
DT*: Temporal Logic Path Planning in a Dynamic Environment

Priya Purohit1 and Indranil Saha2

Abstract— Path planning for a robot is one of the major
problems in the area of robotics. When a robot is given a task
in the form of a Linear Temporal Logic (LTL) specification
such that the task needs to be carried out repetitively, we
want the robot to follow the shortest cyclic path so that
the number of times the robot completes the mission within
a given duration gets maximized. In this paper, we address
the LTL path planning problem in a dynamic environment
where the newly arrived dynamic obstacles may invalidate
some of the available paths at any arbitrary point in time.
We present DT*, an SMT-based receding horizon planning
strategy that solves an optimization problem repetitively based
on the current status of the workspace to lead the robot to
follow the best available path in the current situation. We
implement our algorithm using the Z3 SMT solver and evaluate
it extensively on an LTL specification capturing a pick-and-
drop application in a warehouse environment and an office
environment2. We compare our SMT-based algorithm with two
carefully crafted greedy algorithms. Our experimental results
show that the proposed algorithm can deal with the dynamism
in the workspace in LTL path planning effectively.

I. INTRODUCTION

Using Linear Temporal Logic (LTL) [1] as a formal speci-
fication language is a convenient way to capture complex re-
quirements for a mobile robot. Linear temporal logic enables
one to capture those requirements that entail that the robot
remains operational for a long time to carry out repetitive
work. Several techniques can be employed to synthesize an
infinite-length trajectory from a given LTL specification [2],
[3], [4], [5], [6]. An infinite-length trajectory satisfying an
LTL formula can be represented as a prefix followed by a
loop that can be unrolled to generate a perpetual behavior.
A robot has to reach a loop by following its prefix path and
follow it repetitively to satisfy an LTL specification.

For a complex robotic system, a robot may have the option
to choose one of the multiple possible loops that allow
the robot to satisfy the requirement. The efficiency of the
robot depends on how quickly it can cover a loop as the
throughput of the robot is measured by the number of times
it completes the loop within a given duration. For example,
consider an application of warehouse management where a
robot is employed to perform a pick-and-drop operation [7].
Suppose that the robot has to pick an object from one of
the three racks that are located at three different locations
in the workspace and bring it to one of the two different
drop locations. Thus, the robot has the option of following
six loops to satisfy the requirement. The robot follows the
shortest loop to maximize its efficiency.

The situation becomes challenging when some of the
loops may not be available due to some dynamic events
in the workspace. In our warehouse example, some racks

*The authors thankfully acknowledge the Defence Research & Develop-
ment Organisation (DRDO), India for funding the project through JCBCAT,
Kolkata.

1 Priya Purohit is with Department of Computer Science and Engineering,
Indian Institute of Technology Kanpur priyapr@cse.iitk.ac.in

2 Indranil Saha is with Department of Computer Science and Engineering,
Indian Institute of Technology Kanpur isaha@cse.iitk.ac.in

may not be available to the robot due to some ongoing
service by some human operator. If the loop that the robot
was traversing becomes inaccessible, the robot may choose
to wait to get access to it eventually. Alternatively, it may
switch to another suitable loop and keep satisfying the LTL
specification. The robot may have information about the
dynamic events in the workspace, which may help it make
the decision to switch to an appropriate loop. For example, in
the use-case of warehouse management, the human operators
may communicate with the robot the time instance when
she will start servicing a rack and the approximate duration
she would take to complete this operation. However, in the
presence of many possible loops and several dynamic events
happening in the workspace, it is algorithmically challenging
for the robot to decide the optimal course of action at any
given point in time.

In this paper, we propose DT*, a solution to the above-
mentioned problem through a reduction to SMT (Satisfiabil-
ity Modulo Theory) solving problems [8]. In this approach,
we use the reduced product graph introduced as part of the
T* algorithm [9] to encode the trajectory of the robot by
treating the loops to be taken at different steps as the decision
variables. Taking inspiration from receding horizon motion
planning in dynamic environments [10], [11], we employ a
horizon based mechanism where the planning is carried out
for a horizon starting from the current time point.

We perform an extensive simulation to evaluate DT*.
Through a comparison with two greedy algorithms, we
demonstrate that despite the computational overhead, DT*
can enable a robot to achieve much superior performance
in a dynamic environment. We demonstrate the practical
applicability of our algorithm to a real robotic system through
a simulation on ROS [12].

In summary, we make the following contributions:
• We introduce the online LTL path planning problem in a

dynamic environment and propose DT*, an SMT-based
algorithm, to solve the problem.

• We evaluate DT* extensively through a comparison with
two greedy algorithms.

• We provide a ROS-based simulation to demonstrate how
our algorithm will be operational to solve the online
LTL path planning problem in a dynamic environment
in practice.

II. PROBLEM

A. Preliminaries

1) Workspace and Actions.: We represent the workspace
W as a 2D rectangular grid environment. Each cell of the
grid is referenced by its x, y coordinates. Some of the cells
in the workspace may be occupied by obstacles. The motion
of the robot within the workspace is captured by a set of
actions Act. For a 2D workspace, Act could be left, right,
up, down. The cost associated with an action denotes the
time taken to execute the action. Though we present our



framework and the experiments on 2D environments, our
framework can be extended seamlessly to 3D environments.

2) Weighted Transition System: Let T be the transition
system modeling the motion of a robot in W , which is
defined as T := (ST , OT , sT0

, E,Π, LT , wT ). Here, (i) ST
denotes the set of all cells in W , (ii) OT ⊂ ST is the set of
cells in W that are occupied by obstacles, (iii) sT0 ∈ ST \OT
is the initial state of the robot, (iv) E ⊆ (ST \OT )×(ST \OT )
is the state transitions, for s1, s2 ∈ (ST \OT ), (s1, s2) ∈ E
iff there exists an act ∈ Act such that s1

act−→ s2, (v) Π
denotes the set of all atomic propositions, (vi) LT : S → 2Π

maps the states in S to the propositions true at that state,
and (vii) wT : E → R>0 is a function capturing the cost of
the action on an edge e ∈ E.

3) Linear Temporal Logic: Temporal logic extends Propo-
sitional logic by capturing the notion of time [1]. Linear
Temporal Logic (LTL) contains all the standard Boolean op-
erators in the propositional logic (i.e., T (true), ¬ (negation),
and ∧ (conjunction)). Along with these operators, LTL also
contains temporal operators © (Next) and U (Until) [13].
The Next operator © is a unary operator and is followed by
a formula, which is observed in the next time step. The Until
operator U is a binary operator between two formulas. The
formula φ1Uφ2 says that φ2 should be observed at some step
k, and for all steps t, 0 ≤ t < k, φ1 must be observed. There
are two other widely-used temporal operators, namely ♦
(Eventually) and � (Always), which can be derived from the
basic logical and temporal operators as follows: ♦φ := T Uφ
and �φ := ¬♦¬φ. Here, ♦φ says that φ will be observed
at some time step eventually, and �φ says that φ will be
observed at all the steps, i.e., it is not the case that ¬φ will
be observed eventually.

4) Büchi Automaton: Given an LTL specification φ, a
Büchi Automaton Bφ models φ. A Büchi automaton is
represented as a tuple Bφ = (SB , sB0

, O, δ, F ) , where (i)
SB is a finite set of states, (ii) sB0 ∈ SB is the initial state,
(iii) O is the set of input alphabets, (iv) δ : SB×O → SB is
a transition function, and (v) F ⊆ SB is the set of accepting
(final) states. A run over an infinite input sequence w(o) =
s0 s1 . . . is a sequence of automata states ρ = q0 q1 . . ., with
q0 = sB0

and q0
s0−→ q1, q1

s1−→ q2 and so on, where si ∈ O.
An infinite input sequence w(o) is said to be accepted by
Büchi Automaton B iff there exists at least one run in which
at least one state in F is visited infinitely often.

5) Product Graph: The product graph P of the transition
system T and Büchi automaton Bφ is defined as: P =
(VP , vP0

, EP , FP , wP ), where, (i) VP = ST × SB , (ii) vP0

= (sT0
, sB0

), (iii) EP ∈ VP × VP , where ((si, qi), (sj , qj))
∈ EP iff (si, sj) ∈ E and ∃ c ∈ 2Π, δ(qi, c) = qj such that
c ∈ LT (sj), (iv) FP = ST × F , and (v) wP : EP → R>0,
such that wP ((si, qi), (sj , qj)) = wT (si, sj).

6) Reduced Product Graph: A reduced graph
Gr of a transition system T and Bφ defined by:
Gr = (Vr, v0, Er, Fr, wr), where (i) Vr ⊆ ST × SB ,
(ii) v0 = (sT0

, sB0
), (iii) Er ⊆ Vr × Vr, (iv) Fr ⊆ Vr,

(si, qi) ∈ Fr iff qi ∈ F , and (v) wr : Er → R>0, a weight
function.

The reduced graph differs from the original product graph
as it may add direct edges between (si, qi) to (sj , qj) even
when (si, sj) /∈ E. An edge in Gr may represent a path
in the product graph P . To compute the cost of any edge of
Gr, we can use the A* algorithm [14]. For more information,

q0start

q1

q2

q3

!p1&!p2

p1&!p2

!p1&p2

!p1&!p2

p1&!p2

!p1&!p2

!p1&p2

!p1&!p2

p1&!p2

(a)

(b)

(c)

Fig. 1: (a) Büchi Automaton for LTL specification: �(♦p1∧
♦p2) ∧ �((p1 → ©(¬p1 U p2)) ∧ (p2 → ©(¬p2 U p1)) (b)
the plans generated by Greedy algorithms (c) the environ-
ment changes occurring at timestamp 10

readers are encouraged to refer [9].
7) Robot Trajectory: Consider a robot whose motion in a

workspace W is modeled by a transition system T . Suppose
that the robot is given a task that needs to be repeated to
satisfy an LTL query φ, which is represented by a Büchi
automaton Bφ. We create P , the product graph between
the transition system T modeling the workspace W and Bφ
modeling the task specification. The nodes of this graph are
represented by (x, y, s), where (x, y) ∈ ST and s ∈ SB . Our
task to satisfy φ in W can then be modeled as finding a cycle
consisting of any final state f ∈ FP in the product graph P .
As one can see, multiple such cycles could be possible in
the product graph.

We call the path from the initial robot location to one of
the final locations of the graph as the prefix path Rpref and
from the final location to itself as the suffix cycle Rsuff .
The infinite run R over T can then be written as R =
Rpref .(Rsuff )ω , where Rpref is traversed once and Rsuff
is traversed infinitely. As the LTL specification requires the
task to be repeated periodically, an optimal solution for an
infinite run R has the suffix cycle with the minimum cost.

B. Problem Statement and Naive Solutions

To satisfy an LTL specification φ, the suffix cycle Rsuff
has to pass through some locations where some atomic
propositions hold true. Consider a situation where the
shortest suffix cycle is no longer available due to some
dynamic obstacle. The dynamic obstacle may capture the
position corresponding to an atomic proposition on the suffix
cycle by making it unavailable. It may also be present at
some other location (not corresponding to a proposition)
on the suffix cycle and make it completely unavailable or
increase its length to the extent that it is no longer the
shortest suffix cycle. We assume that the duration for which
a dynamic obstacle keeps a suffix cycle unavailable is known
to the robot. In the above context, we define the following
problem.

Problem 1. Given a robot transition system T and an
LTL specification φ, design an online algorithm that in the
presence of dynamic changes in the environment generates
the trajectory of the robot satisfying the following:



10 20 25 33 37 41 45 49

(7, 1) (6, 8) (8, 5) (7, 0) (5, 2) (7, 0) (5, 2) (7, 0) Loc

Time

Prefix Path1 Prefix Path2 Suffix Cycle 1 Suffix Cycle 2

(a)

10 23 27 31 35 39 43 47

(1, 5) (7, 0) (5, 2) (7, 0) (5, 2) (7, 0) (5, 2) (7, 0) Loc

Time

Prefix Path SC1 SC2 SC3

(b)

10 12 19 26 34 42 50

(7, 1) (7, 0) (7, 5) (7, 0) (7, 0) (7, 0) (7, 0) Loc

Time

Prefix Path Suffix Cycle 1 SC2 SC3 SC4

(c)

Fig. 2: Timelines for (a) the plan generated by Greedy1
Algorithm (b) the plan generated by Greedy2 Algorithm
(c) an optimal plan for the environment given in Figure 1

• There exists an infinite extension of the current trajec-
tory that satisfies the LTL formula φ.

• At any time point T , the number of loops covered by
the trajectory in the duration [0, T ] gets maximized.

Here we mention two straightforward greedy solutions
to the above-mentioned problem. Throughout the paper, we
refer to them as Greedy1 and Greedy2.
Greedy1. This greedy solution finds the shortest suffix
cycle in the modified product graph in case the current
suffix Rsuff gets invalidated due to a dynamic event in the
environment and gets an infinite run R of the form R′pref .
(R′suff )

ω . This algorithm gives us a plan where the length of
the suffix cycle is minimized. However, this solution does not
consider the fact that the proposition location may become
available in some time, and it could be better to wait for
proposition locations to become available or to switch to
some nearby cycle from which it incurs less cost to return
to the shortest cycle later.
Greedy2. This strategy minimizes the time within which
one cycle can be completed to the earliest based on the
current workspace. It minimizes the overall completion time
of one prefix and the corresponding suffix and may choose
a nearby longer cycle with a shorter prefix length.

Example 1. To understand the complexity of the problem
and the limitations of the above-mentioned greedy algo-
rithms, let us consider an example. Figure 1(a) shows the
Büchi automaton for an LTL specification that captures a
warehouse scenario where the robot is given a task that needs
to be repeated forever: The robot should pick up an object
from some location and drop it at some other designated
location. Once an object is picked up, the robot cannot go
to a pickup location again until it visits some drop location,
and once an object is dropped, it cannot go to a drop
location until it visits some pickup location. In Figure 1(a),
the propositions pickup and drop are marked as p1 and p2
respectively. Figure 1(b) shows a sample workspace with 3
pickup and 3 drop locations marked as P1, P2, P3 and D1,
D2, D3, respectively. Figure 1(b) shows the initial solutions
generated by Greedy1 marked in blue (prefix) and red

(suffix) and Greedy2 algorithm marked in green (prefix)
and red (suffix).

Let us assume that at timestamp (henceforth, written as
ts) 10, proposition locations P3 and P1 becomes unavail-
able till ts = 25 and ts = 35 respectively. The current
robot positions for the paths generated by Greedy1 and
Greedy2 algorithms are marked using blue and green dots
in Figure 1(c), respectively. At ts = 10, Greedy1 algorithm
provides cycle 〈(6, 8), (7, 5), (6, 8)〉 as the minimum length
cycle. But at ts = 25, P3 becomes available again. Greedy1
then replans at ts = 25. As the robot in this case has already
dropped the object at (6, 8), it first goes to pickup location
(7, 5) again to obey the specification captured by φ before
moving to the drop location at (7, 0). Greedy2 algorithm
minimizes the overall time to complete a prefix followed
by the corresponding suffix. The minimum time required to
complete any cycle could be achieved by switching to cycle
〈(7, 0), (5, 2), (7, 0)〉. The paths generated by Greedy1 and
Greedy2 algorithm are shown as timelines in Figure 2(a)
and Figure 2(b) respectively.

However, there exists a better plan which could complete
even more cycles within the same duration. Consider the
robot location to be blue dot (same as Greedy1 algorithm)
at ts = 10. Assuming the time taken for plan computation
to be 1s, the plan starts getting executed from ts = 11. As
shown in Figure 2(c), switching to a longer nearby cycle
followed by completing shorter cycles could result in the
completion of 4 cycles till ts = 50. As shown in Figure 2,
the number of times the optimizing task is completed till
ts = 50 are 2, 3 and 4 with the above plans.

Through this example, we demonstrated how different
algorithms would result in different decision sequences. The
decision to be made by the robot is to choose whether to
switch to another cycle, to repair the current trajectory, or
simply wait for the proposition locations to become available
again. In this paper, we attempt to solve this problem by
reducing it to a series of optimization problems, as described
in the following section.

III. DT* ALGORITHM

When we deal with the planning problem in an uncertain
environment, the notion of a static plan is ruled out, because
the plan may get invalidated once some change in the
environment is observed. Thus, we adopt a horizon based
planning strategy (motivated by [11]) in DT*, where the plan
is computed within some finite horizon denoted by H .

Algorithm 1 outlines the major steps in DT*. Given a
workspace W modeled by T and an LTL query φ, we want
to generate dynamic plans for the robot so that the robot
can deal with the changes in the environment. As the size
of the transition system grows or the LTL query becomes
more complex, the size of the product graph increases,
and so does the time for path computation. To handle this
scalability issue, we use reduced product graph Gr instead of
the original product graph P . For generation of the reduced
product graph Gr, we use a procedure given in [9], denoted
by gen redc graph on line 2.

In the initial static environment, we generate a plan of the
form R = Rpref .(Rsuff )ω on line 4, where Rpref is the
path from the initial state v0 to a destination state d ∈ Fr,
such that the cycle Rsuff from d is the minimum length
cycle. This suffix is repeated perpetually if the environment



Algorithm 1: DT*
input : A transition system T and LTL query φ
output : Dynamic plans based on the environment changes

1 Bφ ← LTL2BA(φ)
2 Gr(Vr, v0, Er, Fr, wr)← gen redc graph(Bφ, T )
3 poscur ← v0, timecur ← 0, timecomp ← ν, R← ∅
4 R← static plan(Gr, T )
5 while true do
6 while change is not observed and !R.empty() do
7 posnext ← R.pop()
8 move robot(poscur, posnext)
9 poscur ← posnext

10 D ← env changes(W )
11 Gr ← update graph(Gr, poscur)
12 R← ∅
13 while R.empty() do
14 timecur ← timecur + timecomp
15 Edcost ← dy cost (Gr , poscur , timecur , H , T , D)
16 R← plan in H(Gr, poscur, timecur, H,Edcost)

17 Procedure plan in H (Gr , poscur , timecur , H , Edcost)
18 cons← gen cons (Gr, poscur, timecur, H,Edcost)
19 model← solve constraints(cons)
20 if (model 6= ∅) then
21 R← get plan from model(model)
22 return R

23 return ∅

does not change or the horizon does not come to completion
(line 7-9).

Once one of these two events happens, we mark the envi-
ronment changes in W on line 10, if any. These environment
changes capture the duration of unavailability of some grid
locations of W . The costs of some of the actions act ∈ Act
increase for these grid locations, as these costs now have to
incorporate the waiting duration. On line 11, we update Gr
based on the current robot state (xi, yi, si).

For this updated graph Gr, we generate each edge’s cost
within horizon H starting from the current time step timecur.
Method dy cost on line 15 takes Gr, T , the environment
changes captured by D etc. as input. This method pre-
computes all the edge costs of Gr within horizon H . This
method is an adaptation of the technique presented in [15]
to deal with dynamic environments. For path calculation, we
use Manhattan distance as a heuristic which is a lower bound
of the actual path cost. Therefore, the heuristic is admissible,
and our algorithm generates the shortest edge costs.

The plan in H procedure, which is invoked on line 16,
checks if a plan exists from current robot position poscur
at current timestamp timecur within the horizon H . This
procedure firstly generates the constraints for modeling the
decision problem for the robot from timecur using gen cons
procedure. The procedure gen cons on line 18 runs Dijk-
stra’s algorithm on Gr to get minimum length prefix path or
suffix cycle using the pre-computed edge costs from dy cost
method. The generated constraints are then given to an SMT
solver (line 19). Procedure get plan from model on line 21
parses the model solution to get path within H from optimal
decision sequence. The upper bound on the sum of the
durations to execute the procedures dy cost and plan in H
is referred to as timecomp.

The plan in H procedure returns the optimal decision

(a)

(b)

Fig. 3: (a) Initial product graph for workspace given in Fig-
ure 1(b) (b) Updated product graph Gr based on environment
changes at ts = 10 shown in Figure 1(c)

sequence within the given horizon H from the current robot
position poscur at time timecur, if one exists. If it does not,
then it indicates that from current position poscur between
time timecur to timecur +H , not even one cycle could be
completed. In this case, we re-plan for the time window from
timecur+timecomp to timecur+timecomp+H . A solution
having at least one cycle could exist in this duration because
the unavailability time of grid cells decreases as time elapses.
We repeat this step until we get an optimal decision sequence
from current robot position (line 14-16).

Example 2. Figure 3 shows the change(s) in Gr for the
example that we have discussed earlier in Example 1.
Figure 3(a) shows the reduced product graph Gr in the
initial static environment. When the environment changes at
timestamp 10, we update the previous graph Gr as given
on line 11 based on the current robot position and its Büchi
state. The updated Gr is shown in Figure 3(b). The dynamic
information captured on line 10 for our example will be as
follows. Any action act ∈ Action from the neighbouring
grid cells of P3 to P3, on time t ∈ (10, 25) will cost 25−t+1.
And any act ∈ Action from P3 to the neighbouring cells of
P3 on time t ∈ (10, 25) cannot be taken as the location is
blocked. Similar will be the case with proposition location
P1. This information will then be passed to dy cost method
to get edge cost of Gr within H . The plan generated by the
plan in H method is shown as a timeline in figure 2(c).

A. Generating Optimization Model

In this section, we define the variables, constraints, and
objective functions for the optimization problem.



Fig. 4: Generation of model constraints for the example given
in Figure 1

Decision variables: Let us denote the product graph state
(xi, yi, si) of Gr by li , where (xi, yi) is a 2D-grid coordinate
and si is a state in the Büchi automata. We define the Boolean
variable Xliti which becomes true iff the robot is at product
graph state li at time ti. We define the Boolean variable
Clitiτi which becomes true iff the robot completes a cycle
of length τi at time ti from state li. Here, li ∈ Fr and τi is
the shortest cycle length among those cycles starting at li at
time ti − τi.

For every decision that could be taken at any state li at
some time ti to reach state lj at tj , we define a Boolean
variable Aliljti which captures if the decision to move from
li to lj was taken by the robot at time ti. Here, tj−ti denotes
the time taken to cover a cycle or a prefix path. Thus, Aliljti
is true iff both Xliti and Xljtj are true. Also, we define
the Boolean variable Btitj which is true iff there exists a
tk, ti < tk < tj , such that some Xlktk = true.

Constraints: We present the constraints in the optimization
problem below.
1) Movement between the product graph states: Let t0 be
the time at which we have to re-plan, and l0 be the current
state of the robot. Then we can write

Xl0t0 ⇐⇒ true. (1)

If at time ti, the robot is at state li, then the next location
has to be decided from the set of nodes reachable from li in
Gr. The set of decisions that could be made at state li is to
cover various prefixes starting from li to reach destination
nodes in Fr. If li itself is a destination node, then going to
li denotes completion of a cycle. Suppose, l1 . . . ln be the
set of destination nodes that could be reached by covering
various prefixes from li at time ti. To capture this decision
in our model using decision variables, we write:

Xliti =⇒
n∨
j=1

Xljtj (2)

n∧
j=1

(
Xljtj =⇒

∧
k∈{1,...,n}\j

¬Xlktk

)
(3)

Here, t1, t2, . . . , tn are the times of completion of a prefix
path or suffix cycle from li.

Figure 4 shows the expansion of the decision tree for
the example shown in Figure 1. The tree shows the choice
of possible decisions that the robot could take at any
state. From the initial state (7, 1, q1), the robot can tra-
verse three different prefixes to reach the destination states
(7, 0, q3), (1, 7, q3), (6, 8, q3) respectively and so on. The
blue and red edges in this tree denote the decision of taking

prefix and suffix, respectively, and the node values denote
the time of completion.

2) Cycle completion constraints: If state li was a destination
node in the reduced product graph and a cycle could be
completed within horizon length H , then we add a constraint
to capture the decision of completing a cycle from li. So
along with constraints (2) and (3), we also need to capture
this completion of a cycle using cycle completion variables:

Clitj(tj−ti) ⇐⇒ Xliti ∧Xlitj (4)

Here, (tj − ti) is the time taken to complete a cycle from
state li at time ti. The above constraints says that Clitj(tj−ti)
will be set to true iff the robot was at destination state li
at time ti where it traversed a cycle and reached li again at
time tj .

3) Integrity Constraints: This constraint ensures that the
robot cannot be at multiple states at the same timestamp. Let
{l1, l2, . . . , lm} be the set of all possible reachable states at
some timestamp t. So, we add the following constraint:

m∧
i=1

(
Xlit =⇒

∧
j∈{1,...,m}\i

¬Xljt

)
(5)

4) Continuity Constraints: We need to ensure that if the robot
is at state li at time ti where it took a decision to reach lj
at tj such that tj − ti is the path (or cycle) cost from li to lj
(Aliljti is true), then any other decision could not be taken
at any intermediate timestamp tk s.t. ti < tk < tj (Btitj is
false). The following constraint captures the same.

¬(Aliljti ∧ Btitj ) (6)

Objective Function: The objective function of the optimiza-
tion problem contains the following three objectives.

1) Maximize the number of cycles that can be completed
within the horizon H . Here the objective is to maximize the
number of all the cycle variables, which are set to true.

2) Minimize the length of the last cycle. Suppose the maxi-
mum number of suffix cycles that could be covered within H
is k. Our secondary objective is then to choose that solution
that has the minimum cost for the k-th cycle out of all
possible solutions. This is because we want the robot to stay
close to the shortest length cycle when the robot finishes
traversing the generated plan.

3) Minimize the time at which the last cycle is completed
within the horizon. This objective is important because we
want to ensure that the plan generated by the solver is of
minimal length such that k cycles get completed in the
minimum possible time within the horizon H .

The formal definitions of the objective functions are pro-
vided in the full version [16]. The first objective function
is assigned the highest priority, and the third one the lowest
priority.

B. Theoretical Guarantees

DT* provides the following theoretical guarantees. The
proofs of the theorems are available in the extended version
of the paper [16].

Theorem 1 (Soundness). The plan generated by DT* always
obeys the LTL specification φ.



(a) (b)

Fig. 5: (a) A 20 × 20 warehouse (b) A 100 × 100 Office h
workspace with marked pickup and drop locations

This theorem ensures that our proposed algorithm provides
the first guarantee required in solving Problem 1.

Theorem 2 (Optimality within horizon). Given a start
location and a horizon length H , the plan generated by DT*
is optimal in terms of the number of cycles completed within
the horizon.

This result is established keeping the second required guar-
antee in Problem 1 in mind, which requires that the trajectory
up to any time point covers the maximum possible number
of loops. The above theorem does not provide this guarantee.
Rather, it guarantees to keep the number of traversed suffixes
maximum in each horizon when the plan is computed. The
possibility of achieving the globally optimal solution is ruled
out as the knowledge of the dynamic obstacles is not known
beforehand and becomes available during the plan execution.
In the full version [16], we provide an example to show
how a greedy algorithm could outperform DT* in a long
duration. However, our experimental results establish that
such instances are rare, and overall DT* offers superior
performance than both the greedy algorithms.

IV. EVALUATION

A. Experimental Setup
In this section, we present the experimental results on a

pick and drop application in a 20×20 warehouse workspace
as shown in Figure 5(a) and a 100× 100 office workspace,
taken from [17] as shown in Figure 5(b). To create different
environments out of the warehouse workspace, we mark
the locations in the grid, which could act as proposition
locations. The environment descriptions for Figure 5(a) are
as follows: W1: Pickup locations: (1, 5), (11, 18), (17, 12)
and Drop locations: (3, 18), (10, 6),(10, 12), W2: W1 +
drop location (11, 1), W3: W2 + pickup locations (2, 0) and
(6, 15).

The LTL query that we use for the evaluation was
introduced in Example 1 and formally written as:
φ ≡ �(♦p ∧ ♦d) ∧� ((p→©(¬p U d)) ∧ (d→©(¬d U p)).
In the above query, p denotes a pickup location and d
denotes a drop location. By assuming some distribution
over obstacle arrival rates, A ∼ N (µ, σ2), we change the
workspace W dynamically at various timestamps.

We implement our algorithm and the two greedy algo-
rithms in C++. In the implementation, we use Z3 [18] SMT
solver as the back-end solver. The results shown in this
section have been obtained on a system with 3.2 GHz octa-
core processor with 32 GB RAM. We have repeated every ex-

(a) (b)

Fig. 6: Performance of the algorithm with increasing propo-
sition locations in (a) Warehouse and (b) Office h workspace

periment 50 times to present the results. The implementations
of our algorithms are available in the following repository:
https://github.com/iitkcpslab/DTStar.

The operation of the robot is divided into path planning
and path execution. In our experiments, we assume to
use Turtlebot, a widely used mobile robot for academic
research. As given in [19], the popular robot Turtlebot 2
takes around 1s to cover 0.65m. Assuming the size of each
cell of the grid to be 65cm × 65cm, we can say that each
valid act ∈ Act, takes about 1s to execute. We consider
left, right, up, down motion primitives in the set Act.

We find the value of timecomp experimentally. We find
that it is safe to consider the value of timecomp to be 1s and
2s for the warehouse and office workspaces, respectively. The
time taken by Greedy algorithms can be ignored safely.

B. Results

We evaluate our planning framework by varying the
following: (i) the number of suffix cycles in Gr, (ii) the
obstacle arrival rate, (iii) the size of the workspace and
(iv) the obstacle density in the workspace. For evaluation,
we vary one of the above-stated parameters while keeping
the other parameters constant and empirically compare the
performance of DT* with that of the greedy algorithms.

The choice of horizon length H is dependent on the
obstacle arrival rate, A ∼ N (µ, σ2). If H is larger than
the frequency with which the locations become unavailable,
then the plan may get invalidated before completely getting
traversed by the robot. On the other hand, if H is very small,
then the solver may not consider some of the cycles just
because those cycles could not be covered within the horizon.
In our experiments, we kept the horizon length H to be the
mean µ of A ∼ N (µ, σ2).

1) Varying the number of proposition locations in a
workspace: We evaluate the performance of the algorithms
by increasing the number of the proposition locations in
the workspaces shown in Figure 5(a) and Figure 5(b),
respectively. Figure 6 shows that the performance of all
three algorithms improves with the increase in the number
of proposition locations as the length of the suffix cycle
decreases. However, in all the cases, DT* outperforms the
greedy algorithms. There were a few cases where the plans
generated by Greedy1 algorithm were superior compared
to the plans generated by DT*.

For Figure 6(a), the total planning time was 500s and
obstacle arrival rate being A ∼ N (100, 20). And for
Figure 6(b), the total planning time was 1000s and A ∼
N (500, 50).

https://github.com/iitkcpslab/DTStar


(a) (b)

Fig. 7: Performance of the algorithms (a) when we increase
the maximum number of proposition locations unavailable at
each environment change (b) when we increase the duration
of proposition locations’ unavailability

2) Varying obstacle parameters in the environment: One
important parameter affecting the number of cycles traversed
is the maximum number of proposition locations that become
unavailable in each environment change. Figure 7(a) shows
that Greedy1 and Greedy2 algorithms suffer significantly
when the maximum number of proposition locations that
become unavailable per environment change increases.

Another important parameter is the duration of unavailabil-
ity of the locations. Here, we assume the duration to follow
a distribution D ∼ N (µ, σ2), the duration increases from
(30, 10) to (110, 30). Figure 7(b) shows that both greedy
algorithms suffer when this obstacle duration increases.
Greedy1 algorithm suffers more when the unavailability
duration of the proposition locations is high. The reason
for such behaviour is that even if a shorter prefix path is
available for a longer cycle, Greedy1 still prefers the cycle
with shorter suffix and longer prefixes (incorporating high
wait duration).

All of the above stated experiments are carried out on
workspace W3 with a total planning time of 500s.

3) Varying grid size: We scale our workspace from
20× 20 up to 50×50 by keeping the number of proposition
locations constant but increasing the cycle lengths propor-
tionally by increasing the distance between the proposition
locations. That is, we increase the cycle length(s) as grid
size increases, which leads to the completion of fewer cycles
within a fixed duration by all the algorithms.

Figure 8(a) shows the performance of the three algorithms.
As expected, DT* consistently outperforms the greedy algo-
rithms. The results show that Greedy2 algorithm specifi-
cally performs poorly on larger workspaces 40×40 and 50×
50. This happens due to the fact that the length of the prefixes
of the cycles increases with scaling of the grid and Greedy2
starts preferring shorter prefixes with longer corresponding
suffix cycles. Thus, Greedy2 algorithm chooses closer sub-
optimal solutions over shorter cycles with large prefixes.

4) Effect of objective functions: In the same dynamic
environment, we generate decision sequences by DT* by
giving it some combination of objective functions 1, 2, and
3. Figure 8(b) shows that the usage of all three objectives
yields the best results. In all the combinations, the primary
objective was always to maximize the number of cycles. The
mentioned experiment is carried out on workspace W3 by
increasing the total planning time.

5) Computation Time: Table I shows the effect of chang-
ing the number of proposition locations and the horizon
length on the overall time taken by DT*. Table I also
shows that as the initial length of the smallest cycle in the

(a) (b)

Fig. 8: (a) Performance of algorithm for increasing size of
the workspaces with total planning time=500s (b) Results for
various combinations of the objective functions for different
total planning times

TABLE I: Computation time of DT*

Workspace # Propo- Horizon Computation time (s)

sition length dy cost plan in H Total

W1 6 100 0.019 ± 0.004 0.046 ± 0.016 0.063 ± 0.016
W2 7 100 0.023 ± 0.005 0.103 ± 0.030 0.125 ± 0.032
W3 9 100 0.050 ± 0.010 0.224 ± 0.051 0.268 ± 0.054

W3 9 50 0.035 ± 0.007 0.016 ± 0.011 0.045 ± 0.009
W3 9 70 0.035 ± 0.006 0.060 ± 0.024 0.099 ± 0.034
W3 9 100 0.038 ± 0.010 0.224 ± 0.051 0.263 ± 0.058
W3 9 120 0.039 ± 0.010 0.396 ± 0.115 0.421 ± 0.092

Office h 6 500 0.499 ± 0.125 0.010 ± 0.004 0.509 ± 0.128
Office h 7 500 0.659 ± 0.151 0.045 ± 0.023 0.702 ± 0.163
Office h 8 500 0.863 ± 0.239 0.189 ± 0.119 1.040 ± 0.288

Workspace Smallest Horizon Computation time (s)

Cycle length dy cost plan in H Total

W3 8 100 0.049 ± 0.010 0.257 ± 0.071 0.296 ± 0.074
W3 12 100 0.050 ± 0.010 0.224 ± 0.051 0.268 ± 0.054
W3 16 100 0.052 ± 0.015 0.196 ± 0.065 0.239 ± 0.071

workspace decreases, the solver takes more time to solve
the constraints, as more cycles could be completed within
the same horizon.

Through these experiments, we demonstrate that though
DT* involves solving an optimization problem, its compu-
tation time is not significant. Overall, our DT* algorithm
outperforms the greedy algorithms in terms of the total
number of cycles covered within a given duration in the
majority of cases.

C. ROS+Gazebo Experiment
We provide a Gazebo simulation of the decision sequence

generated by DT* for Example 1 as a supplementary mate-
rial. The video is also available at https://youtu.be/
y6MChISe_wo. The timeline in Figure 2(c) captures the
plan that was generated by DT*. The proposition locations
P1 and P3 become unavailable at timestamp 10 when they
are blocked by other agents. These agents communicate the
duration for which the proposition locations will be blocked
to the robot. The robot uses an SMT solver, which takes 1s
to generate a plan at timestamp 11. The robot then traverses
this generated plan to complete 4 cycles up to timestamp 50.
In our Gazebo simulation we use Turtlebot [19] as the robot
and AMCL localization method [20] provided by Rviz.

V. RELATED WORK

LTL is a popular logical language for capturing complex
requirements for robotic systems. Several researchers have
addressed the path planning problem from LTL specifications
in the past. The techniques to solve the problem includes
graph-based techniques [5], sampling-based technique [2],

https://youtu.be/y6MChISe_wo
https://youtu.be/y6MChISe_wo


[3], Constraint solving based techniques [6] and classical
planning extend with the capability to deal with temporal
logic specifications [4]. For a detailed review of the LTL
path planning literature, the readers are referred to the survey
paper by Plaku and Karaman [21].

Planning in a dynamic environment for reachability spec-
ification (reaching a goal location avoiding dynamic obsta-
cles) has been widely studied in graph based settings [22],
[23], [24], [25]. For temporal logic specification, reactive
synthesis for GR(1) subset of LTL has been undertaken
in [26], [11]. In this approach, a reactive controller is
synthesized to enable the robot to react to the inputs coming
from the environment. The reactive synthesis is performed
based on some assumptions on the workspace. How to deal
with the situations when the assumptions on the workspace
get violated has been addressed in [27], [28]. Though the
problem addressed in this paper can be seen as a reactive
synthesis problem in a dynamic workspace, we do not take
the route of reactive synthesis as it generally suffers from
the lack of scalability.

Our algorithm is based on a reduction of the problem to an
SMT solving problem. The SMT-based approach has been
adopted in solving various path planning problems, for ex-
ample, path planning for reachability specification [29], [30],
path planning for LTL specification [31], [32], [33], energy-
aware temporal logic path planning [34], integrated task and
motion planning [35], [36], centralized and decentralized
path planning for mobile robots [37], [38], and multi-robot
coverage planning [39]. We, for the first time, apply an SMT-
based technique to address the online LTL path planning
problem in a dynamic environment.

VI. CONCLUSION

In this paper, we have presented DT*, an SMT-based
approach to solve the LTL path planning problem in a dy-
namic environment, which uses T* [9] as the backbone. We
have shown empirically that DT* is capable of generating a
superior execution plan in terms of the maximization of task
completion. Our approach incurs computation time which is
required to solve constraint satisfaction problems online by
an SMT solver. Despite this computational disadvantage, the
average gain in the number of loops completed within a fixed
duration is significant compared to suitably crafted greedy
algorithms. Our future work includes extending this work for
multi-robot systems and computing the ideal horizon length
H by learning the distribution over the obstacle arrival rate.

REFERENCES

[1] C. Baier and J.-P. Katoen, Principles of Model Checking. MIT Press,
2008.

[2] S. Karaman and E. Frazzoli, “Sampling-based motion planning with
deterministic µ-calculus specifications,” in CDC, 2009, pp. 2222–
2229.

[3] A. Bhatia, L. E. Kavraki, and M. Y. Vardi, “Motion planning with
hybrid dynamics and temporal goals,” in CDC, 2010, pp. 1108–1115.

[4] F. Patrizi, N. Lipovetzky, G. De Giacomo, and H. Geffner, “Computing
infinite plans for LTL goals using a classical planner,” in IJCAI,
T. Walsh, Ed., 2011, pp. 2003–2008.

[5] A. Ulusoy, S. L. Smith, X. C. Ding, C. Belta, and D. Rus, “Optimality
and robustness in multi-robot path planning with temporal logic
constraints,” I. J. Robotic Res., vol. 32, no. 8, pp. 889–911, 2013.

[6] E. M. Wolff, U. Topku, and R. M. Murray, “Optimization-based
trajectory generation with linear temporal logic specification,” in
ICRA, 2014, pp. 5319–5325.

[7] A. Ulusoy, S. L. Smith, X. C. Ding, C. Belta, and D. Rus, “Optimality
and robustness in multi-robot path planning with temporal logic
constraints,” I. J. Robotic Res., vol. 32, no. 8, pp. 889–911, 2013.

[8] C. Barrett, A. Stump, and C. Tinelli, “The Satisfiability Modulo
Theories Library (SMT-LIB),” www.SMT-LIB.org, 2010.

[9] D. Khalidi, D. Gujrathi, and I. Saha, “T* : A heuristic search based
algorithm for motion planning with temporal goals,” ICRA, 2020.

[10] A. Ulusoy and C. Belta, “Receding horizon temporal logic control
in dynamic environments,” I. J. Robotics Res., vol. 33, no. 12, pp.
1593–1607, 2014.

[11] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon
temporal logic planning,” IEEE Trans. Automat. Contr., vol. 57, no. 11,
pp. 2817–2830, 2012.

[12] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source robot operating
system,” in ICRA Workshop on Open Source Software, 2009.

[13] C. Belta, B. Yordanov, and E. Gol, Formal Methods for Discrete-Time
Dynamical Systems. Springer, 2017, vol. 89.

[14] P. Hart, N. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Transactions on Systems
Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[15] S. Koenig, M. Likhachev, and D. Furcy, “Lifelong planning A,” Artif.
Intell., vol. 155, no. 1-2, pp. 93–146, 2004.

[16] P. Purohit and I. Saha, “DT*: Temporal logic path planning in
a dynamic environment,” CoRR, vol. abs/arXiv:2103.02849, 2021.
[Online]. Available: http://arxiv.org/abs/2103.02849

[17] W. L. R. Bormann, F. Jordan, “Room segmentation: Survey, imple-
mentation, and analysis,” in ICRA, 2016.

[18] L. M. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in
TACAS, 2008, pp. 337–340.

[19] “TurtleBot 2: Mobile Robot Platform,” https://clearpathrobotics.com/
turtlebot-2-open-source-robot/, 2020.

[20] S. Thrun, D. Fox, W. Burgard, and F. Dellaert, “Robust monte carlo
localization for mobile robots,” Artif. Intell., vol. 128, no. 1-2, pp.
99–141, 2001.

[21] E. Plaku and S. Karaman, “Motion planning with temporal-logic
specifications: Progress and challenges,” AI Commun., vol. 29, no. 1,
pp. 151–162, 2016.

[22] S. Koenig and M. Likhachev., “D* lite,” in AAAI, 2002.
[23] M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and S. Thrun,

“Anytime Dynamic A*: An anytime, replanning algorithm,” in ICAPS,
2005, p. 262–271.

[24] X. Sun, S. Koenig, and W. Yeoh, “Generalized Adaptive A*,” in
AAMAS, 2008, pp. 469–476.

[25] C. Hernández, R. Ası́n, and J. A. Baier, “Reusing previously found A*
paths for fast goal-directed navigation in dynamic terrain,” in AAAI,
2015, pp. 1158–1164.

[26] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-logic-
based reactive mission and motion planning,” IEEE Transactions on
Robotics, vol. 25, no. 6, pp. 1370–1381, 2009.

[27] S. C. Livingston, P. Prabhakar, A. B. Jose, and R. M. Murray,
“Patching task-level robot controllers based on a local µ-calculus
formula,” in ICRA. IEEE, 2013, pp. 4588–4595.

[28] K. W. Wong, R. Ehlers, and H. Kress-Gazit, “Correct high-level robot
behavior in environments with unexpected events,” in RSS, 2014.

[29] W. N. N. Hung, X. Song, J. Tan, X. Li, J. Zhang, R. Wang, and P. Gao,
“Motion planning with Satisfiability Modulo Theroes,” in ICRA, 2014,
pp. 113–118.

[30] I. Saha, R. Ramaithitima, V. Kumar, G. J. Pappas, and S. A. Seshia,
“Implan: Scalable incremental motion planning for multi-robot sys-
tems,” in ICCPS, 2016, pp. 43:1–43:10.

[31] ——, “Automated composition of motion primitives for multi-robot
systems from safe LTL specifications,” in IROS, 2014, pp. 1525–1532.

[32] Y. Shoukry, P. Nuzzo, I. Saha, A. L. Sangiovanni-Vincentelli, S. A.
Seshia, G. J. Pappas, and P. Tabuada, “Scalable lazy SMT-based
motion planning,” in CDC. IEEE, 2016, pp. 6683–6688.

[33] Y. Shoukry, P. Nuzzo, A. Balkan, I. Saha, A. L. Sangiovanni-
Vincentelli, S. A. Seshia, G. J. Pappas, and P. Tabuada, “Linear
temporal logic motion planning for teams of underactuated robots
using satisfiability modulo convex programming,” in CDC. IEEE,
2017, pp. 1132–1137.

[34] T. Kundu and I. Saha, “Energy-aware temporal logic motion planning
for mobile robots,” in ICRA, 2019, pp. 8599–8605.

[35] S. Nedunuri, S. Prabhu, M. Moll, S. Chaudhuri, and L. E. Kavraki,
“SMT-based synthesis of integrated task and motion plans from plan
outlines,” in ICRA, 2014, pp. 655–662.

[36] Y. Wang, N. T. Dantam, S. Chaudhuri, and L. E. Kavraki, “Task and
motion policy synthesis as liveness games,” in ICAPS, 2016, p. 536.

[37] I. Gavran, R. Majumdar, and I. Saha, “Antlab: A multi-robot task
server,” ACM Trans. Embedded Comput. Syst., vol. 16, no. 5, pp.
190:1–190:19, 2017.

[38] A. Desai, I. Saha, J. Yang, S. Qadeer, and S. A. Seshia, “DRONA: a
framework for safe distributed mobile robotics,” in ICCPS, 2017, pp.
239–248.

[39] S. N. Das and I. Saha, “Rhocop: receding horizon multi-robot cover-
age,” in ICCPS, 2018, pp. 174–185.

http://arxiv.org/abs/2103.02849
https://clearpathrobotics.com/turtlebot-2-open-source-robot/
https://clearpathrobotics.com/turtlebot-2-open-source-robot/

	Introduction
	PROBLEM
	Preliminaries
	Workspace and Actions.
	Weighted Transition System
	Linear Temporal Logic
	Büchi Automaton
	Product Graph
	Reduced Product Graph
	Robot Trajectory

	Problem Statement and Naive Solutions

	DT* Algorithm
	Generating Optimization Model
	Theoretical Guarantees

	Evaluation
	Experimental Setup
	Results
	Varying the number of proposition locations in a workspace
	Varying obstacle parameters in the environment
	Varying grid size
	Effect of objective functions
	Computation Time

	ROS+Gazebo Experiment

	Related Work
	Conclusion
	References

