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Abstract— Synthesis of a feedback controller for nonlinear
dynamical systems like a quadrotor requires to deal with the
trade-off between performance and online computation time
of the controller. Model predictive controllers (MPC) provide
excellent control performance, but at the cost of a very high
online computation. In this paper, we present our experience
in approximating the behavior of an MPC controller for a
quadrotor with a feed-forward neural network. To facilitate
the collection of training data, we create a faithful model of the
quadrotor and use Gazebo simulator to collect sufficient train-
ing data. The deep neural network (DNN) controller learned
from the training data has been tested on various trajectories
to compare its performance with a model-predictive controller.
Our experimental results show that our DNN controller can
provide almost similar trajectory tracking performance at a
lower control computation cost, which helps in increasing the
flight time of the quadrotor. The hardware requirements of our
DNN controller is also significantly less than that for the MPC
controller, thus the use of DNN based controller also helps in
reducing the overall price of a quadrotor.

I. INTRODUCTION

Autonomous dynamical systems like quadrotors rely on
the efficacy of the feedback controllers for their correct
operation in uncertain environments. Synthesizing feedback
controllers for nonlinear dynamical systems poses tremen-
dous challenges to the control engineers as they need to
deal with the trade-off between the performance of the
controller and the amount of online computation required for
their efficient operation. For example, Proportional Integral
Derivative (PID) controller [1] has a simple structure leading
to very low online computation overhead. But the perfor-
mance of PID controllers for complex nonlinear systems is
often not satisfactory. On the other hand, a Model Predictive
Controller (MPC) [2] can provide excellent performance at
the cost of a very high online computation overhead even for
a system with linear dynamics. The optimization problems
solved in the MPC become further complicated when the
system is nonlinear [3]. Although there exist optimization
techniques like Sequential Convex Optimization [4] that can
solve the nonlinear optimization problems, they suffer from
the lack of scalability for complex systems with a large
number of state variables.

To use an MPC as an on-board controller for a quadrotor,
we need to mount a high-performance computer on the
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quadrotor. However, high energy requirement of the MPC
control computation on the on-board processor reduces the
flight time. Adding extra battery may help in increasing the
flight time, but reduces the payload capacity. Employing
the explicit MPC [5], [6] strategy could help in reducing
the online computation. However, as observed in [7], the
computation time to synthesize an explicit controller grows
exponentially both in the number of time steps, and the size
of state and input vectors, thus making explicit MPC not
suitable for a high-dimensional nonlinear dynamical system
like quadrotor.

In this paper, we explore the possibility of synthesizing
a feedback controller for a quadrotor in the form of a
neural network. We employ supervised learning [8] where
we generate training data capturing the state-control mapping
from the execution of a model predictive controller. However,
generation of training data by flying a quadrotor is tedious
as the battery of the quadrotor needs to be charged for
several times in the process of generating the training data.
To alleviate this problem, we devise a mechanism to create
a faithful model of the quadrotor which can be used for
simulation on the Gazebo Simulator [9] to generate the
required training data.

We train a two-layer Deep Neural Network (DNN) to
approximate the behavior of an MPC. Through a series of
experiments, we evaluate the efficacy of the DNN based
feedback controller. Our experimental results demonstrate
that the trajectory tracking performance of the DNN based
feedback controller is close to that of the MPC controller.
However, the control cost of the DNN based controller is
consistently better than the MPC controller as the DNN
represents a smooth function. We also measure the flight
time for the quadrotor under both the MPC controller and the
DNN based controller. Though our test vehicle is quite heavy
and the power consumption to run the motors is significantly
more than the power required for computation, our DNN
based controller helped in increasing the flight time upto
12.5%. Finally, one major advantage of DNN controller is
that its hardware requirement is low. The hardware required
to run the DNN based controller is only 20% of that of the
hardware required to run the MPC. This helps us reduce the
overall cost of a quadrotor significantly.

Related Work. Various control mechanisms have been
introduced for quadrotor, for example, sliding-mode con-
trol [10], feedback linearization [11], H, robust control [12],
adaptive control [13], and minimum snap trajectory based
control [14]. All these control mechanisms assume the avail-
ability of a faithful mathematical model of the quadrotor.
To address this limitation, Bansal et al [15] has recently



proposed a mechanism to model the dynamics of a quadrotor
using a neural network and showed how this neural network
based model can be used for control computation. Li et
al. [16] have used a DNN to generate a feasible reference
trajectory from a user given desired trajectory for a quadrotor.

There have been some recent work on synthesizing neural
network based feedback controller for dynamical systems.
Recent work has shown that Reinforcement Learning [17]
can be successfully used to synthesize a controller for a
nonlinear dynamical system like quadrotor. The authors have
used Actor-Critic Algorithm [18] to synthesize the controller.
Unfortunately, the time required for such policy search is
enormous. Zhang et al. [19] proposed a methodology to
train a neural network through policy search methodology
based on the data generated from an MPC controller under
full state observations. However, the states available from
the onboard sensors only have been used as the inputs to
the neural network based controller so that it can control
the quadrotor based on only the on-board sensors. As the
neural network gets trained only based on the data from
the on-board sensors, such a technique is not guaranteed to
be successful for all possible trajectory tracking. Recently
there has been work on approximating MPC controller using
Neural Networks [20]. The authors show that using Dykstra’s
projection they are able to reduce the Policy search space.
However, their approach is restricted to linear systems.

To the best of our knowledge, we, for the first time, ap-
proximate the behavior of an MPC controller for a quadrotor
with a deep feed-forward neural network based feedback
controller and carry out its detailed performance analysis.

Paper Organization. The rest of the paper is organized
as follows. In Section II we introduce the background and
formalize the problem statement. In Section III we provide
the detailed methodology that approximates the behavior of
an MPC closely. Tn Section IV, we describe our experimen-
tal setup and explain the experiment results with detailed
analysis about the performance of the controller. Finally, we
conclude the paper in Section V.

II. BACKGROUND AND PROBLEM STATEMENT
A. Quadrotor Dynamics

The quadrotor is a nonlinear dynamical system that can
be represented with discrete-time state space equation of the
form:

St+1 = f(St, Ut)

where s; is the state of quadrotor and u; is the control applied
at time ¢. The control applied is generated by a feedback
controller based on the state. A feedback controller can be
defined as a function (u) that takes the desired state s,‘f and
current state s; as inputs, to give the desired control u, which
when applied to the system minimizes the error between
desired state and the current state.

ur = p(st, s7)

The state-space of the quadrotor is a 12 dimensional
vector [21] defined as: s, = [p v ¢ w]T, where p is
the position of the quadrotor: {p,,py,p.} in z, y, and z
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Fig. 1: Controller architecture of autopilot. The high-level
controller takes trajectory as input and outputs roll (¢), pitch
(0), yaw rate (v) and thrust. Low-level controller runs in
the cascaded loop and outputs the motor speed required to
maintain the desired orientation.
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dimension, v is the velocity :{vg,vy,v.}, ¢ are the three
attitude Euler angles [22]: {roll (¢), pitch (0), yaw () },
and w is the body rates: {wg,ws,wy}. The dynamics of
the quadrotor are such that roll and pitch movements are
decoupled from the yaw movement.

B. Flight Stack Architecture

The controller of the quadrotor is generally a two level
cascaded controller. The high-level controller takes in the
desired trajectory (P?) defined as: P = {p¢ pd,...} and
generates the corresponding desired high level controls: roll
(¢%), pitch (6%), yaw rate(y)?) and thrust (7%), to reach the
target position. Here p¢ denotes the desired position of the
quadrotor at time ¢. The low-level controller takes the desired
attitude and thrust as input and outputs the motor speed, that
maintains the desired attitude and position. The high-level
controller generally runs at a much slower rate than the low-
level controller.

C. High Level Controller

The high-level controller can be implemented by many
types of the control algorithms from the classical control
theory. There is a wide spectrum of controllers that can be
synthesized for a quadrotor. On the one side of the spectrum,
there is the PID controller that has low computation cost but
also provides poor performance. On the other hand there is
MPC based on the optimal control theory. The MPC provides
high performance,but has a high computational cost.

1) Proportional-Integral-Derivative Controller: The PID
controller is one of the simplest linear controller. It consists
of three constants kp, kr, kp. For the current state s(¢) and
desired state s4(t), the control u(t) is generated by PID as:

dz(tt) —|—/k:1 xe(t)dt

u(t) =kp *xe(t) + kp *

where e(t) = s(t) — sq(t). Generally the three constants
are found by observing the behaviour of the system and
fine-tuning them accordingly. The run-time computation cost
of the PID controller is very low compared to optimal
controllers. This comes with a drawback in performance.
As PID controller does not take into account the dynamics
of the system explicitly, the performance of the controller
somewhat depends on the fine-tuning mechanism of the three
constants, which may be extremely time consuming.



2) Model Predictive Controller (MPC): The MPC is an
optimization based controller that generates the controls by
solving a constrained optimization problem for minimizing
trajectory cost over a finite horizon. The optimization prob-
lem solved by MPC is defined as:

min
Ut

Hr
J = Z (stTQst + utTRut)
t=0

subject to St41 = f(se,up)

Uy = /U'(Stv Sf)
U € u
st €S

Umaz Sut S Umin

where U is the control space and S is the state space of the
dynamical system. The symbols t;,;, and ., denote the
upper and lower bounds on the controls respectively.

The MPC generates the controls for horizon Hr from the
current state s;. The system then applies the first control
and feedbacks its observation s;y; (we can assume the state
is fully observable) to the MPC. In the next step, again an
optimization problem is solved, starting from the state s 1.
This is repeated for the complete trajectory. As MPC requires
to solve the optimization problem at every step, the cost of
the computation is very high as compared to PID.

If the dynamics of the system s;.q1 = f(s¢,us) is non-
linear, then the problem becomes a nonlinear optimization
problem. This type of MPC is termed as Non-Linear Model
Predictive Controller (NMPC).

The high-level flight controller when implemented as
MPC provides a good performance but requires additional
hardware. This hardware is generally a high end computation
processor that consumes additional power. Thereby the flight
time of the quadrotor is reduced. When the high-level flight
controller is implemented as PID controller, the hardware
required to execute the controller consumes low power
compared to the MPC. The performance of this controller is
not as good compared to MPC. The MPC can deal with the
external disturbances more effectively than a PID controller.

To address the trade-off between performance and com-
putation cost, we propose a Deep Neural Network (DNN)
based controller that approximates the MPC controller using
supervised learning. We observe that the performance of the
controller is comparative to MPC but computation cost is
comparative to the PID controller. As the hardware proces-
sor required to run a DNN controller is significantly less
expensive than the hardware processor required to run an on-
board optimizer, a quadrotor using a DNN based controller
is also becomes economical. Below, we we briefly introduce
the DNN architecture.

D. Neural Networks

Neural Networks [23] have emerged as one of the most
efficient function approximators. The advancements in the
Deep Learning [24] have shown that Neural Networks are
effective in areas like speech recognition [25], image recog-
nition [26] etc. We use Neural Network to approximate an
offline optimizer for MPC. The Neural Network consist of

one or more layers. Each layer consists of neurons that are
fully connected to all the neurons in the next layer, except
the final layer neurons. The connection between neurons are
weighted. The aim is to learn the weights in such a fashion
that the Network is able to output the controls generated by
MPC for a given state as input. For a layer [ with X as the
input vector, the output of the layer /, y;, is defined as:

y = d(W X + By)

where W is the weight matrix between layer (/) and (I +1)
and B; is the bias. The activation function ¢ performs the
non-linear transformation. Examples of activation functions
are tanh, sigmoid [27], Rectified Linear Unit (ReLu) [28]
etc. The parameters W and B are learned by minimizing
the loss between the predicted value by the neural network
f(x) and the desired output y. One of the frequently used
loss function for regression is the huber loss [29] defined as:

36— f@)?  for |y~ f(x) <4
Sy — f(x)| — 162 otherwise

L(f(2),y) = {

where, 4 is the threshold from where the huber loss changes
from quadratic to linear. The gradients from the loss are used
to learn the weights W by gradient descent methods [30].

W W = as (L))

Here « is the learning rate that controls the amount of
gradient to be adjusted with respect to the loss gradients.

III. METHODOLOGY

In our method we learn offline optimizer of MPC using a
Deep Neural Network (DNN). The neural networks are very
good at generalizing. They also have high non-linearity. We
utilize the generalization and non-linear nature of the neural
network to learn an offline optimizer.

Our method involves mainly four steps:

1) Create a simulation model of the quadrotor using the
learned system dynamics.

2) Learn the controller using supervised learning from
simulation data.

A. Simulation Model of Quadrotor

We first create a model of the quadrotor in the simulator
whose performance is as close as possible to the real world
quadrotor as there are multiple benefits of learning the system
model. For example, to perform supervised learning we need
to collect data by flying the quadrotor in real world. This can
prove to be a tedious task as the battery life of the quadrotor
with an on-board processor running on it is quite low.

To overcome this limitation we create a simulator model
of the quadrotor. We model it near to the real world by using
the transfer function [31] H(s). The transfer function gives
an approximation about the effect of the control on the low
level dynamics of the quadrotor. For our simulator model,
we use the NMPC as the high level controller. For low-level
controller we use the traditional PID controller.

The dynamics of the simulator model and real world model
can be compared by the transfer functions: H(s). We tune the
constants (kp, kr, kp) of the PID controller of the simulated



model of quadrotor such that on applying the high-level
controls, we get the similar transfer function as of the real-
world quadrotor. This ensures that our modelled quadrotor
behaves in a similar fashion like the real world quadrotor.
We can tune the PID parameters by observing the output
of the transfer function. If the values of the time constant
is more in the simulator than the real world quadrotor, we
either decrease the kp or increase the kp. Similarly if the
values of the time constant is less in the simulator than the
real world quadrotor, we either increase the kp or decrease
the kp.

We implement a NMPC controller [32] on the quadrotor.
The NMPC is a high-level controller that outputs three Euler
angles: roll (¢), pitch (), yaw rate(y)) and Thrust (7) as
output. These controls from the high-level NMPC are passed
to a low-level PID controller that maintains the desired angles
and thrust.

We run the NMPC controller on different trajectories that
cover motion of the quadrotor in all the three x,y,z axes. We
decouple the yaw (1)) of the quadrotor as it is independent
of the roll (¢), pitch (0) and thrust (7).

The collected data is used to learn the transfer function of
the quadrotor defined by:

Y (s)
X(s)

H(s) = (1)
where Y(s) and X(s) are the output and input functions
respectively. For quadrotor the Y(s) is: the current orientation
{¢,0}. The input X(s) is the commanded roll and pitch
{¢cmd7 ecmd}-

The low level controller of the quadrotor is responsible
for maintaining the desired orientation provided by the high-
level controller. The low-level controller generates the rates
as output and takes orientation as input.

b= (hsdemi—0) 0= —(koboma — 0)
T [ To
where 0.,q and ¢cpgq are the commanded roll and pitch
angles respectively. k, and kg are the roll and pitch gains,
Tg and 74 are the roll and pitch time constants.
We calculate the gains kg4 and kg as

¢ 0
= k =
¢cmd ‘ ecmd

The time constants are calculated using the pole function
of the matlab.

kg

-1 -1
o= pole(ky) 0= pole(ky)

B. Learn NMPC Controller using Supervised Learning

The generalization power of Deep Neural Networks can
be used to approximate an offline optimizer used in NMPC.
We show that a controller learned using supervised learning
from the data collected from NMPC is able to perform close
to the NMPC.

In the supervised learning setup, the neural networks learn
to approximate a function mapping such that: f(x) : X — ),
where X is the set of inputs {x1, xo,...,zx} and ) is the set
of corresponding output {y1,¥y2, ..., y~ }. The neural network
learns a function f (z;w) paramterized by weights w, that is
close to f(x).

Supervised learning can be used to approximate the NMPC
controller for the quadrotor. The function f(x) for the
quadrotor is mapping between the state to controls: f(z) :
S—U Thestate s€ Siss=[p v ¢ w}T

The controls generated by the NMPC, u € U is the
commanded roll (¢cina), pitch (Oema), yaw rate (emq) and
thrust 7. w = {Gemd, Ocmds Yemds T}

Supervised learning requires labelled data from which the
neural network can learn the function to approximate. We
create labelled data by flying the quadrotor in simulation
on several setpoints, sampled uniformly from the size of
the flying arena. The state s and the controls generated by
the NMPC w are recorded for the setpoints. We learn the
parameter weights w of the deep neural network (DNN)
controller by gradient descent.

Uy = f(S,U})

We implement the learned DNN on an embedded low cost,
low power consuming processor: RaspberryPi 3. We use
open source PX4 [33] as the auto-pilot. The controller in the
PX4 is a cascaded feedback PID controller at both high-
level and low-level. The high level position controller is a
PD controller that generates roll (¢), pitch (6), yaw () and
thrust (7). The low-level controller is a PID controller that
takes input from the high-level controller and outputs the
control moments {uy, uz, 3, u4 }. These moments are passed
through a mixer that converts the control moments to motor
speed.

We replace the high-level PD controller from the PX4 with
our learned DNN controller. As the weights of the DNN is
a matrix, the computation cost of the controller is quite low
as compared to the NMPC.

IV. EXPERIMENT
A. Experimental Setup

In our experiments, we use Flame Wheel (f450) quadrotor
with "X’ configuration, as shown in Fig. 2b. The distance
between the diagonal motors of the quadrotor is 450 cm. The
quadrotor has 4 Electronic Speed Controllers (ESCs) rated
20Ampere each attached with motor of 980 Kv ratings. For
the low level controller we use a pixhawk board with PX4
as the firmware. The battery used to fly this quadrotor is a
3 Cell Lithium Polymer of 5300 mA h rating.

We implement the MPC controller on the flame-wheel
using an on-board Odroid XU4 [34]. The Odroid has A7
cortex Octa-core processor with 2GB of RAM. The Odroid
has a wifi module that communicates with the Ground
Control Station (GCS). The communication between Odroid
and pixhawk is done using mavlink [35] protocol.

The complete experimental setup is shown in Fig. 3.
For indoor localization, we use VICON systems [36] that
provides the odometry at 100 Hz to the GCS. The GCS and



(a) Flying Arena

(b) Flame-wheel f450 Quadrotor

Fig. 2: (a) The dimension of the flying arena is 4 x 2 x 1
m. The quadrotor is in hover state using the DNN controller.
(b) The 450 quadrotor with raspberry 3.0 mounted on it.
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Fig. 3: Block diagram of experimental setup for DeepCon-
trol. The Ground Station sends the reference trajectory to the
high level DNN Controller running on-board the quadrotor.
The low-level attitude controller maintains the desired orien-
tation. The VICON system provides the localization feedback
for the controller.
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QOdroid both run ROS [37] nodes for communication. The
odometry from the VICON system is processed and sent
to the ROS node running on the Odroid by the GCS. The
GCS also publishes the target position to the Odroid. The
MPC package running on the on-board Odroid takes as input:
Odometry and target position from GCS. The output of the
MPC: {bemd, Oemd, Yemds Temd} 18 sent to the PX4 running
on the pixhawk board. The low level PID controller on the
pixhawk generates the rotor speed commands that maintain
the desired attitude.

B. System Identification and Simulation Modelling

For the purpose of system identification, we manually flew
the quadrotor in our lab arena and recorded the state of
quadrotor (s;) and control input from the RC transmitter
(ut) at time ¢, using ROS.

We recorded the data at 100Hz. The manual flight of
the quadrotor was performed for 1 minute in which we
performed maneuvers such that the effect of commanded
roll and pitch can be identified. From the recorded data we
learn the transfer function H(s) of the quadrotor. For our
quadrotor the values were - mass: 1.45, roll time constant:
0.185622, pitch time constant: 0.163042, roll gain: 1.037192,
pitch gain: 0.966195.

The above constants are able to define the low-level
dynamics of the real-world quadrotor. We create a simulation

model of the f450 in Gazebo [38]. The structure of the f450
was obtained from Open-UAV [39]. The dynamics of the
quadrotor do not exactly match with our real-world quadrotor
as the motors, ESC etc cannot be modelled very precisely.
Therefore we tune the low-level PID controller gains of
the simulated model such that the transfer function of the
simulated model is close to our real-world f450. The tuning
of the PID gains can be done in few iterations. In our case,
the coefficient were, for roll: kp = 160, kp = 30, for pitch:
kp = 181, kp = 30. We observe that for the above numbers,
the transfer function of the simulated f450 and real world
f450 are nearly equal as shown in Fig. 4 and Fig. 5.
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Fig. 4: Orientation tracking of the Real Flame-Wheel 450

quadrotor. The blue line represents the orientation of the
quadrotor and red line represents the commanded angles.
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Fig. 5: Orientation tracking of the simulator model of Flame-
Wheel 450 quadrotor. The blue line represents the orientation
of the quadrotor and red line represents the commanded
angles.

C. Approximating MPC using DNN

The supervised learning requires labelled data. We approx-
imate the MPC by running it on the simulated quadrotor
model. This has several benefits as it saves the time required
to collect the training data by flying the real quadrotor. The
flight time of the quadrotor with 3 cell battery was observed



to be around 15 min with Odroid running on it, which is
quite low for data collection. Instead of changing/recharging
batteries for multiple number of times, the data can be easily
collected from the simulator model.

We collected data in simulator by sampling setpoints
uniformly. We sampled the points in simulation as per the
size of the flying arena. The size of the flying arena in our
experimental setup is 4 x 2 x 1 m, as shown in Fig. 2a.
The states (s;) and controls (u;) at time ¢ were recorded for
simulator flight. We collected around 100000 data points for
training.

The collected data from the simulator was used to learn the
approximate MPC using DNN. The neural network consists
of two fully connected hidden layer with 64 neurons in each
layer. As the yaw is decoupled from the roll, pitch and thrust
motion of the quadrotor, we train our network to predict the
three controls: roll, pitch and thrust. We used Rectifier Linear
Unit (ReLu) as the activation function in the hidden states.
For the output layer we use tanh as the activation function.
We minimize the huber loss between the predicted value and
the ground truth value by using Adam Optimizer [40].

D. Comparison of MPC and DNN controllers

For a quantitative comparison of MPC and DNN controller
we fly the quadrotor in different trajectories that can gener-
alize the motions of the quadrotor. We select three types of
trajectories for evaluation.

e Square: The square trajectory has both roll and pitch
movements that are independent of each other. This
helps in evaluating the roll and pitch outputs of the DNN
and MPC independently. We define the trajectory as 1
x 1 meter square.

o 00 Shape: This trajectory has both the roll and pitch mo-
tions simultaneously. This trajectory evaluates the effect
of roll and pitch controls, when both are dependent on
each other.

o Step Input: This trajectory evaluates the response time
of the controller when step inputs are provided. We
provide the setpoint at 30 cm apart. We create another
instance of aggressive step input trajectories where
setpoints are 1 m apart.

All the above three trajectories were generated by using
Polynomial trajectory optimizer [41].

1) Trajectory Tracking: The trajectory tracking perfor-
mance of the DNN controller is similar to the MPC. The
tracking performance of the DNN for independent roll and
pitch movements over the square trajectory is shown in
Fig. 7. The DNN controller is able to respond to the
aggressive step inputs and shows performance similar to the
MPC as shown in Fig. 6. The DNN controller is able to
understand the coupled dynamics of the roll and pitch. This
can be seen by the oo shaped trajectory tracking shown in
Fig. 8. The video of the trajectory tracking is provided in
the supplementray material.

2) Position Error: We evaluate both the controllers based
on the position error with respect to the reference position.
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Fig. 6: Comparison of performance between MPC and DNN
controller for step response for real-world f450.
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Fig. 7: Comparison of performance between MPC and DNN
controllers for trajectory of 1 x 1 meter square for real-world
£450.

We define the state cost as:
T
Tpos = I _1Ip(t) = pres ()]
t=0

where p(t) is the position at time ¢, pr.¢(t) the position
reference. We consider the position error only as we generate
the reference trajectory in terms of positions only. The overall
performance of the DNN controller is comparable to the
MPC as shown in Table I, in-spite of the fact that the
controller is learned from simulated data and tested on a
real-world quadrotor. The position error for the oo shaped
trajectory by both the controller is shown in Fig. 9. The
position cost in the Table I is calculated over a flight time
of 1 minute.
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Fig. 8: Comparison of performance between MPC and DNN
controllers for co-shaped trajectory for real-world f450.
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Fig. 9: Trajectory error for MPC and DNN controller for co
shaped trajectory shown in fig.[8]
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Fig. 10: Comparison of Controls generated by MPC and
DNN for oo shaped trajectory and aggressive trajectory (step
input). It can be observed that the controls generated by
the DNN are smoother than the MPC. It seems that DNN
approximates a mean of the the controls generated by MPC
for similar states.

3) Control Cost: The control cost has a direct effect on
the motors efficiency. High control cost indicates that the
motors are stressed by the controller as it generates abrupt
changes in the input. We define control cost for a trajectory
as:

T
Jetrt = Z ||u(t)||2
t=0

where u(t) is the control generated at time ¢.

The control cost of the the DNN is observed to be lower
than the MPC as shown in Table I. This is because of the
smooth controls generated by DNN as shown in Fig. 10 for
oo shape trajectory and step inputs. The DNN gives smooth
output as compared to MPC due to the fact that during
supervised learning, the DNN tires to minimize the squared
error (Huber loss is used in training). This results in a smooth
curve fitting by DNN over the set of the controls generated
by MPC.

Trajectory MPC DNN
State Control | State Control
Cost Cost Cost Cost
Square 6.60 0.29 7.56 0.24
oo shape 16.79 0.71 18.22 0.62
Step Input 28.26 5.43 31.90 4.59

TABLE I: Comparison of Trajectory cost between MPC and
DNN Controller for real-world f450.

Trajectory Flight Time[secs] % Gain
MPC DNN

Hover 960 1044 8.75 %

Step Input 922 1020 10.6 %

Aggressive Step Input | 902 1015 125 %

TABLE II: Comparison of Flight time between MPC and
DNN Controller for real-world 450

4) Flight Time: We observe that the flight time of the
quadrotor has increased as shown in Table II, when we use
the DNN controller, as the controls generated by the DNN are
smooth and the optimization problem that is being solved by
the MPC is replaced with simple matrix operations. The gain
in the flight time is more for aggressive trajectories due to
the smoother controls generated by the DNN. The hardware
required to run the DNN controller is nearly 20% the cost
of the hardware required for MPC.

E. Processor Consumption

We compare the computation cost of the MPC and DNN
controller on a single core ARM Cortex A7 processor.
The MPC solves an online optimization problem by using
Acado solver [42] to generate controls. The DNN controller
performs matrix arithmetic to calculate the control. The
comparison is shown in Table III with both the controllers
implemented in C++. For DNN, we use Eigen library [43]
to perform the matrix arithmetic.

It is also worth noting that the processor hardware required
to run the DNN controller is nearly 20% of the cost of the
processor hardware required for MPC. The Raspberrypi
3 used for DNN controller has ARMv7 Processor on it with
4 cores.

V. CONCLUSION

In this paper, we demonstrate the possibility of using a
Deep Neural Network to approximate a Model Predictive
Controller for nonlinear dynamical systems like quadrotor.
We observe that by modelling the low level dynamics of
the quadrotor in simulation, we are able to learn the DNN
controller for a real-world quadrotor. The performance anal-
ysis indicates that the DNN controller increases flight time
as it can run on a less powerful processor, thus consumes
less CPU power, but yet it is able to track the trajectory
in an efficient manner. The results indicate that the Neu-
ral Networks are exceptional at generalizing the nonlinear
dynamics and have potential to become an alternative to
classical controllers.

In future, we wish to analyze the effect of the number
of layers in the Neural Network on the performance of the
feedback control. There is a further scope of improvement
in the performance of the DNN by applying Reinforcement



Trajectory MPC DNN
Hover 25 % 3 %
oo shaped 29 % 4%
Step Input 33 % 4%

TABLE III: Comparison of CPU usage on a single core ARM
Cortex A7 processor.

Learning based techniques [44] on the learned controller. Fi-
nally, we would like to apply the recently developed Lyapnov
based analysis for robustness of controller to perform safe
learning [45].
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