen, A. Murray, A continuous restricted Boltzmann machine with a
hardware-amenable learning algorithm, in: Proceedings of the International
Conference on Artificial Neural Networks, Lecture Notes in Computer
Science, 2002, pp. 358–363.

[129] H. Chen, A. Murray, Continuous restricted Boltzmann machine with an
implementable training algorithm, IEE Proceedings—Vision Image and Signal
Processing, The Institution of Electrical Engineers, vol. 150, 2003, pp. 153–159.

[130] W. Gerstner, Spiking Neuron Models: Single Neurons, Populations, Plasti-
city, Cambridge University Press, Cambridge, UK, 2002.

[131] W. Maass, C. Bishop, Pulsed Neural Networks, The MIT Press, Cambridge,
MA, USA, 2001.
[132] S. Schultz, M. Jabri, Analogue VLSI ‘integrate-and-fire’ neuron with
frequency adaptation, Electronics Letters 31 (16) (1995) 1357–1358.

[133] C. Rasche, R. Douglas, An improved silicon neuron, Analog Integrated
Circuits and Signal Processing 23 (3) (2000) 227–236.

[134] E. Izhikevich, Simple model of spiking neurons, IEEE Transactions on Neural
Networks 14 (6) (2003) 1569–1572.

[135] S. Mihalas, E. Niebur, A generalized linear integrate-and-fire neural model
produces diverse spiking behaviors, Neural Computation 21 (3) (2009) 704–718.

[136] J. Wijekoon, P. Dudek, Compact silicon neuron circuit with spiking and
bursting behaviour, Neural Networks 21 (2–3) (2008) 524–534.

[137] F. Folowosele, A. Harrison, A. Cassidy, A. Andreou, R. Etienne-Cummings, S.
Mihalas, E. Niebur, T. Hamilton, A switched capacitor implementation of the
generalized linear integrate-and-fire neuron, in: Proceedings of IEEE
International Symposium on Circuits and Systems (ISCAS), 2009.

[138] S. Fusi, M. Annunziato, D. Badoni, A. Salamon, D.J. Amit, Spike-driven
synaptic plasticity: theory, simulation, VLSI implementation, Neural
Computation 12 (2000) 2227–2258.

[139] J. Lazzaro, J. Wawrzynek, Low-power silicon neurons, axons and
synapses, in: Silicon Implementation of Pulse Coded Neural Networks,
1994, pp. 153–164.

[140] J. Arthur, K. Boahen, Recurrently connected silicon neurons with active
dendrites for one-shot learning, Proceedings of the 2004 IEEE International
Joint Conference on Neural Networks, vol. 3, 2004, pp. 1699–1704.

[141] G. Indiveri, Modeling selective attention using a neuromorphic analog VLSI
device, Neural Computation 12 (12) (2000) 2857–2880.

[142] P. Merolla, K. Boahen, A recurrent model of orientation maps with simple
and complex cells, in: Advances in Neural Information Processing Systems,
2004, pp. 995–1002.

[143] A. Destexhe, Z. Mainen, T. Sejnowski, Kinetic models of synaptic transmis-
sion, in: Methods in Neuronal Modeling, 1998, pp. 1–25.

[144] K. Hynna, K. Boahen, Neuronal ion-channel dynamics in silicon, in:
Proceedings of the IEEE International Symposium on Circuits and Systems
(ISCAS), 2006, pp. 3614–3617.

[145] J. Arthur, K. Boahen, Learning in silicon: timing is everything, Advances in
Neural Information Processing Systems 18 (2006) 75.

[146] M.D. Corp., MD1220 neural bit slice, data sheet, lake Mary, March 1990.
[147] N. Mauduit, M. Duration, J. Gobert, Lneuro 1.0: a piece of hardware LEGO for

building neural network systems, IEEE Transactions on Neural Networks
3 (1992) 414–422.

[148] Neurologix, NLX420 data sheet, Neurologix, Inc., 800 Charcot Av., Suite 112,
San Jose, CA, USA, 1992.

[149] R.W. Means, L. Lisenbee, Extensible linear floating point SIMD neurocom-
puter array processor, in: Proceedings of International Joint Conference on
Neural Networks, vol. I, Seattle, Washington, 1991, pp. 587–592.

[150] J.A. Fisher, Very long instruction word architectures and the ELI-512, in:
Proceedings of the 10th Annual International Symposium on Computer
Architecture, ACM, New York, NY, USA, 1983, pp. 140–150.

[151] N. Bruels, MA16—programmable VLSI array processor for neuronal net-
works and matrix-based signal processing, user description, Technical
Report 1.3, Siemens AG, Corporate Research and Development Division,
Munich, Germany, October 1993.

[152] J.H. Chung, H. Yoon, S.R. Maeng, A systolic array exploiting the inherent
parallelisms of artificial neural networks, Microprogramming and Micro-
processors 33 (3) (1992) 145–159.

[153] H. Amin, K.M. Curtis, B.R. Hayes-Gill, Two-ring systolic array network for
artificial neural networks, in: IEE Proceedings of Circuits, Devices, and
Systems, 1999, pp. 225–230.

[154] L. Breiman, Bagging predictors, Machine Learning 24 (2) (1996) 123–140.
[155] M. Mumford, D. Andes, L. Kern, U. Center, C. Lake, The Mod 2 neurocomputer

system design, IEEE Transactions on Neural Networks 3 (3) (1992) 423–433.
[156] S. Churcher, A.F. Murray, H.M. Reekie, Programmable analogue VLSI for

radial basis function networks, Electronic Letters 29 (1993) 1603–1605.
[157] J. Ortiz, C. Ocasio, Analog hardware model for morphological neural

networks, in: Proceedings of the IASTED International Conference on Neural
Networks and Computational Intelligence, ACTA Press, Anaheim, CA, USA,
2003, pp. 040–044.

[158] S. Bayraktaroglu, A.S. Ogrenci, G. Dundar, S. Balkr, E. Alpaydin, ANNSyS: an
analog neural network synthesis system, Neural Networks 12 (1999) 325–338.

[159] P. Masa, K. Hoen, H. Wallinga, A high-speed analog neural processor, IEEE
Micro (1994) 40–50.

[160] R. Douglas, K. Martin, A functional microcircuit for cat visual cortex,
Physiology 440 (1991) 735–769.

[161] B. Ahmed, J.C. Anderson, R.J. Douglas, K.A. Martin, C. Nelson, Polyneuronal
innervation of spiny stellate neurons in cat visual cortex, Comparative
Neurology 341 (1) (1994) 39–49.

[162] R.J. Douglas, M.A. Mahowald, K.A.C. Martin, Hybrid analog–digital archi-
tectures for neuromorphic systems, in: International Conference on Neural
Networks, 1994, pp. 1848–1853.

[163] Y. Maeda, H. Hirano, Y. Kanata, A learning rule of neural networks
via simultaneous perturbation and its hardware implementation, Neural
Networks 8 (2) (1995) 251–259.

[164] Y. Maeda, R.J.P. de Figueiredo, Learning rules for neuro-controller via
simultaneous perturbation, IEEE Transactions on Neural Networks 8 (1997)
1119–1130.

[165] D. Terman, D. Wang, Global competition and local cooperation in a network
of neural oscillators, Physica D 81 (1–2) (1995) 148–176.



J. Misra, I. Saha / Neurocomputing 74 (2010) 239–255254
[166] Xilinx, Virtex-ii pro and virtex-ii pro x platform fpgas: complete data sheet, 2007.
URL: /http://www.xilinx.com/support/documentation/data_sheets/ds083.pdfS.

[167] Stratix, Stratix III FPGA device family overview, 2007, URL: /http://www.
altera.com/products/devices/stratix3/overview/st3-overview.html#notesS.

[168] S. Himavathi, D. Anitha, A. Muthuramalingam, Feedforward neural network
implementation in FPGA using layer multiplexing for effective resource
utilization, IEEE Transactions on Neural Networks 18 (3) (2007) 880–888.

[169] P. Vas, Sensorless Vector and Direct Torque Control, Oxford University Press,
USA, 1998.

[170] K. Rice, T. Taha, C. Vutsinas, Scaling analysis of a neocortex inspired
cognitive model on the Cray XD1, The Journal of Supercomputing 47 (1)
(2009) 21–43.

[171] D. George, J. Hawkins, A hierarchical bayesian model of invariant pattern
recognition in the visual cortex, Proceedings of the IEEE International Joint
Conference on Neural Networks, vol. 3, 2005, pp. 1812–1817.

[172] S. Johnston, G. Prasad, L.P. Maguire, T.M. McGinnity, Comparative investiga-
tion into classical and spiking neuron implementations on FPGAs, in: ICANN
(1), 2005, pp. 269–274.

[173] B.R. Gaines, Stochastic computing systems, Advances in Information
Systems Science 2 (1969) 37–172.

[174] T. Szabo, L. Antoni, G. Horvath, B. Feher, A full-parallel digital implementa-
tion for pre-trained NNs, IEEE–INNS–ENNS International Joint Conference
on Neural Networks, vol. 2, 2000, p. 2049.

[175] G. Palm, F. Kurfess, F. Schwenker, A. Strey, Neural associative memories, in:
Associative Processing and Processors, 1997, pp. 284–306.

[176] D.J. Willshaw, O.P. Buneman, H.C. Longuet-Higgins, Non-holographic
associative memory, Nature 222 (1969) 960–962.

[177] M.H. Hassoun (Ed.), Associative Neural Memories, Oxford University Press,
Inc., New York, NY, USA, 1993.

[178] W. Bledsoe, I. Browning, Pattern recognition and reading by machine, in:
Proceedings of Eastern Joint Computer Conference, vol. II, Boston, 1959, pp.
225–232.

[179] T.B. Ludermiry, A. de Carvalhoz, A.P. Bragax, M.C.P. de Souto, Weightless
neural models: a review of current and past works, Neural Computing
Surveys 2 (1999) 41–61.

[180] T.G. Clarkson, C.K. Ng, D. Gorse, J.G. Taylor, Learning probabilistic RAM nets using
VLSI structures, IEEE Transactions on Computers 41 (12) (1992) 1552–1561.

[181] L. Chua, L. Yang, Cellular neural networks: theory, IEEE Transactions on
Circuits and Systems 35 (10) (1988) 1257–1272.

[182] L. Chua, L. Yang, Cellular neural networks: applications, IEEE Transactions
on Circuits and Systems 35 (10) (1988) 1273–1290.

[183] L.O. Chua, T. Roska, The CNN paradigm, IEEE Transactions on Circuits and
Systems I: Fundamental Theory and Applications 40 (1993) 147–156.

[184] Z. Nagy, P. Szolgay, Configurable multilayer CNN-UM emulator on FPGA,
IEEE Transactions on Circuits and Systems I: Fundamental Theory and
Applications 50 (6) (2003) 774–778.

[185] Z. Nagy, Z. Voroshazi, P. Szolgay, An emulated digital retina model
implementation on FPGA, in: Ninth International Workshop on Cellular
Neural Networks and Their Applications, 2005, pp. 278–281.

[186] T. Roska, J. Vandewalle, Cellular neural networks, The Circuits and Filters
Handbook, second ed., CRC Press, Boca Raton, FL, 2003, pp. 1075–1092
(Chapter 39).

[187] L. Chua, T. Roska, Cellular Neural Networks and Visual Computing: Foundation
and Applications, Cambridge University Press, Cambridge, UK, 2002.

[188] T. Roska, A. Rodriguez-Vazquez, Towards the Visual Microprocessor: VLSI
Design and the Use of Cellular Neural Network Universal Machines, John
Wiley & Sons Ltd., Chichester, England, 2000.

[189] T. Roska, L. Chua, The CNN universal machine: an analogic array computer,
IEEE Transactions on Circuits and Systems II: Analog and Digital Signal
Processing 40 (3) (1993) 163–173.

[190] G. Linan, S. Espejo, R. Dominguez-Castro, A. Rodriguez-Vazquez, ACE4k: an
analog I/O 64�64 visual microprocessor chip with 7-bit analog accuracy,
International Journal of Circuit Theory and Applications 30 (2–3) (2002) 89–116.

[191] M. Yalcin, J. Suykens, J. Vandewalle, Spatiotemporal pattern formation in the
ACE16k CNN chip, in: Proceedings of the IEEE International Symposium on
Circuits and Systems, 2005, pp. 5814–5817.

[192] L. Carranza, F. Jimenez-Garrido, G. Linan-Cembrano, E. Roca, S. Meana, A.
Rodriguez-Vazquez, ACE16k based stand-alone system for real-time pre-
processing tasks, in: Proceedings of SPIE, vol. 5837, 2005, p. 872.

[193] Á. Zarándy, P. Földesy, P. Szolgay, S. T ~okés, C. Rekeczky, T. Roska, Various
implementations of topographic, sensory, cellular wave computers, in: IEEE
International Symposium on Circuits and Systems—ISCAS (6), IEEE
Computer Society, Piscataway, NJ, USA, 2005, pp. 5802–5805.

[194] Z. Voroshazi, A. Kiss, Z. Nagy, P. Szolgay, Implementation of embedded
emulated-digital CNN-UM global analogic programming unit on FPGA and
its application, International Journal of Circuit Theory and Applications 36
(5–6) (2008) 589–603.

[195] Z. Nagy, P. Szolgay, Configurable multilayer CNN-UM emulator on FPGA,
IEEE Transactions on Circuits and Systems I: Fundamental Theory and
Applications 50 (6) (2003) 774–778.

[196] T. Ho, P. Lam, C. Leung, Parallelization of cellular neural networks on GPU,
Pattern Recognition 41 (8) (2008) 2684–2692.

[197] M. Herlihy, N. Shavit, The Art of Multiprocessor Programming, Morgan
Kaufmann, San Francisco, CA, USA, 2008.

[198] Synaptics, Synaptic touch pad, last accessed at November 22, 2009, URL:
/http://www.synaptics.com/products/touchpad.cfmS.
[199] M. Mahowald, An Analog VLSI System for Stereoscopic Vision, Kluwer
Academic Publishers, Norwell, MA, USA, 1994.

[200] A. Mortara, E.A. Vittoz, A communication architecture tailored for analog
VLSI artificial neural networks: intrinsic performance and limitations, IEEE
Transactions on Neural Networks 5 (1994) 459–466.

[201] K. Boahen, A burst-mode word-serial address-event channel—i: trans-
mitter design, IEEE Transactions on Circuits and Systems I 51 (7) (2004)
1269–1280.

[202] R.S. Gotarredona, M. Oster, P. Lichtsteiner, A.L. Barranco, R.P. Vicente, F.G.
Rodraguez, H.K. Riis, T. Delbrck, S.C. Liu, AER building blocks for multi-layer
multi-chip neuromorphic vision systems, in: Y. Weiss, B. Schölkopf, J. Platt
(Eds.), Advances in Neural Information Processing Systems, Vol. 18, MIT
Press, Cambridge, MA, 2006, pp. 1217–1224.

[203] S. Bamford, A. Murray, D. Willshaw, Large developing axonal arbors using a
distributed and locally-reprogrammable address–event receiver, in: Pro-
ceedings of the IEEE International Joint Conference on Neural Networks,
2008, pp. 1464–1471.

[204] G. Indiveri, A neuromorphic VLSI device for implementing 2-D selective attention
systems, IEEE Transactions on Neural Networks 12 (6) (2003) 1455–1463.

[205] A. Serrano-Gotarredona, T. Serrano-Gotarredona, A.J. Acosta-Jiménez, B.
Linares-Barranco, An arbitrary kernel convolution AER-transceiver chip for
real-time image filtering, in: Proceedings of the IEEE International Symposium
on Circuits and Systems (ISCAS), Kos, Greece, 2006, pp. 3145–3148.

[206] K. Fukushima, Y. Yamaguchi, M. Yasuda, S. Nagata, An electronic model of
the retina, Proceedings of the IEEE 58 (12) (1970) 1950–1951.

[207] J. Kramer, An on/off transient imager with event-driven, asynchronous read-
out, in: IEEE International Symposium on Circuits and Systems, vol. II,
Phoenix, AZ, USA, 2002, pp. 165–168.

[208] P. Lichtsteiner, C. Posch, T. Delbruck, An 128�128 120 dB 15us-latency temporal
contrast vision sensor, IEEE Journal of Solid State Circuits 43 (2) (2007) 566–576.

[209] K. Zaghloul, K. Boahen, Optic nerve signals in a neuromorphic chip I: outer
and inner retina models, IEEE Transactions on Biomedical Engineering 51
(4) (2004) 657–666.

[210] K. Zaghloul, K. Boahen, Optic nerve signals in a neuromorphic chip II: testing and
results, IEEE Transactions on Biomedical Engineering 51 (4) (2004) 667–675.

[211] K. Zaghloul, K. Boahen, A silicon retina that reproduces signals in the optic
nerve, Journal of Neural Engineering 3 (4) (2006) 257–267.

[212] K. Boahen, Neuromorphic microchips, Special Editions 16 (3) (2006) 20–27.
[213] R.F. Lyon, C. Mead, An analog electronic cochlea, IEEE Transactions on

Acoustics, Speech, and Signal Processing 36 (7) (1988) 1119–1133.
[214] J. Lazzaro, C. Mead, A silicon model of auditory localization, Neural

Computation 1 (1989) 41–70.
[215] R. Sarpeshkar, R. Lyon, C. Mead, A low-power wide-dynamic-range analog VLSI

cochlea, Analog Integrated Circuits and Signal Processing 16 (3) (1998) 245–274.
[216] V. Chan, S. Liu, A. van Schaik, AER EAR: a matched silicon cochlea pair with

address event representation interface, IEEE Transactions on Circuits and
Systems I 54 (1) (2007) 48–59.

[217] T.S. Lande (Ed.), Neuromorphic Systems Engineering: Neural Networks in
Silicon, Kluwer Academic Publishers, Norwell, MA, USA.

[218] W. Maass, Noisy spiking neurons with temporal coding have more
computational power than sigmoidal neurons, in: M.C. Mozer, M.I. Jordan,
T. Petsche (Eds.), Advances in Neural Information Processing Systems, vol. 9,
The MIT Press, Cambridge, MA, USA, 1997, pp. 211–217.

[219] A. Jahnke, T. Schoenauer, U. Roth, K. Mohraz, H. Klar, Simulation of spiking
neural networks on different hardware platforms, in: Proceedings of ICANN,
1997, pp. 1187–1192.

[220] E. Ros, E. Ortigosa, R. Agis, R. Carrillo, M. Arnold, Real-time computing
platform for spiking neurons (RT-spike), IEEE Transactions on Neural
Networks 17 (4) (2006) 1050.

[221] Q. Zou, Y. Bornat, J. Tomas, S. Renaud, A. Destexhe, Real-time simulations of
networks of Hodgkin–Huxley neurons using analog circuits, Neurocomput-
ing 69 (10–12) (2006) 1137–1140.

[222] R. Vogelstein, U. Mallik, J. Vogelstein, G. Cauwenberghs, Dynamically
reconfigurable silicon array of spiking neurons with conductance-based
synapses, IEEE Transactions on Neural Networks 18 (1) (2007) 253.

[223] K. Zhang, I. Ginzburg, B. McNaughton, T. Sejnowski, Interpreting neuronal
population activity by reconstruction: unified framework with application
to hippocampal place cells, Journal of Neurophysiology 79 (2) (1998) 1017.

[224] T. Koickal, L. Gouveia, A. Hamilton, A programmable spike-timing based
circuit block for reconfigurable neuromorphic computing, Neurocomputing
72 (16–18) (2009) 3609–3616.

[225] T. Koickal, L. Gouveia, A. Hamilton, A programmable time event circuit block
for reconfigurable neuromorphic computing, in: Lecture Notes in Computer
Science, vol. 4507, 2007, pp. 430–437.

[226] P. Häfliger, M. Mahowald, L. Watts, A spike based learning neuron in analog
VLSI, Advances in Neural Information Processing Systems 9 (1996) 692–698.

[227] E. Chicca, G. Indiveri, R. Douglas, An adaptive silicon synapse, in:
Proceedings of the IEEE International Symposium on Circuits and Systems
(ISCAS), vol. V, Bangkok, 2003, pp. 81–84.

[228] G. Indiveri, E. Chicca, R. Douglas, A VLSI array of low-power spiking neurons
and bistable synapses with spike-timing dependent plasticity, IEEE
Transactions on Neural Networks 17 (2006) 211–221.

[229] P. Häfliger, Adaptive WTA with an analog VLSI neuromorphic learning chip,
IEEE Transactions on Neural Networks 18 (2) (2007) 551–572.

[230] Y. Chen, S. Hall, L. McDaid, O. Buiu, P. Kelly, On the design of a low power
compact spiking neuron cell based on charge coupled synapses, in:

http://www.xilinx.com/support/documentation/data_sheets/ds083.pdf
http://www.altera.com/products/devices/stratix3/overview/st3-overview.html#notes
http://www.altera.com/products/devices/stratix3/overview/st3-overview.html#notes
http://www.synaptics.com/products/touchpad.cfm


J. Misra, I. Saha / Neurocomputing 74 (2010) 239–255 255
Proceedings of the IEEE International Joint Conference on Neural Networks
(IJCNN), Vancouver, Canada, 2006, pp. 1511–1517.

[231] Y. Chen, S. Hall, L. McDaid, O. Buiu, P. Kelly, A silicon synapse based on a
charge transfer device for spiking neural network applications, in:
Proceedings of the Third International Symposium on Neural Networks
(ISNN), Chengdu, China, 2006, pp. 1366–1373.

[232] A. Ghani, T.M. McGinnity, L. Maguire, Area efficient architecture for large
scale implementation of biologically plausible spiking neural networks on
reconfigurable hardware, in: Proceedings of the International Conference on
Field Programmable Logic and Applications, Madrid, Spain, 2006, pp. 1–2.

[233] H.J. Caulfield, Optical computing, in: R.G. Driggers (Ed.), Encyclopedia of
Optical Engineering 1:1, CRC Press, New York, NY, USA, 2003, pp.
1613–1620.

[234] A.D. Fisher, W.L. Lippincott, J.N. Lee, Optical implementations of associative
networks with versatile adaptive learning capabilities, Applied Optics 26
(1987) 5039–5052.

[235] N.H. Farhat, Optoelectronic analogs of self-programming neural nets:
architectures and methodologies for implementing fast stochastic learning
by simulated annealing, Applied Optics 26 (1987) 5093–5103.

[236] P.E.X. Silveira, Optoelectronic neural networks, in: R.G. Driggers (Ed.),
Encyclopedia of Optical Engineering 1:1, CRC Press, New York, NY, USA,
2003, pp. 1887–1902.

[237] D.C. Burns, I. Underwood, A.F. Murray, D.G. Vass, An optoelectronic neural
network with temporally multiplexed grey-scale weights, in: Proceedings of
the Fourth International Conference on Microelectronics for Neural Net-
works and Fuzzy Systems, 1994, pp. 3–7.

[238] G. Moagar-Poladian, M. Bulinski, Reconfigurable optical neuron based on
the transverse Pockels effect, Journal of Optoelectronics and Advanced
Materials 4 (4) (2002) 929–936.

[239] A. Shortt, J.G. Keating, L. Moulinier, C.N. Pannell, Optical implementation of
the Kak neural network, Information Sciences—Informatics and Computer
Science 171 (1–3) (2005) 273–287.

[240] S. Kak, New algorithms for training feedforward neural networks, Pattern
Recognition Letters 15 (3) (1994) 295–298.

[241] K.W. Tang, S. Kak, A new corner classification approach to neural network
training, Circuits, Systems, and Signal Processing 17 (4) (1998) 459–469.

[242] R. Pashaie, N.H. Farhat, Optical realization of bio-inspired spiking neurons in
the electron trapping material thin film, Applied Optics 46 (35) (2007)
8411–8418.

[243] H. Lamela, M. Ruiz-Llata, C. Warde, Optical broadcast interconnection neural
network, Optical Engineering 42 (2003) 2487–2488.

[244] M. Ruiz-Llata, H. Lamela-Rivera, Image identification system based on an optical
broadcast neural network processor, Applied Optics 44 (12) (2005) 2366–2376.

[245] F.T.S. Yu, C.M. Uang, Optical neural networks, in: R.G. Driggers (Ed.),
Encyclopedia of Optical Engineering 1:1, CRC Press, New York, NY, USA,
2003, pp. 1763–1777.

[246] A. Ayoub, S. T~okés, L. Orzó, Evolution of the programmable optical array
computer (POAC), in: Proceedings of IEEE International Workshop on Cellular
Neural Networks and their Applications, Budapest, Hungary, 2004, pp. 64–69.

[247] P. Rocke, B. McGinley, F. Morgan, J. Maher, Reconfigurable hardware
evolution platform for a spiking neural network robotics controller, in: P.C.
Diniz, E. Marques, K. Bertels, M.M. Fernandes, J.M.P. Cardoso (Eds.), ARC of
Lecture Notes in Computer Science, vol. 4419, Springer, Berlin, Heidelberg,
Germany, 2007, pp. 373–378.

[248] Annon, The intelligent flight control: advanced concept program final
report, Technical Report, The Boeing Company, 1999.

[249] W. Geng, S. Huanye, L. Tiansheng, Development of an embedded intelligent
flight control system for the autonomously flying unmanned helicopter sky-
explorer, in: Embedded Systems—Modeling Technology and Applications,
Springer, Netherlands, 2006, pp. 121–130.

[250] K. Boahen, Neurogrid: emulating a million neurons in the cortex, in: Grand
Challenges in Neural Computation, 2006, p. 6702.

[251] C. Johansson, A. Lansner, Towards cortex sized artificial neural systems,
Neural Networks 20 (1) (2007) 48–61.

[252] F.M. Salam, T. Yamakawa (Eds.), Special Issue on Micro-Electronic Hardware
Implementation of Soft Computing: Neural and Fuzzy Networks with
Learning, vol. 25, 1999.

[253] B. Linares-Barranco, A.G. Andreou, G. Indiveri, T. Shibata, Special issue on
neural networks hardware implementation, IEEE Transactions on Neural
Networks 14 (5) (2003).

[254] D. Anguita, I. Baturone, J. Miller (Eds.), Special issue on hardware implementa-
tions of soft computing techniques, Applied Soft Computing 4 (3) (2004).

[255] D. Braendler, Implementing neural hardware with on chip training on field
programmable gate arrays, Ph.D. Thesis, Swinburne University of Technol-
ogy, Melbourne, Australia, 2002.

[256] O. Turel, Devices and circuits for nanoelectronic implementation of artificial
neural networks, Ph.D. Thesis, Stony Brook University, NY, 2007.

[257] M. Giulioni, Networks of spiking neurons and plastic synapses: implemen-
tation and control, Ph.D. Thesis, Universit degli Studi di Roma ‘La Sapienza’,
Italy, 2008.

[258] B. Girau, Activity report—neuromimetic intelligence, Technical Report,
INRIA, Project Team CORTEX, 2006, URL: /http://www.inria.fr/rapportsacti
vite/RA2006/cortex/cortex.pdfS.

[259] T. Schoenauer, A. Jahnke, U. Roth, H. Klar, Digital neurohardware: principles
and perspectives, in: Proceedings of Neuronal Networks in Applications,
Magdeburg, Germany, 1998, pp. 101–106.
[260] M. Djurfeldt, M. Lundqvist, C. Johansson, M. Rehn, O. Ekeberg, A. Lansner,
Brain-scale simulation of the neocortex on the IBM Blue Gene/L super-
computer, IBM Journal of Research and Development 52 (1) (2008) 31–41.

[261] DARPA, Systems of neuromorphic adaptive plastic scalable electronics
(SyNAPSE), /http://www.darpa.mil/dso/solicitations/BAA08-28.pdfS, Last
accessed on January 20, 2010.

[262] J. Fieres, J. Schemmel, K. Meier, Realizing biological spiking network models
in a configurable wafer-scale hardware system, in: Proceedings of IEEE
International Joint Conference on Neural Networks (IJCNN), IEEE World
Congress on Computational Intelligence, 2008, pp. 969–976.

[263] J. Schemmel, J. Fieres, K. Meier, Wafer-scale integration of analog neural
networks, in: IEEE International Joint Conference on Neural Networks (IJCNN),
IEEE World Congress on Computational Intelligence, 2008, pp. 431–438.

[264] J. Kahle, M. Day, H. Hofstee, C. Johns, T. Maeurer, D. Shippy, Introduction to
the cell multiprocessor, IBM Journal of Research and Development 49 (4/5)
(2005) 589.

[265] IBM, IBM cell broadband engine technology, 2008, URL: /http://www-03.
ibm.com/technology/cell/S.

[266] S. Al-Sarawi, D. Abbott, P. Franzon, A review of 3-D packaging technology,
IEEE Transactions on Components, Packaging, and Manufacturing Technol-
ogy, Part B: Advanced Packaging 21 (1) (1998) 2–14.

[267] K.K. Likharev, D.B. Strukov, CMOL: Devices Circuits and Architectures,
Springer, Berlin, Heidelberg, Germany, 2005, pp. 447–477 (Chapter 16).

[268] K.K. Likharev, CMOL: second life for silicon? Journal of Microelectronics
39 (2) (2008) 177–183.

[269] Ö. Türel, J. Lee, X. Ma, K. Likharev, Architectures for nanoelectronic
implementation of artificial neural networks: new results, Neurocomputing
64 (2005) 271–283.

[270] J.H. Lee, K. Likharev, CMOL crossnets as pattern classifiers, Proceedings of
Eighth International Work-Conference on Artificial Neural Networks:
Computational Intelligence and Bioinspired Systems, Lecture Notes in
Computer Science, vol. 3512, Springer, Berlin, Heidelberg, Germany, 2005,
pp. 446–454.

[271] J.H. Lee, K. Likharev, In situ training of CMOL crossnets, in: Proceedings of the
International Joint Conference on Neural Networks, 2006, pp. 5026–5034.

[272] J.H. Lee, X. Ma, K. Likharev, CMOL crossnets: possible neuromorphic
nanoelectronic circuits, in: Y. Weiss, B. Schölkopf, J. Platt (Eds.), Advances
in Neural Information Processing Systems, Vol. 18, MIT Press, Cambridge,
MA, 2006, pp. 755–762.

[273] J.H. Lee, CMOL crossnets ad defect-tolerant classifiers, Ph.D. Thesis, Stony
Brook University, NY, 2007.

[274] M. Conrad, The lure of molecular computing, IEEE Spectrum 23 (1988) 55–60.
[275] M. Conrad, K.-P. Zauner, Molecular computing with artificial neurons,

Communications of the Korea Information Science Society 18 (8) (2000) 78–89.
[276] D. Haronian, A. Lewis, Elements of a unique bacteriorhodopsin neural network

architecture, International Journal of Neural Systems 10 (3) (2000) 191–197.
[277] D. Ventura, On the utility of entanglement in quantum neural computing,

Proceedings of the International Joint Conference on Neural Networks, vol.
2, 2001, pp. 1565–1570.

[278] F. Alibart, S. Pleutin, D. Guérin, C. Novembre, S. Lenfant, K. Lmimouni, C. Gamrat,
D. Vuillaume, An organic nanoparticle transistor behaving as a biological
spiking synapse, Advanced Functional Materials 20 (2) (2009) 330–337.
Janardan Misra received his B.Tech. degree in Computer
Science and Engineering from Institute of Engineering
and Technology, Lucknow, India in 1999 and M.Tech.
degree in Computer Science from Indian Statistical
Institute, Kolkata, India in 2001. From 2001 to 2002, he
was associated with the Texas Instruments India (Pvt.)
Ltd, India. Thereafter he received his M.Sc. degree in
Computer Science from National University of Singapore
in 2005. After a brief teaching tenure between 2005 and
2006, he has been associated with Research lab at HTS
Research, Bangalore, India. His research interests include
ANN hardware, machine learning, artificial life, enterprise

security, and formal methods.
Indranil Saha received his B.Tech. degree in Electro-
nics and Communication Engineering from Kalyani
Government Engineering College, Kalyani, India in
2003 and M.Tech. degree in Computer Science from
Indian Statistical Institute, Kolkata, India in 2005. From
2005 to 2008, he was associated with the Research lab
at Honeywell Technology Solutions, Bangalore, India.
Presently, he is a graduate student at Computer
Science Department of University of California, Los
Angeles. His research interests include hardware
neural networks, formal methods, and embedded
software reliability.

http://www.inria.fr/rapportsactivite/RA2006/cortex/cortex.pdf
http://www.inria.fr/rapportsactivite/RA2006/cortex/cortex.pdf
http://www.darpa.mil/dso/solicitations/BAA08-28.pdf
http://www-03.ibm.com/technology/cell/
http://www-03.ibm.com/technology/cell/

	Artificial neural networks in hardware: A survey of two decades of progress
	Introduction
	Evaluation parameters and classification
	Hardware neural network classification

	Hardware approaches to neuronal design
	Digital neuron
	Analog neuron
	Silicon implementation of spiking neuron and its synaptic dynamics

	Hardware neural network chips
	Digital neurochips
	Analog neurochips
	Hybrid neurochips
	FPGA based implementations
	Other implementations
	Associative neural memories
	RAM based implementations


	CNN implementations
	Neuromorphic HNNs
	Spiking neural network hardware

	Optical neural networks
	Conclusions and discussion
	References




