
Modeling and Verification of TTCAN Startup Protocol Using Synchronous
Calendar

Indranil Saha and Suman Roy
HTS(Honeywell Technology Solutions) Research

151/1 Doraisanipalya, Bannerghatta Road
Bangalore 560 076, India

{indranil.saha, suman.roy}@honeywell.com

Kuntal Chakraborty∗

Indian Statistical Institute
203 Barrackpore Trunk Road

Kolkata 700108, India
mtc0502@isical.ac.in

Abstract

We describe the modeling and verification of TTCAN
startup protocol using SAL model checker. For the
modeling purposes we propose a new modeling frame-
work called Synchronous Calendar which can be seen
as an adaptation of Calendar based models introduced
by Duterte and Sorea. A Synchronous Calendar can
express dense time systems without relying on contin-
uously varying clocks and supports synchronous mes-
sage transmission. We capture both fault-free and fault-
tolerant aspects of startup algorithm of TTCAN in two
different models and verify the safety and liveness prop-
erties for them. Our verification technique relies on in-
duction and abstraction methods which are supported
by SAL model checker. To our knowledge this is the first
work towards a formal analysis of TTCAN startup pro-
tocol.

1 Introduction

In modern day automobiles the communication be-
tween micro-controllers, sensors and actuators is widely
based on event triggered communication on CAN [9]
protocol. The arbitration mechanism of this protocol
ensures that all messages are transferred according to
the priority of their identifiers and the message with the
highest priority is always delivered. For the next gen-
eration vehicles some mission critical subnetworks,e.g.,
x-by-wire systems (xbws)[5] will require additional de-
terministic behavior in communication during service.
Even at maximum bus load, transmission of all safety
related messages must be guaranteed. One way to solve

∗A part of the work was done when the author was a summer intern
at HTS, Bangalore during May-July’06.

this issue using CAN is to extend the standard CAN
protocol to a time triggered protocol (TTCAN) [6]. In
TTCAN, the communication is based on the periodic
transmission of areference messageby a special node
calledtime master. The period between two consecutive
reference messages is called thebasic cycle(Figure 1).
This allows to introduce a global network time across
the system with high precision. Based on this time dif-
ferent messages are assigned to different time windows
within a basic cycle. A big advantage of TTCAN com-
pared to classical scheduling systems is the possibility to
transmit event triggered messages in certainarbitrating
time windowsas well.

TTCAN is built on the top of CAN protocol using
a Time-Triggered Architecture (TTA). In time triggered
architectures all system activities are initiated by the
progression of time [11]. All nodes should be syn-
chronized in time and every activity in the network is
time stamped using the global time as defined by the
time master. The message-schedule can be determined
prior to the start of the system because all messages
are allocated time on the bus at the design level. For
proper operation, time-triggered architectures depend on
some basic algorithms, viz.bus guardian window tim-
ing, group membership, clique avoidance, non-blocking
write, clock synchronizationand startup. Among all
these algorithms, startup algorithms are exciting targets
for formal verification as the nodes of the system inter-
act in interesting ways. In this work we model and ver-
ify the fault-free and fault-tolerant startup algorithms for
TTCAN using the model checker SAL [12].

SAL (Symbolic Analysis Laboratory) is a framework
for the specification and analysis of concurrent systems.
It consists of the SAL language [2], which provides
notations for specifying state machines and their prop-

...

6
-

66
-

.........................

-

Reference
message

Reference
message

Exclusive
window

ExclusiveExclusive
windowwindow

Arbitrating
window

Free
window

Exclusive
window

Time Windows for messges

Global Time

-
6
¾

Basic Cycle

Figure 1. State diagram of a general node for fault-free startup

erties, and the SAL system [12] that provides model
checkers and other tools for analyzing properties of state
machine specifications written in SAL. This tool helps
analyzing systems that combine real-valued and discrete
state variables and can then apply to real-time systems
with a dense time model. SAL is a generalist tool, in-
tended for the modeling and verification of discrete tran-
sition systems, and not for systems with continuous dy-
namics. As a consequence, existing models such as
timed automata [1], which employ continuous clocks,
do not fit the SAL framework very well.

To overcome this problem Dutertre and Sorea [3, 4]
proposed a new class of timed transition systems that
use dense time, but do not require continuously varying
state variables, and are then better suited to SAL. They
borrow the concepts of these models from the event
calendars [10, 14] used in computer simulation of dis-
crete event systems and propose two modeling frame-
works: Timeout based model which can be used for
modeling system with no message passing and Calen-
dar based model which is suitable for modeling sys-
tems where message transmission is asynchronous with
bounded delay. As message passing is synchronous (no
transmission delay between the sender and the receiver)
in TTCAN [7] none of these frameworks can be directly
used for modeling its startup algorithm. We propose a
new modeling framework called Synchronous Calendar,
which can capture synchronous message transmission.

The remainder of the paper is organized as follows.
In section 2 we mention some related works carried
out in the past on modeling and verification of startup
protocols for some time-triggered architectures. In sec-
tion 3 we discuss fault-free and fault-tolerant startup al-
gorithms of TTCAN. In section 4 we introduce Synchro-
nous Calendar as a new modeling framework. Modeling

of fault-free and fault-tolerant startup protocol by using
Synchronous Calendar based modeling framework have
been described in section 5. Interesting properties rel-
evant to these startup algorithms are discussed in sec-
tion 6 and induction and abstraction based verification
methodologies have also been described. Finally, we
conclude in Section 7.

2 Related Work

Modeling and verification of startup protocols for
time-triggered architectures is a very active field of re-
search in the recent years, as witnessed by a number of
works in this area [3, 13, 16, 17, 18]. There are two
pieces of work on model-checking TTA startup algo-
rithm in the literature. The first one has been carried
out by Steiner et. al. [17] using SAL model checker.
This is a discrete time modeling which uses an integer
counter to model the propagation of time. Exhaustive
fault simulation has been undertaken in the work. The
verification of TTA startup algorithm ensures a safe and
timely system startup in the presence of one faulty com-
ponent, which can be either a faulty node or a faulty
hub. Dutertre and Sorea [3] carried out continuous time
modeling of TTA startup using SAL model checker. In
this work, continuous time dynamics have been cap-
tured by using Calendar based model, where a global
data structureCalendarhas been used to capture mes-
sage transmission delays. They have modeled the pro-
tocol with an active hub that is assumed to be reliable,
but a single node may be Byzantine faulty, and can at-
tempt to broadcast arbitrary frames at any time. Model-
checking of FlexRay startup algorithm has been carried
out by Steiner [16] using SAL model checker. In this
work, he has done discrete time modeling of the FlexRay

startup algorithm, the time model being similar to the
one in [17]. Pike and Johnson present a formal verifi-
cation of the SPIDER Reintegration Protocol [13] using
SAL model checker. Reintegration protocol is similar
to Startup protocol, the only difference is unlike Startup
protocol, Reintegration protocol does not run during sys-
tem powerup, rather a non-faulty node outside the oper-
ational clique joins the operational clique through Rein-
tegration Protocol. Modeling and verification of ASCB-
D startup algorithm has been carried out by Weininger
and Cofer [18] using Spin model checker [8]. They
have introduced an explicit numerical time model, and
combined time-modeling capability and the message-
transmission capability in a process calledenvironment.
To our knowledge no work has been done on the mod-
eling and verification of startup algorithm of TTCAN
startup algorithm which has a potential of being a good
case study.

3 Startup Protocol of TTCAN

In this section we shall briefly describe the fault-
free and fault-tolerant startup algorithms for TTCAN.
For correct operation, all the TTCAN nodes should be
synchronized in time. When the system powers up, all
the nodes start in normal CAN mode of operation. The
startup algorithm establishes initial synchronization in
the system. Among all the nodes a subset of nodes can
participate in the process, and these nodes are calledpo-
tential time masters. All the other nodes are calledgen-
eral nodes. There are more than one potential time mas-
ters for providing fault-tolerance in the system and there
is a strict order relationship of identifiers of the potential
time masters. According to their identifiers their priori-
ties are determined. The lower the identity the higher is
the priority of the potential time master. The objective of
the startup algorithm is to establish the highest priority
potential time master as the active time master, and this
active time master takes over the responsibility of main-
taining synchronization in the system by sending refer-
ence message periodically. First, a potential time master
checks whether the bus is empty and if there is a refer-
ence message on the bus. If the above is not true, the
potential time master sends a reference message with its
identifier. If two potential time masters attempt to send
the reference message at the same time, the arbitration
mechanism of CAN resolves this contention. Whenever
a reference message with higher priority is received by
any potential time master it synchronizes with the exist-
ing time master. If a reference message with lower pri-
ority is received then the potential time master first syn-

chronizes with the existing time master and then tries to
become time master by sending its own reference mes-
sage at the start of the next basic cycle. If more than one
potential time masters participate in this arbitration, the
potential time master with the highest priority wins the
arbitration. The protocol ensures that under error free
condition the potential time master with the highest pri-
ority eventually becomes the active time master.

During the startup process the failure of the time mas-
ter is recognized by detection of a missing reference
message within a short latency. The latency is realized
by a timeout. When this timeout is reached a potential
time master starts sending the reference message with
its global time as content. The bitwise arbitration of
the standard CAN protocol decides the next time master
among competing potential time masters. Subsequently
the functionality of the time master is reestablished.

4 A Synchronous Calendar-based Model

Dutetre and Sorea [3] introduced timeout based
model where state variables include current time t and
a finite set T of timeouts. In a real-time system with
n processes, the system can be modeled with n timers,
where each timer denotes the next discrete transition for
a process. This kind of modeling technique is very effi-
cient to model systems where all the discrete transitions
depend on some timeouts.

Timeout based modeling technique is not applicable
to systems where some discrete transitions do not occur
due to timeouts, rather occur on receiving messages. To
model interaction through message passing event calen-
dars are introduced in [3]. A calendar is defined as a
finite set of the formC = {< e1, t1 >, < e2, t2 >, . .
. ,< en, tn >}, whereei is an event which is scheduled
to occur at timeti. These calendars are advantageous to
model a system where the processes communicate asyn-
chronously, and it is known when a message will reach
the destination. When a process sends a message, it is
stored in the calendar along with the information when
it is scheduled to be delivered to the receiver. When a
message is received, the corresponding entry is removed
from the calendar.

While calendar-based modeling is appropriate to
model systems where communication is asynchronous
with bounded message propagation delay, it cannot be
applied to model synchronous communication directly.
On the other hand, timeout based model is not adequate
in such situations where some discrete transitions are
event triggered. For example, if some discrete transition
occurs due to receiving some message, it cannot be cap-

tured by mere timeout based model. To model this kind
of system it is required to keep track of which processes
are to receive a particular message and whether the same
is received by the receiver, along with the information of
the timeouts for individual processes. For example, in
TTCAN the active time master sends the reference mes-
sage and this message is received by the nodes who are
ready to receive it. As signal propagation time is con-
sidered to be negligible in TTCAN [7], there is no need
to consider the time of delivery of the message, but the
sender and receivers of the messages should be recorded
properly. This can be done by using a flag for every node
present in the network. When a message is sent only the
flags corresponding to the valid receivers are made true.
When a receiver receives the message, the correspond-
ing flag is made false.

To capture synchronous communication we introduce
a data structure calledSynchronous Calendar. A Syn-
chronous Calendar can be formally defined asSC = <
s, F >, wheres is the sender of the message, andF
is the set of boolean variables, where|F | = n is the
number of nodes in the system. For a nodei, the corre-
sponding flagfi ∈ F is set to true, if senders wants to
send its message toi. As we are dealing with synchro-
nous communication, only one entry in SC is possible at
a particular time. When there is no entry in SC, we say
that it is EMPTY.

We shall now describe how transitions in the systems
are guided by timeouts and Synchronous Calendar.

• Initial State: In all initial states σ0, we have
σ0(t) ≤ min(σ0(T)) andσ0(SC) = EMPTY .

• Time Progress:In a stateσ, time can progress if
and only if σ(t) < min(σ(T)) and σ(SC) =
EMPTY . A time progress transition updatest
to min(σ(T)) leaving all other state variables un-
changed.

• Discrete transitions: They can be enabled in a
stateσ providedσ(t) = min(σ(T)) or σ(SC) 6=
EMPTY , and they must satisfy the following
rules:

– σ′(t) = σ(t).

– ∀y ∈ T we haveσ′(y) = σ(y) or σ′(y) >
σ′(t)

– σ(SC) 6= EMPTY => σ′(SC) =
EMPTY .

– σ(SC) = EMPTY and∃y ∈ T such that
σ(y) = σ(t) => σ′(y) > σ′(t).

init wait

sync

time master

-

?

?

-

)

)
q

arb in next
basiccycle

-

*

k

Figure 2. State diagram of a node for fault-
free startup

The above rules imply that time cannot progress if a
synchronous communication is enabled. Discrete tran-
sition may occur due to synchronous communication or
due to a timeout. If both can be enabled at the same time
then the discrete transition for synchronous communi-
cation will get the priority. If the discrete transition is
due to timeout, then the corresponding timeout has to be
increased to a future value.

In some cases it may not be required to increase the
timeout, for the very next transition for the node is due to
a synchronous communication. For example, in TTCAN
when init timeout occurs for a potential time master, it
is obvious that its next discrete transition will occur af-
ter getting a reference message from the time master. So
apparently it is not required to increase the timeout for
the particular node. But the rules for discrete transition
say that if the discrete transition is due to timeout, the
timeout has to be increased to a future value. This is re-
quired to ensure thatσ(t) ≤ min(σ(T)) is an invariant.
In this case, this timeout would be a dummy timeout,
and should be set carefully, so that it is not scheduled
before the discrete transition due to next synchronous
communication.

5 Modeling of TTCAN startup Protocol in
SAL

We shall describe two models for TTCAN startup:
fault-free and fault-tolerant startup model.1

5.1 Fault-free Startup Model

The state diagram of a TTCAN node executing
startup algorithm in fault-free scenario is depicted in

1Interested readers are requested to contact the authors to obtain
the SAL models.

Figure 2. The state diagram captures behaviors of both
the potential time masters and the general nodes. Ini-
tially, all the potential time masters are in theinit state
where they can remain upto an arbitrary amount of time
which is captured as a timeout for this particular state.
When this init timeout occurs for a potential time mas-
ter, it checks whether the bus is empty. If it is so, the
potential time master moves totime masterstate, and
sends a reference message simultaneously. Henceforth,
we shall call the node intime masterstate thecurrent
time masteror active time master. Timeouts of two po-
tential time masters ininit state may occur at the same
time. In this case, arbitration decides which node will
be the active time master. The winner potential time
master moves totime masterstate, all the loser poten-
tial time masters move towait state. If a node in the
init state receives a message from the current time mas-
ter, it discards the message. If a timeout occurs for a
node in theinit state and it finds that bus is not empty
then it moves to thewait state and waits for the next
reference message. Fromwait state two transitions are
possible. When a potential time master in thewait state
receives a reference message, it checks whether its pri-
ority is lower than that of the current time master. If the
priority of the current time master is greater than its own
priority, then it moves tosyncstate. Otherwise the node
moves toarb in nextbasiccyclestate. The nodes in the
arb in nextbasiccyclestate are synchronized with the
current time master. They define their new timeout to
be current time plus basic cycle. The timeouts for the
nodes inarb in nextbasiccyclestate andtime master
state occur at the same point of time. Now the current
time master checks if it should remain in its present state
or move tosyncstate. If there are some nodes in the
arb in nextbasiccycle state, then current time master
loses the arbitration and moves tosyncstate. A node
in the arb in nextbasiccycle state checks whether it
has won the arbitration. In case it wins, it moves to
time masterstate. Otherwise it moves tosyncstate.

To capture this synchronous behavior of communica-
tion in the start-up process, we use Synchronous Calen-
dar. This is calledreference message calendar
in the model. It holds the id of the sender of reference
message, and boolean flags for all potential time masters
and general nodes.

SYNCHRONOUS_CALENDAR:TYPE =
[# master_id : IDENTITY1,

not_received_flag1: ARRAY IDENTITY1 OF BOOLEAN,
not_received_flag2: ARRAY IDENTITY2 OF BOOLEAN

#];
ref_message_calendar: SYNCHRONOUS_CALENDAR;

IDENTITY1 andIDENTITY2 denote the IDs of po-

tential time masters and general nodes respectively.
We have modeled all the potential time masters as

a parameterized module. INPUT, OUTPUT, LOCAL,
GLOBAL variables for a potential time master have
been specified as follows.

potential_time_master[i: IDENTITY1]: MODULE =
BEGIN

INPUT time: TIME
OUTPUT timeout: TIME
OUTPUT pc: PC
GLOBAL ref_message_calendar: SYNCHRONOUS_CALENDAR
GLOBAL bus_traffic: BOOLEAN
GLOBAL winner_id: IDENTITY1

A potential time master reads the currenttime
via an input state variable and exports output vari-
ables corresponding to its localtimeout and its cur-
rent statepc . The variablestime and timeout
are of type TIME which is actually of a REAL
type. A potential time master has access to the
global structureref message calendar , boolean
variablebus trafic that indicates if there is a node
in the time masterstate, and another boolean variable
winner id that denotes the winner of an arbitration.

In the INITIALIZATION section, necessary OUT-
PUT and GLOBAL variables are initialized as follows:

INITIALIZATION
pc = init;
timeout IN { x: TIME | time<x AND x<basic_cycle_time};
ref_message.calendar = EMPTY_CALENDAR;

EMPTY CALENDAR is a special value of the
ref message calendar with the sender id equal to
0 along with all the flags set to false. It denotes that no
reference message has been sent. In TRANSITION sec-
tion of the module, we specify all the possible transition
of a potential time master by a set of guarded commands.
The usefulness of Synchronous Calendar for the refer-
ence message is best illustrated in the case when some
nodes are in thewait state and some are in theinit state,
and there is already an active time master. If a node
in the init state sees that itsnot received flag is
true, it neglects the reference message by setting its
not received flag to false.

init_to_init:
pc = init AND
ref_message_calendar.not_received_flag1[i] = TRUE -->

pc’ = init;
ref_message_calendar’ = ref_message_calendar

WITH .not_received_flag1[i] := FALSE

When a potential time master moves towait
state, there is already a potential time master in the
time masterstate, which has already sent a reference
message. But the nodes in thewait state discarded that

reference message when they were in theinit state. Af-
ter coming in thewait state when a potential time master
sees itsnot received flag in the calendar as true,
it understands that a new reference message has been
sent. It moves tosyncstate orarb in nextbasiccycle
state depending on whether current time master’s prior-
ity is greater or less than its own priority. The transition
from wait to syncstate is presented below.

[] wait_to_sync:
pc = wait AND
ref_message_calendar.not_received_flag1[i] = TRUE
AND ref_message_higher_priority?(i) = TRUE -->

pc’ = sync;
timeout’ = time + basic_cycle_time;
ref_message_calendar’ = ref_message_calendar

WITH .not_received_flag1[i] := FALSE

In the state diagram, only two transitions are possible
for a general node. Initially, all the general nodes are
in init state where they stay upto an arbitrary amount of
time. Then they move towait state, where they wait for
a reference message from the active time master. Once it
gets a reference message, it becomes synchronized with
the time master and moves tosyncstate. The module for
general nodes has been designed in the similar way as
that of potential time masters. The guarded transition for
a general node fromwait state tosyncstate is presented
below:

[] wait_to_sync:
pc=wait AND
ref_message_calendar.not_received_flag2[i] = TRUE -->

pc’ = sync;
timeout’ = time + basic_cycle_time;
ref_message_calendar’ = ref_message_calendar

WITH .not_received_flag2[i] := FALSE;

To capture the advancement of time properly, we
have defined aclock module, which takes the timeouts
of individual potential time masters and general nodes as
INPUT, and outputs the updated time. It uses two func-
tions time can advance and is next event .
The functiontime can advance returns true if time
progression is possible. The functionis next event
is used to find out a suitable time point in future where
time can advance to. Theclock module along with
these two functions is presented below.

time_can_advance(time: TIME, time_out1: TIMEOUT_ARRAY1,
time_out2: TIMEOUT_ARRAY2): BOOLEAN=

FORALL(i: IDENTITY1): time < time_out1[i]
AND FORALL(j: IDENTITY2): time < time_out2[i]
AND FORALL(i: IDENTITY1):
ref_message_calendar.not_received_flag1[i] = FALSE
AND FORALL(j: IDENTITY2):
ref_message_calendar.not_received_flag2[j] = FALSE;

is_next_event(t: TIME, time_out1: TIMEOUT_ARRAY1,
time_out2: TIMEOUT_ARRAY2): BOOLEAN =

FORALL(i:IDENTITY1): t <= time_out1[i]

AND FORALL(j:IDENTITY2): t <= time_out2[j]
AND (EXISTS(k:IDENTITY1): t = time_out1[k]
OR EXISTS(l:IDENTITY2): t = time_out2[l]);

clock: MODULE =
BEGIN

INPUT time_out1: TIMEOUT_ARRAY1
INPUT time_out2: TIMEOUT_ARRAY2
OUTPUT time: TIME

INITIALIZATION
time = 0

TRANSITION
[time_elapses:

time_can_advance(time, time_out1, time_out2) -->
time’ IN { t: TIME |

is_next_event(t, time_out1, time_out2) }
]
END;

The complete systemttcan faultfree is
formed by taking the asynchronous composition of the
modules for potential time masters, and general nodes,
and the clock module.

5.2 Failure Modeling

To model fault-tolerant startup only node failure is
taken into account. It is enough to consider only the
failure of the active time master, as only the failure of
the active time master affects the startup procedure. In
TTCAN the failures are of failstop kind, that means that
when a node becomes faulty, it is no longer capable of
participating in the execution of the algorithm. When a
potential time master which is currently not the active
time master, or a general node fails it would not affect
the startup procedure.

The state diagram of a TTCAN node for fault-tolerant
startup is shown in Figure 3. All the transitions except
the transition fromsyncstate towait state are possible
for a potential time master. In this model we add a new
state calledfaulty to denote the state of a faulty poten-
tial time master. That the active time master is faulty
is detected by all the potential time masters and all the
general nodes by detecting a missing reference message.
The missing reference message is captured by setting its
identifier to 0. As 0 does not correspond to the identifier
of any potential time master, a 0 in the reference mes-
sage identifier conveys the potential time masters and
the general nodes the fact that the startup algorithm has
to be performed again.

At the very beginning of the startup process when
there is an active time master and some potential
time masters are in thewait state, but no node is in
arb in nextbasiccycleor syncstate, one of the poten-
tial time masters in thewait state should become the ac-
tive time master in case of failure of the active time mas-
ter. As the nodes in thewait state are not synchronized,

init wait

sync

time master

-

?

?

-

)

)
q

arb in next
basiccycle

-

faulty

?

/

y1

y

À

K

Figure 3. State diagram of a node for fault-
tolerant startup

they cannot participate in the arbitration process. There-
after moving to thewait state, a potential time master
waits for a basic cycle to receive a reference message.
If no reference message is received during that time, it
becomes the active time master by sending its own ref-
erence message. Note that when the active time mas-
ter is faulty and all the potential time masters are in the
wait state, whose timeout occurs first among all the po-
tential time masters in thewait state will be the next
active time master and it will send the reference mes-
sage immediately. All the other potential time masters
in thewait state will receive that reference message be-
fore their timeouts occur. If the timeouts occur for more
than one potential time masters in thewait state at the
same time, arbitration procedure resolves the contention
and the potential time master with the highest priority
among them becomes the active time master. At the
time of the execution of the startup algorithm, if the ac-
tive time master fails and there are some potential time
masters inarb in nextbasiccycle state then the high-
est priority potential time master will be the next active
time master through arbitration. If there is no nodes in
arb in nextbasiccyclestate but some nodes in thesync
state, then node with the highest priority among them
becomes the active time master through arbitration (as
they are synchronized, they can participate in arbitration
process).

To model the failure of the active time master it is re-
quired to capture the time when it becomes faulty. This
should be chosen randomly. We use a variable called
random fault for every potential time master, which
denotes the number of basic cycles after which the node
will be faulty. In the initialization section this variable

is set to a random natural number between 1 and 100 as
follows:

random_fault’ IN {x:NATURAL | x > 1 AND x < 100};

Another local variable,fault counter is used
for every potential time master and it is set to zero
during the initialization. Whenever the active time
master sends a reference message, and other poten-
tial time masters receive a reference message, their
fault counter values are increased by 1. When it
reaches itsrandom fault value, the state of active
time master is changed fromtime masterto faulty by
the following guarded command

[] time_master_to_faulty:
pc = time_master AND time = timeout

AND fault_counter = random_fault -->
pc’ = faulty;
fault_flag’ = TRUE;
ref_message_calendar’ =

set_reference_message(ref_message_calendar, 0);
winner_id’ = 0;

The guarded transition for a node in the wait state to
time masterstate at the failure of the current active time
master is shown below:

[] wait_to_time_master:
pc = wait AND time = timeout
AND ref_message_calendar.master_id = 0
AND potential_time_master_higher_priority?(i) = FALSE
AND fault_counter /= random_fault -->

pc’ = time_master;
ref_message_calendar’ =

set_reference_message(ref_message_calendar, i);
timeout’ = time + basic_cycle_time;
fault_flag’ = FALSE;
fault_counter’ = fault_counter + 1;

For the general nodes there is one more transition in
fault-tolerant startup than in fault-free startup. When a
general node insyncstate can detect that active time
master is faulty, it moves back to thewait state and waits
for a reference message from the new time master. The
corresponding guarded transition is shown below:

[] sync_to_wait:
pc = sync AND time = timeout AND

ref_message_calendar.master_id = 0 -->
pc’ = wait;

6 Protocol Verification

In this section we list some of the properties of the
startup algorithm that we verify using SAL. In SAL,G
denotes “always” andF denotes “eventually”. All the
verification experiments have been carried out on a Dell
PC with a Pentium 4 CPU (2.6 GHz) and 2 GB RAM.

6.1 Liveness Properties

We have model-checked three liveness properties for
fault-free startup model and another four liveness prop-
erties for the fault-tolerant startup model.

Liveness1.The highest priority potential time master
will eventually become the active time master.

liveness1: THEOREM ttcan_faultfree |-
F(EXISTS (i: IDENTITY1): pc_array1[i] = time_master

AND i = 1);

Liveness2.All the potential time masters which will
not be the active time master will eventually move to the
syncstate.

liveness2: THEOREM ttcan_faultfree |-
F(FORALL (i: IDENTITY1): pc_array1[i]/=time_master =>

pc_array1[i] = sync);

Liveness3.All the general nodes will eventually go
to thesyncstate.

liveness3:THEOREM ttcan_faultfree |-
F(FORALL (i:IDENTITY2): pc_array2[i] = sync);

Liveness properties for the model with fault are as
follows:

Fault-tolerant liveness1. If the active time master
becomes faulty, eventually it goes to thefaultystate.

fault_tolerant_liveness1: THEOREM ttcan_fault |-
G(EXISTS (i: IDENTITY1): pc_array1[i] = time_master
AND fault_flag = TRUE => F(pc_array1[i] = faulty));

Fault-tolerant liveness2.Once the active time mas-
ter becomes faulty, one among all the other potential
time masters will eventually be the active time master.

fault_tolerant_liveness2: THEOREM ttcan_fault |-
G(EXISTS (i: IDENTITY1): pc_array1[i] = time_master
AND fault_flag = TRUE=> F(EXISTS(j: IDENTITY1):
j /= i AND pc_array1[j] = time_master));

Fault-tolerant liveness3.Once the active time mas-
ter becomes faulty, all the potential time masters which
will not be the active time master will eventually go to
thesyncstate.

fault_tolerant_liveness3: THEOREM ttcan_fault |-
G(EXISTS (i: IDENTITY1): pc_array1[i] = time_master
AND fault_flag = TRUE => F(FORALL(j: IDENTITY1):
j/= i AND pc_array1[j]/= time_master =>

pc_array1[j] = sync));

Fault-tolerant liveness4.Once the active time mas-
ter becomes faulty, all The general nodes will eventually
go to thesyncstate.

fault_tolerant_liveness4: THEOREM ttcan_fault |-
G(EXISTS (i: IDENTITY1): pc_array1[i] = time_master
AND fault_flag = TRUE => F(FORALL(j: IDENTITY2):

pc_array2[j] = sync));

PTMs Fault-free Startup Fault-tolerant Startup
2 39.448 67.572
3 61.152 103.886
4 86.777 143.699
5 116.919 184.590
6 144.840 225.494
7 176.965 285.917
8 206.433 328.267
9 245.558 369.104
10 289.496 442.715

Table 1. Time required to verify liveness1
property

SAL’s infinite bounded model checker (sal-inf-bmc)
does not support proof by induction for liveness prop-
erties, but supports bounded model checking. By using
sal-inf-bmc all the liveness properties have been verified
upto depth 40 considering upto 10 potential time mas-
ters. In each case the number of general nodes have been
kept equal to the number of potential time masters. sal-
inf-bmc takes close time to verify each liveness property
for a particular number of nodes. Table 1 presents the
runtime in seconds for verifying the propertyliveness1
for fault-free and fault-tolerant startup.

6.2 Safety Property

The goal of the stratup protocol is to ensure that all
the potential time masters and general nodes that are in
thesyncstate are synchronized with the active time mas-
ter. This property can be expressed in SAL by the fol-
lowing LTL formula with linear arithmetic constraints:

safety: THEOREM ttcan_faultfree |-
G(FORALL(i,j:IDENTITY1):FORALL(k,l: IDENTITY2):
(pc_array1[i]=time_master OR pc_array1[i]=sync)
AND (pc_array1[j]=time_master OR pc_array1[j]=sync)
AND pc_array2[k] = sync AND pc_array2[l] = sync
AND time < time_out1[i] AND time < time_out1[j]
AND time < time_out2[k] AND time < time_out2[l] =>
time_out1[i] = time_out1[j]
AND time_out2[k] = time_out2[l]
AND time_out1[i] = time_out2[k]);

pc array1 andpc array2 are the arrays which
represent the states of Potential time masters and general
nodes respectively.time out1 and time out2 are
the arrays holding the timeout values for potential time
masters and general nodes respectively.

This LTL formula represents the fact that on the com-
pletion of the startup algorithm, the basic cycles of all
the potential time masters (including the active time
master) and the general nodes will start at the same point
of time.

PTMs Fault Free Startup
Lemma Theorem

depth time depth time
2 6 22.039 4 11.820
3 8 224.975 6 192.882

Table 2. Depth and time for verification of
safety property for fault-free startup model
by the method of induction using sal-inf-
bmc

6.2.1 Proof by Induction.

A direct method to prove the above property is by us-
ing k-induction method which is supported by sal-inf-
bmc. But trying that for upto depth 10 shows that the
property is not inductive. Increasing k is not of much
use as the safety property is not inductive for anyk.
For anyk > 0, one can find a sequence of transitions
σ0 → . . . → σk such that the safety property holds in
the statesσ0, ...σk−1 but not inσk. As a consequence,
the inductive step in the proof k-induction fails. The tra-
jectory mentioned above, for a fixedk, can be found by
invoking sal-inf-bmc with the -ice option. By analyz-
ing the counterexample, it is revealed that the following
lemma is required to prove the safety property.

safety_aux_0: LEMMA ttcan_faultfree |-
G(FORALL(i:IDENTITY1):FORALL(j: IDENTITY2):
time < time_out1[i] AND time < time_out2[j]);

Using this lemma, safety property can be proved for a
model containing upto 3 potential time masters (number
of general nodes have been kept equal to the number of
potential time masters). Safety property for the fault-
tolerant startup model can also be verified by using the
same auxiliary lemma for 3 potential time masters.

In Table 2 and Table 3 we present the minimum depth
required and the runtime of sal-inf-bmc in seconds to
prove correctness of the safety property and the associ-
ated lemma for the fault-free model and the model con-
sidering fault respectively.

6.2.2 Proof by Abstraction.

Although the previous method is straightforward, but
the method cannot prove the safety property for more
than 3 potential time masters. Induction depth required
to prove the safety property increases with the number
of potential time masters. To make the proof scalable,
the property should be proved at depth 1. To do that
strengthening the invariant seems to be a good option.

PTMs Fault Tolerant Startup
Lemma Theorem

depth time depth time
2 6 24.32 4 14.508
3 8 224.009 6 199.132

Table 3. Depth and time for verification of
safety property for fault-tolerant startup
model by the method of induction using
sal-inf-bmc

For this purpose, we use abstraction methodology based
on verification diagram proposed by Rushby [15] and
used by Dutertre and Sorea in [3]. Given a transition
systemM =< S, I,→>, this method amounts to con-
structing an abstraction ofM based onn state predi-
catesA1(σ), . . . , An(σ). The abstraction is a tran-
sition systemM0 =< S0, I0,→> with S0 being the
set of states andI0 being the set of initial states. The
abstract states are in a one-to-one correspondence with
the n predicates. The abstract system aims to capture
the fact that ifAi is true in the current state, then the
next state will satisfyAj1 or . . . or Ajk

. It also states
that some of the predicatesA1, . . . , An are true in all
the initial states ofM. The correctness of the abstrac-
tion implies that(A1 ∨ · · · ∨An) is an inductive variant
of M.

Execution of the fault-free startup protocol can be de-
composed into successive phases. Figure 4 shows the
abstract system derived from A1 to A7. In the first phase
A1, all the nodes are ininit state orwait state. Phase
A2 starts when one potential time master broadcasts a
reference message and moves totime masterstate. Col-
lision may occur in state A2 as more than one potential
time masters may broadcast reference messages almost
at the same time, and this collision is resolved by bit-
wise arbitration. In phase A3, all the potential time mas-
ters which are not active time masters receive the refer-
ence message. In phase A4, one potential time master
is in time masterstate, and all the other potential time
masters are ininit, wait or syncstate. Phase A5 starts
when the active time master transmits the second ref-
erence message. If there is no node in thewait state
or there are some nodes in thewait state with prior-
ity lower than that of the active time master, but with-
out any potential time master with higher priority, then
the system goes back to phase A3. The potential time
masters in thewait state move tosync state. But if
there is at least one potential time master with priority
higher than current active time master, then the system

Figure 4. Verification Diagram for faultfree
TTCAN startup

moves to phase A6. In phase A6, at least one potential
time master is inarb in nextbasiccycle state. Phase
A7 starts when the active time master and the potential
time masters in thearb in nextbasiccycle state start
the arbitration process by sending there own reference
messages. The highest priority potential time master in
the arb in nextbasiccyclestate moves totime master
state, and the previous active time master and other
potential time masters inarb in nextbasiccycle state
move to sync state. The system moves to phase A3
again.

The abstraction predicatesA′is have been defined as
boolean state variables. For example A1 is defined as
follows:

A1 = bus_traffic = FALSE
AND winner_id = 0
AND FORALL (i: IDENTITY1): pc_array1[i] = init
AND FORALL (i: IDENTITY2): pc_array2[i] = init

OR pc_array2[i] = wait
AND FORALL (i: IDENTITY1): pc_array1[i] = init =>
ref_message_calendar.not_received_flag1[i] = FALSE
AND FORALL (i: IDENTITY2): pc_array2[i] = init

OR pc_array2[i] = wait =>
ref_message_calendar.not_received_flag2[i] = FALSE
AND ref_message_calendar = EMPTY_CALENDAR;

To prove that the abstraction is correct we construct a
monitor module whose input variables are A1 to A7.
The monitor is defined in such a way that it moves
from one correct abstract state to another correct one if
the system shows correct behavior, otherwise it moves
to bad state.

The system is defined as the synchronous com-
position of the modules ttcan faultfree ,
abstractor and monitor . The abstractor is
correct if the error state is never reachable. We show this
by proving the invariant propertyG(state 6= bad). To
prove this invariant lemmas are required, proving that
in any correct abstract state the system shows behavior
as defined in the abstract module. The correctness of
the abstraction is demonstrated by proving the invariant
by sal-inf-bmc using k-induction at depth 1. Finally, we
prove the safety property by using the previous invariant
as a lemma at depth 1.

Figure 5. Verification Diagram for fault-
tolerant TTCAN startup

Figure 5 shows the verification diagram for fault-
tolerant startup protocol. In fault-tolerant startup, the
time master can become faulty at any moment. We as-
sume that it cannot be faulty when it is sending ref-
erence message. So, in this case time master can be
faulty in state A3 or A6. If the active time master be-
comes faulty in phase A3, the system moves to phase
A1, and one of the potential time masters whose timeout
occurs first, comes totime masterstate by sending a ref-
erence message and the system comes to phase A2. In
phase A6, if the active time master becomes faulty, then
that will not change the verification diagram of fault-
tolerant startup from that of fault-free startup. Because
in phase A6, at least one potential time master is in
arb in nextbasiccycle state, and one of them will be
the next active time master at the beginning of the next
basic cycle.

Table 4 and Table 5 present the runtime in seconds to
prove the auxiliary lemmas, the abstraction lemma, and
the safety property for both fault-free and fault-tolerant
startup. For fault-free startup verification experiments
have been carried out for models considering upto 10
potential time masters. For fault-tolerant startup verifi-
cation has not been possible for models with more than
9 nodes due to memory limitation.

PTMs Lemma abstraction safety Total
2 24.06 3.26 3.57 30.89
3 38.42 4.98 7.54 50.94
4 74.32 9.52 16.91 100.76
5 141.44 17.99 35.23 194.66
6 308.55 38.34 71.35 418.24
7 656.55 82.37 142.54 881.46
8 1283.56 160.82 260.19 1704.58
9 2493.29 314.43 469.16 3276.88
10 3920.13 561.60 821.13 5302.86

Table 4. Time required in seconds to ver-
ify safety property for fault-free startup by
abstraction method

PTMs Lemma abstraction safety Total
2 34.61 4.163 4.87 43.64
3 64.64 7.92 10.26 82.81
4 127.54 15.79 23.40 166.72
5 307.92 38.85 56.45 403.22
6 764.08 95.96 122.19 982.24
7 1713.31 214.41 263.96 2191.68
8 3465.06 431.54 520.80 4417.40
9 6660.17 829.16 981.07 8470.39

Table 5. Time required in seconds to verify
safety property for fault-tolerant startup
by abstraction method

7 Discussion

In this work we have developed formal models of
fault-free and fault-tolerant TTCAN startup protocol. To
our knowledge, this is the first work on formal mod-
eling of TTCAN startup protocol and its verification.
Towards that we have proposed a modeling framework
called Synchronous Calendar which is needed to model
synchronous communication between TTCAN nodes,
where no transmission delay is assumed.

Synchronous Calendar may be useful to model differ-
ent kinds of protocols where link failure has to be taken
into account. It can be also applied to model the drop
of a message in the channel. In this case channels are
to be modeled separately. In the channel process the
flag corresponding to the node whose message has to be
dropped or whose channel to the sender is faulty can be
made false. It is also possible to model unbounded mes-
sage delay by suitably adapting the synchronous calen-
dar data structure. Message delay over a particular limit
is generally considered as message lost, and this fact can
be handled by properly defining the timeouts.

References

[1] R. Alur and D. L. Dill. A theory of timed automata.
Theoretical Computer Science, 126(2):183–235, 1994.

[2] S. Bensalem, V. Ganesh, Y. Lakhnech, C. Muñoz,
S. Owre, H. Rueβ, J. Rushby, V. Rusu, H. Sai̇di,
N. Shankar, E. Singerman, and A. Tiwari. An overview
of Sal. In Proceedings of Fifth NASA Langley For-
mal Methods Workshop, NASA Langley Research Cen-
ter, pages 187–196, 2000.

[3] B. Dutertre and M. Sorea. Modeling and verification of
a fault-tolerant real-time startup protocol using calendar
automata. InProceedings of FORMATS/FTRTFT, 2004.

[4] B. Dutertre and M. Sorea. Timed systems in sal. Tech-
nical report, Computer Science Laboratory, SRI Interna-
tionalhh, 2004.

[5] T. Führer and A. Schedl. The steer-by-wire prototype
implementation: Realizing time triggered system de-
sign, fail silence behavior and active replication with
fault-tolerance support. InProceedings of SAE, 1999.

[6] T. Führer, B. M̈uller, W. Dieterle, F. Hartwich, R. Hugel,
and M. Walther. Time triggered communication on
CAN (Time-TriggeredCAN-TTCAN). 2000. Avail-
able at http://www.semiconductors.bosch.de/pdf/CiA
2000Paper1.pdf.

[7] H. Hartwich, B. Müller, T. Führer, and R. Hugel. Timing
in the TTCAN network. Available at http://www.can-
cia.org/can/ttcan/hartwich2.pdf.

[8] G. J. Holtzman.The SPIN Model Checker, Primer and
Reference Manual. Addison-Wesley, 2003.

[9] ISO11898-Part1. Road vehicles - interchange of digital
information - part 1: ControllerAreaNetwork (CAN)
for high-speed communication. 1993.

[10] H. Kobayashi.Modeling and Simulation: An Introduc-
tion to System Performance Evaluation Methodology.
Addison-Wesley, New York, 1981.

[11] H. Kopetz. The time-triggered model of computation. In
Real Time Systems Symposium. IEEE Computer Society,
1998.

[12] L. M. Moura, S. Owre, H. Rueß, J. M. Rushby,
N. Shankar, M. Sorea, and A. Tiwari. Sal 2. InCAV,
volume 3114 ofLNCS, pages 496–500. Springer, 2004.

[13] L. Pike and S. Johnson. The formal verification of a rein-
tegration protocol. InProceedings of the 5th ACM in-
ternational conference on Embedded software(EMSOFT
2005), pages 286–289, 2005.

[14] A. Pritsker and C. Pegden.Introduction to Simulation
and SLAM. Wiley, New York, 1979.

[15] J. Rushby. Verification diagrams revisited: Disjunc-
tive invariants for easy verification. InProceedings of
Computer-Aided Verification, volume 1855 ofLNCS,
pages 508–520. Springer-Verlag, 2000.

[16] W. Steiner. Model-checking studies of the flexray startup
algorithm. Research Report 57/2005, Technische Uni-
versiẗat Wien, Institut f̈ur Technische Informatik, Treitl-
str. 1-3/182-1, 1040 Vienna, Austria, 2005.

[17] W. Steiner, J. Rushby, M. Sorea, and H. Pfeifer. Model
checking a fault-tolerant startup algorithm: From design
exploration to exhaustive fault simulation. InProceed-
ings of DSN, 2004.

[18] N. Weininger and D. Cofer. Modeling the ascb-d syn-
chronization algorithm with spin: A case study. In
Proceedings of the 7th International SPIN Workshop on
SPIN Model Checking and Software Verification, volume
1885 ofLNCS, pages 93–112. Springer-Verlag, 2000.

