Modeling and Verification of TTCAN Startup Protocol Using Synchronous
Calendar

Indranil Saha and Suman Roy Kuntal Chakraborty
HTS(Honeywell Technology Solutions) Research Indian Statistical Institute
151/1 Doraisanipalya, Bannerghatta Road 203 Barrackpore Trunk Road

Bangalore 560 076, India Kolkata 700108, India
{indranil.saha, suman.rp@honeywell.com mtc0502@isical.ac.in
Abstract this issue using CAN is to extend the standard CAN

protocol to a time triggered protocol (TTCAN) [6]. In

We describe the modeling and verification of TTCAN TTCAN, the communication is based on the periodic
startup protocol using SAL model checker. For the transmission of aeference messadey a special node
modeling purposes we propose a new modeling frame-calledtime masterThe period between two consecutive
work called Synchronous Calendar which can be seenreference messages is called basic cycle(Figure 1).
as an adaptation of Calendar based models introduced This allows to introduce a global network time across
by Duterte and Sorea. A Synchronous Calendar can the system with high precision. Based on this time dif-
express dense time systems without relying on contin-ferent messages are assigned to different time windows
uously varying clocks and supports synchronous mes-within a basic cycle. A big advantage of TTCAN com-
sage transmission. We capture both fault-free and fault- pared to classical scheduling systems is the possibility to
tolerant aspects of startup algorithm of TTCAN in two transmit event triggered messages in cergabitrating
different models and verify the safety and liveness prop-time windowsas well.
erties for them. Our verification technique relies on in- TTCAN is built on the top of CAN protocol using
duction and abstraction methods which are supported a Time-Triggered Architecture (TTA). In time triggered
by SAL model checker. To our knowledge this is the firstarchitectures all system activities are initiated by the
work towards a formal analysis of TTCAN startup pro- progression of time [11]. All nodes should be syn-

tocol. chronized in time and every activity in the network is
_ time stamped using the global time as defined by the
1 Introduction time master. The message-schedule can be determined

prior to the start of the system because all messages

In modern day automobiles the communication be- are allocated time on the bus at the design level. For
tween micro-controllers, sensors and actuators is widely proper operation, time-triggered architectures depend on
based on event triggered communication on CAN [9] SOme basic algorithms, vizous guardian window tim-
protocol. The arbitration mechanism of this protocol ing, group membershiglique avoidancenon-blocking
ensures that all messages are transferred according tdvrite, clock synchronizatiorand startup Among all
the priority of their identifiers and the message with the these algorithms, startup algorithms are exciting targets
highest priority is always delivered. For the next gen- for formal verification as the nodes of the system inter-
eration vehicles some mission critical subnetwoeks, act in interesting ways. In this work we model and ver-
x-by-wire systems (xbwgg] will require additional de- ify the fault-free and fault-tolerant startup algorithms for
terministic behavior in communication during service. TTCAN using the model checker SAL [12].

Even at maximum bus load, transmission of all safety SAL (Symbolic Analysis Laboratory) is a framework
related messages must be guaranteed. One way t0 SOlVgy, yhe specification and analysis of concurrent systems.

*A part of the work was done when the author was a summer intern It COUSiStS of the _SAL language [2]’ which pr(_)VideS
at HTS, Bangalore during May-July’06. notations for specifying state machines and their prop-

Time Windows for messg%s

— - ~

y - | \:\::i::-_\ S
- - P | ~ . = - \::_\‘\‘\
| | | L.
. . A Exclusi .
erence Exclusive Exclusive Arbitrating Free window erence Exclusive
message window window window window message window

Global Time
Figure 1. State diagram of a general node for fault-free startup

erties, and the SAL system [12] that provides model of fault-free and fault-tolerant startup protocol by using
checkers and other tools for analyzing properties of stateSynchronous Calendar based modeling framework have
machine specifications written in SAL. This tool helps been described in section 5. Interesting properties rel-
analyzing systems that combine real-valued and discreteevant to these startup algorithms are discussed in sec-
state variables and can then apply to real-time systemstion 6 and induction and abstraction based verification
with a dense time model. SAL is a generalist tool, in- methodologies have also been described. Finally, we
tended for the modeling and verification of discrete tran- conclude in Section 7.

sition systems, and not for systems with continuous dy-

namics. As a consequence, existing models such as Related Work

timed automata [1], which employ continuous clocks,

do not fit the SAL framework very well. Modeling and verification of startup protocols for
To overcome this problem Dutertre and Sorea [3, 4] time-triggered architectures is a very active field of re-
proposed a new class of timed transition systems thatsearch in the recent years, as witnessed by a number of
use dense time, but do not require continuously varying works in this area [3, 13, 16, 17, 18]. There are two
state variables, and are then better suited to SAL. Theypjeces of work on model-checking TTA startup algo-
borrow the concepts of these models from the eventrithm in the literature. The first one has been carried
calendars [10, 14] used in computer simulation of dis- out by Steiner et. al. [17] using SAL model checker.
crete event systems and propose two modeling frame-This is a discrete time modeling which uses an integer
works: Timeout based model which can be used for counter to model the propagation of time. Exhaustive
modeling system with no message passing and Calen{ault simulation has been undertaken in the work. The
dar based model which is suitable for modeling sys- verification of TTA startup algorithm ensures a safe and
tems where message transmission is asynchronous withimely system startup in the presence of one faulty com-
bounded delay. As message passing is synchronous (n@onent, which can be either a faulty node or a faulty
transmission delay between the sender and the receiverhub. Dutertre and Sorea [3] carried out continuous time
in TTCAN [7] none of these frameworks can be directly modeling of TTA startup using SAL model checker. In
used for modeling its startup algorithm. We propose a this work, continuous time dynamics have been cap-
new modeling framework called Synchronous Calendar, tured by using Calendar based model, where a global
which can capture synchronous message transmission. data structureCalendarhas been used to capture mes-
The remainder of the paper is organized as follows. sage transmission delays. They have modeled the pro
In section 2 we mention some related works carried tocol with an active hub that is assumed to be reliable,
out in the past on modeling and verification of startup but a single node may be Byzantine faulty, and can at-
protocols for some time-triggered architectures. In sec- tempt to broadcast arbitrary frames at any time. Model-
tion 3 we discuss fault-free and fault-tolerant startup al- checking of FlexRay startup algorithm has been carried
gorithms of TTCAN. In section 4 we introduce Synchro- out by Steiner [16] using SAL model checker. In this
nous Calendar as a new modeling framework. Modeling work, he has done discrete time modeling of the FlexRay

startup algorithm, the time model being similar to the chronizes with the existing time master and then tries to
one in [17]. Pike and Johnson present a formal verifi- become time master by sending its own reference mes-
cation of the SPIDER Reintegration Protocol [13] using sage at the start of the next basic cycle. If more than one
SAL model checker. Reintegration protocol is similar potential time masters participate in this arbitration, the
to Startup protocol, the only difference is unlike Startup potential time master with the highest priority wins the
protocol, Reintegration protocol does not run during sys- arbitration. The protocol ensures that under error free
tem powerup, rather a non-faulty node outside the oper-condition the potential time master with the highest pri-
ational clique joins the operational clique through Rein- ority eventually becomes the active time master.
tegration Protocol. Modeling and verification of ASCB- During the startup process the failure of the time mas-
D startup algorithm has been carried out by Weininger ter is recognized by detection of a missing reference
and Cofer [18] using Spin model checker [8]. They message within a short latency. The latency is realized
have introduced an explicit numerical time model, and by a timeout. When this timeout is reached a potential
combined time-modeling capability and the message- time master starts sending the reference message with
transmission capability in a process calls/ironment its global time as content. The bitwise arbitration of
To our knowledge no work has been done on the mod- the standard CAN protocol decides the next time master
eling and verification of startup algorithm of TTCAN among competing potential time masters. Subsequently
startup algorithm which has a potential of being a good the functionality of the time master is reestablished.
case study.

4 A Synchronous Calendar-based Model
3 Startup Protocol of TTCAN
Dutetre and Sorea [3] introduced timeout based

In this section we shall briefly describe the fault- model where state variables include current time t and
free and fault-tolerant startup algorithms for TTCAN. a finite set T of timeouts. In a real-time system with
For correct operation, all the TTCAN nodes should be n processes, the system can be modeled with n timers,
synchronized in time. When the system powers up, all where each timer denotes the next discrete transition for
the nodes start in normal CAN mode of operation. The a process. This kind of modeling technique is very effi-
startup algorithm establishes initial synchronization in cient to model systems where all the discrete transitions
the system. Among all the nodes a subset of nodes cardepend on some timeouts.
participate in the process, and these nodes are qadled Timeout based modeling technique is not applicable
tential time mastersAll the other nodes are callegken- to systems where some discrete transitions do not occur
eral nodes There are more than one potential time mas- due to timeouts, rather occur on receiving messages. To
ters for providing fault-tolerance in the system and there model interaction through message passing event calen-
is a strict order relationship of identifiers of the potential dars are introduced in [3]. A calendar is defined as a
time masters. According to their identifiers their priori- finite set of the formC' = {< e1,t; >, < e, ta >, . .
ties are determined. The lower the identity the higheris . ,< e,,t, >}, wheree; is an event which is scheduled
the priority of the potential time master. The objective of to occur at time;. These calendars are advantageous to
the startup algorithm is to establish the highest priority model a system where the processes communicate asyn-
potential time master as the active time master, and thischronously, and it is known when a message will reach
active time master takes over the responsibility of main- the destination. When a process sends a message, it is
taining synchronization in the system by sending refer- stored in the calendar along with the information when
ence message periodically. First, a potential time masterit is scheduled to be delivered to the receiver. When a
checks whether the bus is empty and if there is a refer-message is received, the corresponding entry is removed
ence message on the bus. If the above is not true, thdrom the calendar.
potential time master sends a reference message with its While calendar-based modeling is appropriate to
identifier. If two potential time masters attempt to send model systems where communication is asynchronous
the reference message at the same time, the arbitratiorwith bounded message propagation delay, it cannot be
mechanism of CAN resolves this contention. Whenever applied to model synchronous communication directly.
a reference message with higher priority is received by On the other hand, timeout based model is not adequate
any potential time master it synchronizes with the exist- in such situations where some discrete transitions are
ing time master. If a reference message with lower pri- event triggered. For example, if some discrete transition
ority is received then the potential time master first syn- occurs due to receiving some message, it cannot be cap-

tured by mere timeout based model. To model this kind
of system it is required to keep track of which processes
are to receive a particular message and whether the same
is received by the receiver, along with the information of
the timeouts for individual processes. For example, in
TTCAN the active time master sends the reference mes-
sage and this message is received by the nodes who are
ready to receive it. As signal propagation time is con-
sidered to be negligible in TTCAN [7], there is no need

to consider the time of delivery of the message, but the
sender and receivers of the messages should be recorded
properly. This can be done by using a flag for every node
present in the network. When a message is sent only the
flags corresponding to the valid receivers are made true.
When a receiver receives the message, the correspond-

time_master

Figure 2. State diagram of a node for fault-
free startup

ing flag is made false.

To capture synchronous communication we introduce

a data structure calleynchronous CalendarA Syn-
chronous Calendar can be formally definedsds = <
s, ' >, wheres is the sender of the message, afid

is the set of boolean variables, whet€| = n is the
number of nodes in the system. For a nedte corre-
sponding flagf; € F is set to true, if sender wants to
send its message o As we are dealing with synchro-
nous communication, only one entry in SC is possible al

a particular time. When there is no entry in SC, we say

that itis EMPTY.

We shall now describe how transitions in the systems

are guided by timeouts and Synchronous Calendar.

e Initial State: In all initial stateso,, we have
o0(t) < min(og(T")) ando(SC) = EMPTY .

e Time Progress:In a stateos, time can progress if
and only if o(t) < min(c(T)) and o(SC)
EMPTY. A time progress transition updates
to min(o (7)) leaving all other state variables un-
changed.

Discrete transitions: They can be enabled in a
states providedo(t) = min(o(T)) or o(SC) #
EMPTY, and they must satisfy the following

rules:
—d'(t) =o(t).
— Yy € T we haveo'(y) = o(y) oro’(y) >
o'(t)
- o(SC) # EMPTY => o/'(SC) =
EMPTY.

- 0(SC) = EMPTY and3y € T such that
o(y) =o(t) =>d'(y) > o' (1)

The above rules imply that time cannot progress if a
synchronous communication is enabled. Discrete tran-
sition may occur due to synchronous communication or
due to a timeout. If both can be enabled at the same time
then the discrete transition for synchronous communi-
cation will get the priority. If the discrete transition is
due to timeout, then the corresponding timeout has to be
increased to a future value.

In some cases it may not be required to increase the
t timeout, for the very next transition for the node is due to
a synchronous communication. For example, in TTCAN
when init timeout occurs for a potential time master, it
is obvious that its next discrete transition will occur af-
ter getting a reference message from the time master. So
apparently it is not required to increase the timeout for
the particular node. But the rules for discrete transition
say that if the discrete transition is due to timeout, the
timeout has to be increased to a future value. This is re-
quired to ensure that(t) < min(o(T)) is an invariant.

In this case, this timeout would be a dummy timeout,

and should be set carefully, so that it is not scheduled
before the discrete transition due to next synchronous
communication.

5 Modeling of TTCAN startup Protocol in
SAL

We shall describe two models for TTCAN startup:
fault-free and fault-tolerant startup model.

5.1 Fault-free Startup Model

The state diagram of a TTCAN node executing
startup algorithm in fault-free scenario is depicted in

Linterested readers are requested to contact the authors to obtain
the SAL models.

Figure 2. The state diagram captures behaviors of bothtential time masters and general nodes respectively.
the potential time masters and the general nodes. Ini- We have modeled all the potential time masters as
tially, all the potential time masters are in thet state a parameterized module. INPUT, OUTPUT, LOCAL,
where they can remain upto an arbitrary amount of time GLOBAL variables for a potential time master have
which is captured as a timeout for this particular state. been specified as follows.

When this init timeout occurs for a potential time mas- o _

ter, it checks whether the bus is empty. If it is so, the POSital ime_masterli: IDENTITYL]: MODULE =

potential time master moves tome masterstate, and INPUT _time: TIME

; OUTPUT timeout: TIME
sends a reference message simultaneously. Henceforth, qyrpyT pe: Pc

we shall call the node itime.masterstate thecurrent GLOBAL ref_message_calendar: SYNCHRONOUS_CALENDAR
time masteror active time masterTimeouts of two po- SLOBAL bus_traffic: BOOLEAN

tential time masters imit state may occur at the same -

time. In this case, arbitration decides which node will A potential time master reads the curreiithe

be the active time master. The winner potential time via an input state variable and exports output vari-
master moves ttime masterstate, all the loser poten- ables corresponding to its locineout and its cur-
tial time masters move twait state. If a node inthe rent statepc. The variablestime and timeout

init state receives a message from the current time masare of type TIME which is actually of a REAL
ter, it discards the message. If a timeout occurs for atype. A potential time master has access to the
node in theinit state and it finds that bus is not empty global structureref _message _calendar , boolean
then it moves to thevait state and waits for the next variablebus _trafic that indicates if there is a node
reference message. Fromait state two transitions are in the time.masterstate, and another boolean variable
possible. When a potential time master in W@t state winner _id that denotes the winner of an arbitration.
receives a reference message, it checks whether its pri- |n the INITIALIZATION section, necessary OUT-

ority is lower than that of the current time master. If the PUT and GLOBAL variables are initialized as follows:
priority of the current time master is greater than its own

priority, then it moves teyncstate. Otherwise the node '“:)'I"i'—:ﬁi’f'o'“

moves toarb_in_nextbasiccyclestate. The nodesinthe timeout IN { x: TIME | time<x AND x<basic_cycle_time};
arb_in_nextbasiccyclestate are synchronized with the ~ ré’-message.calendar = EMPTY_CALENDAR;

current time master. They define their new timeout to
be current time plus basic cycle. The timeouts for the
nodes inarb_in_nextbasiccycle state andime. master
state occur at the same point of time. Now the current
time master checks if it should remain in its present state
or move tosyncstate. If there are some nodes in the
arb_in_nextbasiccycle state, then current time master
loses the arbitration and moves ggncstate. A node

in the arb_in_nextbasiccycle state checks whether it
has won the arbitration. In case it wins, it moves to
time.masterstate. Otherwise it moves gyncstate.

To capture this synchronous behavior of communica-
tion in the start-up process, we use Synchronous Calen
dar. Thisis calledeference _message _calendar
in the model. It holds the id of the sender of reference it to_init:
message, and boolean flags for all potential time masters pc = init AND

EMPTY_CALENDAR is a special value of the
ref _message _calendar with the sender id equal to
0 along with all the flags set to false. It denotes that no
reference message has been sent. In TRANSITION sec-
tion of the module, we specify all the possible transition
of a potential time master by a set of guarded commands.
The usefulness of Synchronous Calendar for the refer-
ence message is best illustrated in the case when some
nodes are in thevait state and some are in timét state,
and there is already an active time master. If a node
in theinit state sees that itsot received _flag is
true, it neglects the reference message by setting its
not _received flag to false.

ref_message_calendar.not_received_flagl[i] = TRUE -->
and general nodes. pc’ = init;
ref_message_calendar’ = ref_message_calendar
SYNCHRONOUS_CALENDAR:TYPE = WITH .not_received_flagl[i] := FALSE

[# master_id : IDENTITY1,
not_received_flagl: ARRAY IDENTITY1 OF BOOLEAN, i . i
not_received_flag2: ARRAY IDENTITY2 OF BOOLEAN When a potential time master moves toait

state, there is already a potential time master in the
time.masterstate, which has already sent a reference
IDENTITY1 andIDENTITY2 denote the IDsof po- message. But the nodes in tivait state discarded that

#,
ref_message_calendar: SYNCHRONOUS_CALENDAR;

reference message when they were initfiestate. Af- AND FORALL(:IDENTITY2): t <= time_out2[]]
ter coming in thevait state when a potential time master gNRDE%é'TSST(fl(SLD\E’l\‘Tﬂgl{ ! tzlm‘('a"_‘gat‘;‘a%[k]
sees itmot received _flag in the calendar as true,

it understands that a new reference message has beeffgk MOPULE =

sent. It moves teyncstate orarb_in_nextbasiccycle INPUT time_outl: TIMEOUT_ARRAY1
state depending on whether current time master’s prior- ~ NPUT time_out2: TIMEOUT_ARRAY2

P . .. e OUTPUT time: TIME
ity is greater or less than its own priority. The transition INITIALIZATION

: ; time = 0
from wait to syncstate is presented below. TRANSITION
) [time_elapses:

1] Walt_to_s_ynCZ time_can_advance(time, time_outl, time_out2) -->
pc = wait AND time’ IN { t: TIME |
ref_message_calendar.not_received_flagl[i] = TRUE is_next_event(t, time_outl, time_out2) }
AND ref_message_higher_priority?(i) = TRUE --> 1

pc’ = sync; END;

timeout’ = time + basic_cycle_time;
ref_message_calendar’ = ref_message_calendar .
WITH .not_received_flagl[i] := FALSE The complete systemttcan _faultfree is

formed by taking the asynchronous composition of the

In the state diagram, only two transitions are possible modules for potential time masters, and general nodes,
for a general node. Initially, all the general nodes are and the clock module.
in init state where they stay upto an arbitrary amount of
time. Then they move twait state, where they waitfor 5.2 Failure Modeling
a reference message from the active time master. Once it
gets a reference message, it becomes synchronized with 1o model fault-tolerant startup only node failure is
the time master and movessyncstate. The module for - taxen into account. It is enough to consider only the
general nodes has been designed in the similar way asajjyre of the active time master, as only the failure of
that of potential time masters. The guarde_d transition for yhe active time master affects the startup procedure. In
a general node fromwait state tosyncstate is presented TTCAN the failures are of failstop kind, that means that

below: when a node becomes faulty, it is no longer capable of
[] wait_to_sync: part|C|pat|r_19 in the execupon_of the algorithm. Wher_1 a
pc=wait AND . _ potential time master which is currently not the active
relmessage calendarnol_tecelved_flag2{l] = TRUE > time master, or a general node fails it would not affect
timeout’ = time + basic_cycle_time; the startup procedure.
ref_message_calendar’ = ref_message_calendar f
WITH not.received flag2[] = FALSE: The state diagram of a TTCAN node for fault-tolerant

startup is shown in Figure 3. All the transitions except
To capture the advancement of time properly, we the transition fromsyncstate towait state are possible
have defined alock module, which takes the timeouts for a potential time master. In this model we add a new
of individual potential time masters and general nodes asstate calledaulty to denote the state of a faulty poten-
INPUT, and outputs the updated time. It uses two func- tial time master. That the active time master is faulty

tions time _can_advance and is _next _event . is detected by all the potential time masters and all the
The functiontime _can _advance returns true if time ~ general nodes by detecting a missing reference message.
progression is possible. The functiisn_next _event The missing reference message is captured by setting its

is used to find out a suitable time point in future where identifier to 0. As 0 does not correspond to the identifier
time can advance to. Thelock module along with ~ of any potential time master, a 0 in the reference mes-

these two functions is presented below. sage identifier conveys the potential time masters and
the general nodes the fact that the startup algorithm has

time_can_advance(time: TIME, time_outl: TIMEOUT_ARRAY1, H

time_out2: TIMEOUT_ARRAY2): BOOLEAN= to be performed ag_aln_.
FORALL(i: IDENTITY1): time < time_outi[i] At the very beginning of the startup process when
AND FORALL(j: IDENTITY2): time < time_out2[i] : ; : ;
AND FORALL(" IDENTITY1) t_here is an actlvg time .master and some pqte.ntlal
ref_message_calendar.not_received_flagl[i] = FALSE time masters are in thevait state, but no node is in
AND FORALL(: IDENTITY2): H H _
ref_message_calendar.not_received_flag2[j] = FALSE; a'lrb,!n,nextba3|ac.:ycleor.syncstate, one of the poten

’ ‘ tial time masters in thwait state should become the ac-

is_next_event(t: TIME, time_outl: TIMEOUT_ARRAY1, tive time master in case of failure of the active time mas-

time_out2: TIMEOUT_AﬁRAYZ): BOOLEAN = i | i
FORALL(:IDENTITY1): t <= time_outli] ter. As the nodes in theait state are not synchronized,

is set to a random natural number between 1 and 100 as
follows:

random_fault IN {x:NATURAL | x > 1 AND x < 100}

Another local variablefault _counter is used
for every potential time master and it is set to zero
during the initialization. Whenever the active time
master sends a reference message, and other poten-
tial time masters receive a reference message, their
fault _counter values are increased by 1. When it
reaches itgandom _fault value, the state of active
time master is changed frotime masterto faulty by
the following guarded command

[1 time_master_to_faulty:
. . c = time_master AND time = timeout
Figure 3. State diagram of a node for fault- P AND fault_counter = random_fault >

tolerant startup ?c’lt=ﬂfaglty; TRUE
ault_flag' = ;
ref_message_calendar’ =

.. . . . set_reference_message(ref_message_calendar, 0);
they cannot participate in the arbitration process. There- winner_id' = 0: ge(rer] 98-)

after moving to thewait state, a potential time master
waits for a basic cycle to receive a reference message. The guarded transition for a node in the wait state to
If no reference message is received during that time, it time.masterstate at the failure of the current active time
becomes the active time master by sending its own ref-master is shown below:
erence message. Note that when the active time mas-))

. . . . [] wait_to_time_master:
ter is faulty and all the potential time masters are in the ™ “,c = "ait AND time = timeout

wait state, whose timeout occurs first among all the po- AND ref_message_calendar.master_id = 0
AND potential_time_master_higher_priority?(i) = FALSE

tential time masters in thevait state will be the next AND fault_counter /= random._ fault -->
active time master and it will send the reference mes- pc’ = time_master;
. . . . ref_message_calendar’ =
sage immediately. All the other potential time masters set_reference_message(ref_message_calendar, i);
in the wait state will receive that reference message be- timeout’ = time + basic_cycle_time;
L . fault_flag’ = FALSE;
fore their timeouts occur. If the timeouts occur for more fault_counter = fault_counter + 1;

than one potential time masters in tivait state at the
same time, arbitration procedure resolves the contention For the general nodes there is one more transition in
and the potential time master with the highest priority fault-tolerant startup than in fault-free startup. When a
among them becomes the active time master. At thegeneral node irsyncstate can detect that active time
time of the execution of the startup algorithm, if the ac- master is faulty, it moves back to theit state and waits
tive time master fails and there are some potential time for a reference message from the new time master. The
masters inarb_in_nextbasiccycle state then the high- corresponding guarded transition is shown below:
est priority potential time master will be the next active _
. [] sync_to_wait:
time master through arbitration. If there is no nodes in ™ ", = "5ync AND time = timeout AND
arb_in_nextbasic cyclestate but some nodes in thgnc ’ . ref_message_calendar.master_id = 0 -->
state, then node with the highest priority among them ~ P¢ = "¢
becomes the active time master through arbitration (as o
they are synchronized, they can participate in arbitration © Protocol Verification
process).

To model the failure of the active time master it is re-
quired to capture the time when it becomes faulty. This In this section we list some of the properties of the
should be chosen randomly. We use a variable calledstartup algorithm that we verify using SAL. In SAG
random _fault for every potential time master, which denotes “always” and” denotes “eventually”. All the
denotes the number of basic cycles after which the nodeverification experiments have been carried out on a Dell
will be faulty. In the initialization section this variable PC with a Pentium 4 CPU (2.6 GHz) and 2 GB RAM.

6.1 Liveness Properties

We have model-checked three liveness properties for

fault-free startup model and another four liveness prop-

erties for the fault-tolerant startup model.

Liveness1The highest priority potential time master

will eventually become the active time master.

livenessl: THEOREM ttcan_faultfree |-

F(EXISTS (i: IDENTITY1): pc_arrayl[i] = time_master

AND i = 1);

PTMs | Fault-free Startupg Fault-tolerant Startup
2 39.448 67.572
3 61.152 103.886
4 86.777 143.699
5 116.919 184.590
6 144.840 225.494
7 176.965 285.917
8 206.433 328.267
9 245,558 369.104
10 289.496 442.715

Liveness2 All the potential time masters which will
not be the active time master will eventually move to the
syncstate.
liveness2: THEOREM ttcan_faultfree |-

F(FORALL (i: IDENTITY1): pc_arrayl[i}/=time_master =>
pc_arrayl[i] = sync);

Liveness3.All the general nodes will eventually go
to thesyncstate.

liveness3:THEOREM ttcan_faultfree |-
F(FORALL (i:IDENTITY2): pc_array2[i] = sync);

Liveness properties for the model with fault are as
follows:

Fault-tolerant_livenessl. If the active time master
becomes faulty, eventually it goes to tlaeilty state.
fault_tolerant_liveness1l: THEOREM ttcan_fault |-

G(EXISTS (i IDENTITY1): pc_arrayl[i] = time_master
AND fault_flag = TRUE => F(pc_arrayl[i] = faulty));

Fault-tolerant_liveness2.0nce the active time mas-
ter becomes faulty, one among all the other potential
time masters will eventually be the active time master.
fault_tolerant_liveness2: THEOREM ttcan_fault |-

G(EXISTS (i: IDENTITY1): pc_arrayl[i] = time_master

AND fault_flag = TRUE=> F(EXISTS(j: IDENTITY1):
j I= i AND pc_arrayl[j] = time_master));

Fault-tolerant_liveness3.0nce the active time mas-
ter becomes faulty, all the potential time masters which
will not be the active time master will eventually go to
thesyncstate.
fault_tolerant_liveness3: THEOREM ttcan_fault |-

G(EXISTS (i: IDENTITY1): pc_arrayl[i] = time_master
AND fault_flag = TRUE => F(FORALL(j: IDENTITY1):

j/l= i AND pc_arrayl[jJ/= time_master =>
pc_arrayl[j] = sync));

Fault-tolerant_liveness4.0nce the active time mas-
ter becomes faulty, all The general nodes will eventually
go to thesyncstate.
fault_tolerant_liveness4: THEOREM ttcan_fault |-

G(EXISTS (i: IDENTITY1): pc_arrayl[i] = time_master

AND fault_flag = TRUE => F(FORALL(j: IDENTITY2):
pc_array2[j] = sync));

Table 1. Time required to verify livenessl
property

SAL’s infinite bounded model checker (sal-inf-bmc)
does not support proof by induction for liveness prop-
erties, but supports bounded model checking. By using
sal-inf-bmc all the liveness properties have been verified
upto depth 40 considering upto 10 potential time mas-

ters. In each case the number of general nodes have been

kept equal to the number of potential time masters. sal-
inf-bmc takes close time to verify each liveness property

for a particular number of nodes. Table 1 presents the

runtime in seconds for verifying the propeityeness1

for fault-free and fault-tolerant startup.

6.2 Safety Property

The goal of the stratup protocol is to ensure that all
the potential time masters and general nodes that are in
thesyncstate are synchronized with the active time mas-
ter. This property can be expressed in SAL by the fol-
lowing LTL formula with linear arithmetic constraints:
safety: THEOREM ttcan_faultfree |-

G(FORALL(;,j;IDENTITY1):FORALL(k,I: IDENTITY2):
(pc_arrayl[i]=time_master OR pc_arrayl[i]=sync)

AND (pc_arrayl[j]=time_master OR pc_arrayl[j]=sync)
AND pc_array2[k] = sync AND pc_array2[l] = sync
AND time < time_outl[i] AND time < time_outl[j]
AND time < time_out2[k] AND time < time_out2[l] =>
time_outl[i] = time_outl[j]

AND time_out2[k] = time_out2[l]

AND time_outl[i] = time_out2[k]);

pc_arrayl andpc_array2 are the arrays which
represent the states of Potential time masters and general
nodes respectivelytime _outl andtime _out2 are
the arrays holding the timeout values for potential time
masters and general nodes respectively.

This LTL formula represents the fact that on the com-
pletion of the startup algorithm, the basic cycles of all
the potential time masters (including the active time
master) and the general nodes will start at the same point
of time.

#PTMs Fault Free Startup #PTMs Fault Tolerant Startup
Lemma Theorem Lemma Theorem
depth time depth time depth time depth time

2 6 22.039 4 11.820 2 6 24.32 4 14.508

3 8 224.975 6 192.882 3 8 224.009 6 199.132
Table 2. Depth and time for verification of Table 3. Depth and time for verification of
safety property for fault-free startup model safety property for fault-tolerant startup
by the method of induction using sal-inf- model by the method of induction using
bmc sal-inf-bmc

6.2.1 Proof by Induction. For this purpose, we use abstraction methodology based

on verification diagram proposed by Rushby [15] and
used by Dutertre and Sorea in [3]. Given a transition
systemM =< S, I, —>, this method amounts to con-
structing an abstraction of1 based om state predi-
catesA;(o), . . . , A,(0). The abstraction is a tran-
sition systemM, =< Sy, I, —> with Sy being the

set of states and, being the set of initial states. The
abstract states are in a one-to-one correspondence with
the n predicates. The abstract system aims to capture
the fact that ifA; is true in the current state, then the
next state will satisfy4d;, or... or A;, . It also states
that some of the predicate$,, ..., A, are true in all

the initial states ofM. The correctness of the abstrac-
tion implies that{ A; Vv - -- V A,) is an inductive variant

safety_aux_O_: LEMMA ttcan_faultfr(_ee |- of M.
S;ZOS’%;S”ESQ‘[T]'T,I&,’;FE;TQ L<L (Jt}n:eD EOT,IQ'E]\)(Z) Execution of the fault-free startup protocol can be de-
- - composed into successive phases. Figure 4 shows the
Using this lemma, safety property can be proved for a abstract system derived from Al to A7. In the first phase
model containing upto 3 potential time masters (number AL, all the nodes are imit state orwait state. Phase
of general nodes have been kept equal to the number ofA2 starts when one potential time master broadcasts a
potential time masters). Safety property for the fault- reference message and movesitee masterstate. Col-
tolerant startup model can also be verified by using the lision may occur in state A2 as more than one potential
same auxiliary lemma for 3 potential time masters. time masters may broadcast reference messages almost
In Table 2 and Table 3 we present the minimum depth at the same time, and this collision is resolved by bit-
required and the runtime of sal-inf-bmc in seconds to wise arbitration. In phase A3, all the potential time mas-
prove correctness of the safety property and the associiers which are not active time masters receive the refer-

ated lemma for the fault-free model and the model con- €nce message. In phase A4, one potential time master
sidering fault respectively. is in time_masterstate, and all the other potential time

masters are ifnit, wait or syncstate. Phase A5 starts
when the active time master transmits the second ref-
erence message. If there is no node in wedt state
Although the previous method is straightforward, but or there are some nodes in thait state with prior-
the method cannot prove the safety property for more ity lower than that of the active time master, but with-
than 3 potential time masters. Induction depth required out any potential time master with higher priority, then
to prove the safety property increases with the numberthe system goes back to phase A3. The potential time
of potential time masters. To make the proof scalable, masters in thewait state move tosyncstate. But if

the property should be proved at depth 1. To do that there is at least one potential time master with priority
strengthening the invariant seems to be a good option.higher than current active time master, then the system

A direct method to prove the above property is by us-
ing k-induction method which is supported by sal-inf-
bmc. But trying that for upto depth 10 shows that the
property is not inductive. Increasing k is not of much
use as the safety property is not inductive for dny
For anyk > 0, one can find a sequence of transitions
oo — ... — oy such that the safety property holds in
the statesrg, ...0;_1 but not ino,. As a consequence,
the inductive step in the proof k-induction fails. The tra-
jectory mentioned above, for a fixéd can be found by
invoking sal-inf-bmc with the -ice option. By analyz-
ing the counterexample, it is revealed that the following
lemma is required to prove the safety property.

6.2.2 Proof by Abstraction.

O O OO OSOSE

Figure 4. Verification Diagram for faultfree
TTCAN startup

moves to phase A6. In phase A6, at least one potential
time master is imarb_in_nextbasiccycle state. Phase
A7 starts when the active time master and the potential
time masters in tharb_in_nextbasiccycle state start
the arbitration process by sending there own reference
messages. The highest priority potential time master in
the arb_in_nextbasiccycle state moves tdime.master
state, and the previous active time master and other
potential time masters iarb_in_nextbasiccycle state
move tosyncstate. The system moves to phase A3
again.

The abstraction predicatey s have been defined as
boolean state variables. For example Al is defined as
follows:

Al = bus_traffic = FALSE

AND winner_id = 0

AND FORALL (i: IDENTITY1): pc_arrayl[i] = init

AND FORALL (i: IDENTITY2): pc_array2[i] = init
OR pc_array2[i] = wait

AND FORALL (i: IDENTITY1): pc_arrayl[i] = init =>

ref_message_calendar.not_received_flagl[i] = FALSE

AND FORALL (i: IDENTITY2): pc_array2[i] = init

OR pc_array2[i] = wait =>
ref_message_calendar.not_received_flag2[i] = FALSE
AND ref_message_calendar = EMPTY_CALENDAR,;

To prove that the abstraction is correct we construct a
monitor module whose input variables are Al to A7.
The monitor is defined in such a way that it moves
from one correct abstract state to another correct one if
the system shows correct behavior, otherwise it moves
to bad state.

The system is defined as the synchronous com-
position of the modules ttcan _faultfree ,
abstractor and monitor . The abstractor is
correct if the error state is never reachable. We show this
by proving the invariant propert§#(state # bad). To
prove this invariant lemmas are required, proving that
in any correct abstract state the system shows behavio
as defined in the abstract module. The correctness o
the abstraction is demonstrated by proving the invariant
by sal-inf-bmc using k-induction at depth 1. Finally, we
prove the safety property by using the previous invariant
as alemma at depth 1.

O I ROROR O

Figure 5. Verification Diagram for fault-
tolerant TTCAN startup

Figure 5 shows the verification diagram for fault-

tolerant startup protocol. In fault-tolerant startup, the
time master can become faulty at any moment. We as-

sume that it cannot be faulty when it is sending ref-
erence message. So, in this case time master can be
faulty in state A3 or A6. If the active time master be-
comes faulty in phase A3, the system moves to phase
A1, and one of the potential time masters whose timeout
occurs first, comes tiime_masterstate by sending a ref-
erence message and the system comes to phase A2. In
phase AG, if the active time master becomes faulty, then
that will not change the verification diagram of fault-
tolerant startup from that of fault-free startup. Because
in phase A6, at least one potential time master is in
arb_in_nextbasiccycle state, and one of them will be
the next active time master at the beginning of the next
basic cycle.

Table 4 and Table 5 present the runtime in seconds to
prove the auxiliary lemmas, the abstraction lemma, and
the safety property for both fault-free and fault-tolerant
startup. For fault-free startup verification experiments
have been carried out for models considering upto 10
potential time masters. For fault-tolerant startup verifi-
cation has not been possible for models with more than
9 nodes due to memory limitation.

#PTMs| Lemma | abstraction| safety | Total
2 24.06 3.26 3.57 30.89

3 38.42 4,98 7.54 50.94

4 74.32 9.52 16.91 | 100.76

5 141.44 17.99 35.23 | 194.66

6 308.55 38.34 71.35 | 418.24

7 656.55 82.37 142.54 | 881.46

8 1283.56| 160.82 | 260.19| 1704.58

9 2493.29| 314.43 | 469.16| 3276.88

[10 3920.13| 561.60 | 821.13| 5302.86

Table 4. Time required in seconds to ver-
ify safety property for fault-free startup by
abstraction method

#PTMs| Lemma | abstraction| safety | Total
2 34.61 4.163 4.87 43.64
3 64.64 7.92 10.26 | 82.81
4 127.54 15.79 23.40 | 166.72
5 307.92 38.85 56.45 | 403.22
6 764.08 95.96 122.19| 982.24
7 1713.31| 214.41 | 263.96| 2191.68
8 3465.06| 431.54 | 520.80| 4417.40
9 6660.17| 829.16 | 981.07| 8470.39

Table 5. Time required in seconds to verify
safety property for fault-tolerant startup
by abstraction method

7

Discussion

In this work we have developed formal models of
fault-free and fault-tolerant TTCAN startup protocol. To

our

knowledge, this is the first work on formal mod-

eling of TTCAN startup protocol and its verification.

Towards that we have proposed a modeling framework [11]
called Synchronous Calendar which is needed to model
synchronous communication between TTCAN nodes, [12]

where no transmission delay is assumed.
Synchronous Calendar may be useful to model differ-

ent kinds of protocols where link failure has to be taken [13]
into account. It can be also applied to model the drop
of a message in the channel. In this case channels are

In the channel process the

to be modeled separately.
P Y é14] A. Pritsker and C. Pegdenintroduction to Simulation

flag corresponding to the node whose message hasto b
dropped or whose channel to the sender is faulty can be[15]
made false. It is also possible to model unbounded mes-
sage delay by suitably adapting the synchronous calen-
dar data structure. Message delay over a particular limit
is generally considered as message lost, and this fact carj16]

be handled by properly defining the timeouts.

References

(1]
(2]

(3]

R. Alur and D. L. Dill. A theory of timed automata.
Theoretical Computer Scienck26(2):183-235, 1994.

S. Bensalem, V. Ganesh, Y. Lakhnech, C. ida,
S. Owre, H. Rug, J. Rushby, V. Rusu, H. $di,

N. Shankar, E. Singerman, and A. Tiwari. An overview
of Sal. In Proceedings of Fifth NASA Langley For-

mal Methods Workshop, NASA Langley Research Cen-

ter, pages 187-196, 2000.

B. Dutertre and M. Sorea. Modeling and verification of
a fault-tolerant real-time startup protocol using calendar
automata. IrProceedings of FORMATS/FTRTFA004.

(4]

(5]

(6]

(7]

(8]
9]

(10]

(17]

(18]

B. Dutertre and M. Sorea. Timed systems in sal. Tech-
nical report, Computer Science Laboratory, SRI Interna-
tionalhh, 2004.

T. Fiuhrer and A. Schedl. The steer-by-wire prototype
implementation: Realizing time triggered system de-
sign, fail silence behavior and active replication with
fault-tolerance support. IRroceedings of SAEL999.

T. Fuhrer, B. Miller, W. Dieterle, F. Hartwich, R. Hugel,
and M. Walther. Time triggered communication on
CAN (Time-TriggeredCAN-TTCAN). 2000. Avail-
able at http://www.semiconductors.bosch.de/pdf/CiA
2000Paped.pdf.

H. Hartwich, B. Miller, T. Riuhrer, and R. Hugel. Timing

in the TTCAN network. Available at http://www.can-
cia.org/can/ttcan/hartwich2.pdf.

G. J. Holtzman.The SPIN Model Checker, Primer and
Reference ManualAddison-Wesley, 2003.
1ISO11898-Partl. Road vehicles - interchange of digital
information - part 1: ControlleAreaNetwork (CAN)

for high-speed communication. 1993.

H. Kobayashi.Modeling and Simulation: An Introduc-
tion to System Performance Evaluation Methodology
Addison-Wesley, New York, 1981.

H. Kopetz. The time-triggered model of computation. In
Real Time Systems SymposillBEE Computer Society,
1998.

L. M. Moura, S. Owre, H. Rug J. M. Rushby,

N. Shankar, M. Sorea, and A. Tiwari. Sal 2. GAY,
volume 3114 oL NCS pages 496-500. Springer, 2004.
L. Pike and S. Johnson. The formal verification of a rein-
tegration protocol. IProceedings of the 5th ACM in-
ternational conference on Embedded software(EMSOFT
2005) pages 286—-289, 2005.

and SLAM Wiley, New York, 1979.

J. Rushby. Verification diagrams revisited: Disjunc-
tive invariants for easy verification. IRroceedings of
Computer-Aided Verificatignvolume 1855 ofLNCS
pages 508-520. Springer-Verlag, 2000.

W. Steiner. Model-checking studies of the flexray startup
algorithm. Research Report 57/2005, Technische Uni-
versi@ét Wien, Institut &ir Technische Informatik, Treitl-
str. 1-3/182-1, 1040 Vienna, Austria, 2005.

W. Steiner, J. Rushby, M. Sorea, and H. Pfeifer. Model
checking a fault-tolerant startup algorithm: From design
exploration to exhaustive fault simulation. Rroceed-
ings of DSN2004.

N. Weininger and D. Cofer. Modeling the ascb-d syn-
chronization algorithm with spin: A case study. In
Proceedings of the 7th International SPIN Workshop on
SPIN Model Checking and Software Verificatisalume
1885 ofLNCS pages 93-112. Springer-Verlag, 2000.

