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Abstract— Efficient recharging is an essential requirement for
autonomous mobile robots. In an indoor robotic application,
charging stations can be installed offline. However, frequent
trips to the charging stations cause inefficiency in the per-
formance of the mobile robots. In an outdoor environment, a
charging station cannot even be installed easily. We propose a
framework and algorithms for enabling a group of mobile wire-
less rechargers to fulfill the energy requirement of autonomous
mobile robots in a workspace efficiently. Our algorithm finds
the optimal trajectories for the mobile rechargers in such a way
that once there is a need for a recharge, the robots do not need
to spend significant time and energy to get access to a recharger.
Our algorithm is based on a reduction of the problems to
Satisfiability Modulo Theory (SMT) solving problems. We
present extensive experimental results to show that the optimal
trajectories for mobile rechargers can be generated successfully
for different types of robots and workspaces within a reasonable
time. Moreover, a comparison with the performance of static
charging stations establishes that mobile rechargers are more
effective in terms of allowing the autonomous robot to continue
their work for a longer time.

I. INTRODUCTION

Autonomous mobile robots have the potential to be useful
for a wide range of indoor and outdoor applications such as
persistent surveillance [1], assembly planning [2], evacua-
tion [3], search and rescue [4], and object transportation [5].
These robots are generally battery-powered. Their batteries
need to be recharged at a regular interval to keep the robots
operational for a long time. The efficiency of the robotic
system depends significantly on how effective the power
management mechanism is for the robots.

Three major approaches are employed to deal with the
recharging problem of mobile robots. In the first approach,
the robot needs to visit a static charging station to get its
battery recharged, which is known as docking based au-
tonomous recharging [6], [7], [8], [9], [10], [11], [12], [13],
[14]. In the second approach, the robot is kept connected
with a charging station using a long tether to provide it
with an uninterrupted power supply [15], [16], [17]. In the
third approach, natural energy resources like the sun and the
slugs are exploited as energy resources for the robots [7],
[18], [19]. These mechanisms either require pre-installed
infrastructure or can operate in selective environments and
thus not suitable for quick and unplanned deployment.

In this paper, we explore an alternative approach to address
the energy supply problem for mobile robots. Our approach
is based on employing mobile rechargers that move towards
the energy-deficient worker robots whenever required and
supply them with the needed energy. This approach is
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motivated by several mobile charging solutions proposed in
recent times [20], [21]. Though the mobile rechargers have
been developed keeping electric vehicles in mind, there is
a vast potential for this technology to be useful for various
multi-robot applications where worker robots need to reduce
time and energy to travel towards charging stations or in
scenarios where static recharger installation is difficult.

A few recent works have addressed the planning problem
for a set of mobile recharger robots to support a specific set
of worker robots carrying out some pre-determined tasks [8],
[22], [23], [24], [25]. However, for many practical applica-
tions, we need to deploy mobile recharger robots to cover a
workspace in such a way that the worker robots can access
them easily irrespective of their working trajectories and
tasks. Deploying mobile rechargers in a workspace has the
following major challenge: how to determine the coverage
area and trajectory loops of the mobile rechargers so that they
can cover the workspace completely, and thereby require the
worker robots to spend an insignificant amount of energy
to move to a recharger? The dynamic constraints of the
robots (both workers and rechargers) and the presence of
the obstacles in the workspace add significant challenges to
the problem.

Being motivated by the recent successes of the SMT
solvers to solve robot motion planning problems [26], [27],
[28], [29], [30], [31], [32], we design SMT based solutions
to the above-mentioned motion planning problem for mobile
rechargers. We present a naive SMT encoding and a global
and a local optimization method over the naive algorithm.
Our experimental results show that our algorithms can suc-
cessfully generate optimal trajectories for the rechargers for
different types of worker robots and workspaces in a reason-
able time. The optimization techniques help in decreasing
the trajectory lengths of the mobile rechargers. Moreover,
the local optimization approach is significantly faster than
the global optimization approach while providing results at
par with the global optimization technique. To the best of our
knowledge, this paper is the first to address the optimal path
planning problem for a group of mobile rechargers serving
an arbitrary set of mobile worker robots in a workspace.

II. PROBLEM

A. Preliminaries
Workspace (W). In this work, we assume that the robots
operate in a 2-D workspace, which we represent as a 2-D
occupancy grid map. The grid decomposes the workspace
into square-shaped blocks, which are assigned unique identi-
fiers to represent their locations in the workspace. We denote
the set of locations in the workspace by W and the set of
locations covered by obstacles by O. The set of obstacle-free
locations in the workspace is denoted by F = W \ O. For
an obstacle-free grid location p ∈ F , its neighbourhood is



defined as any obstacle-free location p′ which is one unit
distance (in any direction) away from p, i.e., N (p) = {p′ |
p′ ∈ F ∧ |p′.x− p.x| ≤ 1 ∧ |p′.y − p.y| ≤ 1}, where p.x
and p.y denote the x and y coordinates of grid location p.
Robot State (σ). The state of a robot σ consists of (1)
its position in the workspace, σ.p, which determines a
unique block in the occupancy grid, and (2) its velocity
configuration, σ.v, which represents the current magnitude
and direction of the velocity of the robot. We denote the
set of all velocity configurations by V and assume that it
contains a value v0 denoting that the robot is stationary.
Motion Primitive (γ). We capture the motion of a robot
using a set of motion primitives Γ. We assume that the robot
moves in an occupancy grid in discrete steps of τ time units.
A motion primitive is a short controllable action that the
robot can perform in any time step. A robot can move from
its current location to a destination location by executing a
sequence of motion primitives.

With each motion primitive γ ∈ Γ, we associate a pre-
condition pre(γ), which is some propositional formulas over
the states specifying the condition under which a motion
can be executed. We write post(σ, γ) for the state of a
robot after the motion primitive γ is applied to a state σ
satisfying pre(γ). We use intermediate(σ, γ) to denote the
set of grid blocks through which the robot may traverse when
γ is applied at state σ, including the beginning and the end
blocks. Each motion primitive γ is associated with an energy
cost as denoted by cost(γ). To simplify the exposition, we
assume that the execution of any motion primitive for a robot
leads to the same amount of energy expenditure.

We assume that in Γ, there exists a motion primitive that
can be applied when the robot is at the velocity configuration
v0, and it keeps the robot in the same state. This special
primitive is called the rest primitive.
Motion Plan (ρ) and Trajectory (ξ). The run-time behavior
of a robot is described by a discrete-time transition system
T . Let σ1 and σ2 be two states of the robot and γ be the
motion primitive applied to the robot in state σ1. We define
a transition σ1

γ−→ σ2 iff
• σ1 |= pre(γ), σ2 = post(σ1, γ), and
• the trajectory of the robot between the states σ1 and σ2

does not pass through a block occupied by an obstacle,
i.e., intermediate(σ1, γ) ∩ O = ∅.
A motion plan for a robot is defined as a sequence of

motion primitives to be applied to the robot to move it from
a location li ∈ F to another location lf ∈ F . A motion
plan is denoted by ρ = (γ1 . . . γk), where γi ∈ Γ for all
i ∈ {1, . . . , k}.

Given the current location of the robot l0 and a motion
plan ρ = (γ1 . . . γk), the trajectory of the robot is given
by ξ = (σ0σ1 . . . σk) such that for all i ∈ {1, . . . , k},
σi−1

γi−→ σi. If any transition is invalid then the motion plan
does not lead to a valid trajectory. In the rest of the paper,
we use the word “step” to denote a transition governed by a
motion primitive.

B. System Model
In our framework, the robots are categorized as worker

robots (workers) and recharger robots (rechargers) based

on their functionalities. Workers traverse the workspace to
perform some tasks, while the sole purpose of the rechargers
is to recharge the batteries of the workers. A recharger’s
trajectory (derived by our algorithm) essentially makes a loop
that it traverses repeatedly. Without loss of generality, let
us assume that the length of the trajectory loops of all the
rechargers are the same and is denoted by ncp (number of
charging points).

We assume that the workers have access to a motion
plannerM that has the knowledge of the trajectory loops of
the rechargers. While carrying out its task, when the battery
charge comes down to a threshold level (d), the robot aborts
its task and invokes M with its current location. This event
may happen at any obstacle-free location in the workspace.
The motion planner computes the shortest trajectory from
the current location of the workspace to some neighbouring
location on the trajectory of a mobile recharger. This motion
planning problem is simple and can be solved using any
graph-search based planning algorithm like A* [33]. We
assume that each motion primitive (transition) of every
worker requires a unit amount of energy. We assume a simple
battery model, and by the threshold d, we represent the
maximum number of transitions the robot will be able to
take before getting devoid of energy. To recharge its battery,
the robot should be able to reach one of the neighbouring
grid locations on the trajectory of a recharger within a pre-
decided threshold (d) number of transitions. Our goal is to
design the trajectories of the recharger robots in such a way
that a worker robot, from any location, is capable of reaching
at least one of the recharger robots within d steps.

To perform the recharge operation, a worker computes its
trajectory and communicates its end location to the recharger.
From this message, the recharger gets to know the exact
trajectory point where it can meet the worker. Now, both the
worker and the recharger start moving simultaneously to their
designated destinations. We assume that the execution of a
motion primitive by both worker and recharger takes an equal
amount of time. We also assume that the trajectory generation
for the worker and the communication with the recharger
incur negligible energy and time. With these assumptions,
we define the following two performance measures of the
proposed recharge mechanism:
• Maximum energy consumption for the worker robot to

complete a recharge operation, which is given by d.
• Maximum wait time, denoted by w, which is given by

max(d, ncp− 1). This expression can be derived from
the fact that the worker and the recharger start moving
simultaneously, and the recharger needs to move at most
(ncp − 1) steps, assuming conservatively that it can
move only in one direction following its trajectory loop.

Note that, for static rechargers (ncp = 1), both maximum
energy consumption and maximum wait time are same — d.

C. Plan Synthesis Problem
The planning problem for the mobile rechargers involves

three parameters: the threshold on the number of transitions
(d), the length of the trajectory loops of the rechargers
(ncp, for the number of charging points), and the number
of mobile rechargers (nrech). While it may be possible to
solve the problem by co-optimizing these three parameters, it



(a) Warehouse (b) Artificial floor

Fig. 1. Trajectories of multiple rechargers deployed to recharge worker
robots in Warehouse and Artificial floor workspaces (dimension 17× 17).

is computationally challenging. It also requires deciding the
weights of these three parameters appropriately to formulate
the multi-objective optimization problem. We rather assume
that two of the three parameters are given, and our goal
is to optimize the third parameter, along with finding the
trajectories of the rechargers. This leads to three different
optimization problems. Below, we formally define the prob-
lem for the case where we aim to find the optimal value of
ncp for a given d and nrech. The other two problems can
be defined similarly.

Problem 2.1: Given a workspace 〈F ,O〉, a set of
recharger robots R = {r1, . . . , rnrech}, and the threshold
on the number of transitions d (which is also the battery
charge threshold), minimize the number of points ncp on
the trajectory of the recharger robots, and compute each
ri’s trajectory loop ξri = (σri0 σ

ri
1 σ

ri
2 . . . σrincp), such that a

worker can reach the neighbourhood of the trajectory of at
least one of the rechargers from any location lf ∈ F in the
workspace by executing at most d number of transitions.

In the above-mentioned problems, we consider the length
of the trajectories for all the rechargers to be the same. As
it will be evident later, the assumption of a fixed length for
the trajectories of all the rechargers leads to the design of a
simple algorithm. However, if we allow different rechargers
to have trajectories of different lengths, it may be possible
that we can obtain shorter trajectory loops for some of the
rechargers. We will present two algorithms to achieve this
goal.

D. Example

Figure 1 shows two different workspaces (Warehouse and
Artificial floor) of dimension 17×17. Consider that a worker
robot is a Turtlebot [34] which can move to one of the
eight adjacent cells from its current cell in one step. In this
example, we set the charging threshold d to 5, and use a fixed
number of recharger robots (for Warehouse, the number is 3,
and for Artificial floor, it is 2). Our aim is to find the optimal
length trajectory loops of the rechargers such that whenever
a worker needs to recharge its battery, it can reach at least
one of the rechargers’ trajectories within d = 5 steps.

Consider that a recharger robot has similar dynamics
as any worker robot, plus four primitives (in N, S, E,
W directions and two steps forward). The trajectories of
the rechargers, as generated by our algorithm, are shown
in Figure 1. Note that for a recharger, any two adjacent
trajectory points (black circles) are connected by a single
motion primitive of the recharger. Figure 1(a) and Figure 1(b)

Algorithm III.1: Compute the optimal value of deci-
sion parameter (dparam) and rechargers’ trajectories

Input: F : the set of obstacle-free blocks, O: the set of obstacles,
Γr : the set of motion primitives for the recharger,
Γw: the set of motion primitives for any worker,
fixed: the values of the fixed parameters.

Output: dparam: the value of the decision parameter
rtraj: the vector containing the rechargers’ trajectories,
wtraj: the vector containing the workers’ trajectories for

each grid cell in F .

1 function generate_trajectories(F , O, Γr , Γw , fixed)
2 begin
3 dparam := 1;
4 while true do
5 C :=

generate_constraints (F ,O,Γr,Γw, fixed, dparam);
6 [result,model] := solve_constraints(C);
7 if result = SAT then
8 [rtraj, wtraj] :=

extract_trajectories(model);
9 return [dparam, rtraj, wtraj];

10 else
11 dparam := dparam + 1;
12 end
13 end
14 end

show the trajectories when we consider their lengths to
be equal. Note that in generating the trajectory loops for
the rechargers, the planner may use the rest primitives as
is the case for the right-most recharger in the Warehouse
example (transition 5). The transition corresponding to the
rest primitive can be safely removed from the trajectory.

In the next section, we present a basic algorithm for
generic inputs, followed by two more algorithms to further
optimize the trajectory loop lengths by forcing the use of
rest primitives in the trajectory loops wherever possible.

III. ALGORITHM

In this section, we provide mechanisms to solve the prob-
lems introduced in Section II algorithmically by reducing
them to a sequence of SMT solving problems.

A. Basic Algorithm for Finding Rechargers’ Trajectories

We introduce a basic and generic algorithm (Algo-
rithm III.1) for generating the trajectories for the rechargers,
where any two of the three parameters d, ncp, and nrech
are given. The other goal of Algorithm III.1 is to find the
optimal value of the third parameter.

The function generate_trajectories takes as input the
set of obstacle-free cells F , the set of obstacle occupied
cells O, the set of motion primitives for the recharger
robots Γr and for the worker robots Γw, and the fixed
parameter values fixed. The goal of the algorithm is to
find the minimum value of the third parameter dparam
such that the trajectories for the rechargers exist to cover
all the obstacle-free locations in the workspace. To find the
minimum value of dparam, we start with dparam=1 and
keep on increasing it until we get a solution. For each value
of dparam, we formulate an SMT-solving problem C using
generate_constraints function. The constraint C is then
fed to an SMT solver. If the solver fails (UNSAT) to produce
a solution, it indicates that there do not exist trajectories



for the recharger robots for the given values of the fixed
parameters and the current value of the decision parameter.
So, we increase the value of the decision parameter dparam
by 1 and repeat the same procedure until it achieves sat-
isfiability (SAT). In an iteration, if the solver produces a
model (result is SAT), using the model, we extract the
rechargers’ trajectories (rtraj) and the workers’ trajectories
(wtraj) from any obstacle-free location in F to one of the
rechargers.

Below we present the constrains C for a specific input
instance of Algorithm III.1 where d and nrech are fixed
parameters and ncp is the decision parameter dparam. Other
input instances can be handled in a similar way.

∀ri ∈ R. ξri = (σri
0 σ

ri
1 . . . σri

ncp) with σ
ri
ncp = σri

0 ∧ (III.1a)
∀lf ∈ F . ∃ ξw = (σw

0 σ
w
1 . . . σ

w
d )

with
(
σw
0 .p = lf ∧ σw

d .v = v0 ∧∨
ri∈R

(σw
d .p ∈ N (σri

1 .p) ∨ . . . ∨ σ
w
d .p ∈ N (σri

ncp.p))
)
. (III.1b)

In Constraint III.1a, we introduce a trajectory loop of length
ncp for each recharger robot. In constraint III.1b, we ensure
that for each obstacle-free location lf ∈ F , there exists a
trajectory of length d for a worker robot which starts at lf and
terminates with a zero velocity at a grid location which is in
the neighbourhood of the trajectory of one of the rechargers.
Note that the requirement of a trajectory of length exactly
d is not too restrictive, as any trajectory of length less than
d with zero velocity at the end can be extended to a valid
trajectory of length d by applying a number of rest primitives.

The trajectory of a robot s (recherger or worker), de-
noted by ξs = (σs0, . . . , σ

s
len), can be associated with its

motion plan ρs = (γs1 , . . . , γ
s
len), where γsi ∈ Γs for all

i ∈ {1, . . . , len}, and the following constraints:∧
t∈{0,...,len−1}

(
σst |= pre(γst+1) ∧ σst+1 = post(σst , γ

s
t+1)

∧ intermediate(σst , γ
s
t+1) /∈ O

)
(III.2)

Constraint III.2 ensures that for robot s, the state σst at time
t satisfies the pre-condition of the motion primitive γst+1 at
time t + 1; and applying the motion primitive γst+1 at state
σst takes the robot to state σst+1; and the intermediate blocks
through which the robot passes are obstacle-free.

B. Optimizing Rechargers’ Trajectories

The above-mentioned Algorithm III.1 considers the length
of the trajectories for all the rechargers to be the same
and is denoted by ncp. However, there is a possibility that
the lengths of these trajectory loops can be further reduced
if we allow different rechargers to have trajectories with
different lengths. In what follows, we present two algorithms
to optimize the trajectory lengths of the rechargers.

Global Optimization. In this approach (Algorithm III.2), we
attempt to further reduce the length of the individual trajec-
tory loops by minimizing the cumulative sum of the trajec-
tory lengths of the rechargers. For a given input instance, first
we obtain the specific values for the three parameters ncp,
d, and nrech from Algorithm III.1. These parameter values
are passed to this algorithm (Algorithm III.2). Now, we run

Algorithm III.2: Global minimization of the total
length of the trajectory loops of the rechargers

Input: F : the set of obstacle-free blocks, O: the set of obstacles
Γr : the set of motion primitives for the recharger,
Γw: the set of motion primitives for any worker,
fixed : [ncp, d, nrech] : the parameter values passed from
Algorithm III.1 and kept fixed in this algorithm.

Output: rtrajnew: the vector containing re-optimized trajectories
for the rechargers,

wtrajnew: the vector containing re-optimized trajectories
for the workers.

1 function global_optimization(F , O, Γr , Γw , fixed)
2 begin
3 total_ncp := nrech× ncp;
4 while true do
5 C :=

generate_constraints(F ,O,Γr,Γw, fixed, total_ncp);
6 [result,model] := solve_constraints(C);
7 if result = SAT then
8 model′ := model;
9 total_ncp := total_ncp− 1;

10 else
11 [rtrajnew , wtrajnew] :=

extract_trajectories(model′);
12 return [rtrajnew , wtrajnew];
13 end
14 end
15 end

a loop to find the minimum value for total_ncp (sum of the
lengths of all rechargers’ trajectories). The loop is similar to
the loop in Algorithm III.1 with a few differences. The loop
starts with a feasible value of total_ncp and decreases it by
1 in each iteration until the constraints become unsatisfiable.
All the parameters passed from Algorithm III.1 are kept fixed
in this algorithm to find the minimum value of total_ncp.

Note that in the representation of the trajectory loops, we
still need to keep ncp number of motion primitives for the
trajectory loops for each recharger. However, our goal is
to generate trajectory loops with as many rest primitives
as possible so that the shortest trajectory loops can be
generated by removing those rest primitives. To achieve this,
we introduce the following constraint that equates total_ncp
to the number of only ‘active’ transitions which do not
correspond to rest primitives.

total_ncp =
∑
r∈R
|active_primr|,

active_primr = {γ | γ is used in ρr = (γr0 , . . . , γ
r
ncp) ∧

γ is not a rest primitive}.

For a lower value of total_ncp, the solver attempts to
generate recharger trajectories with more number of rest
primitives. When the constraints become unsatisfiable, mean-
ing that it is no more possible to reduce total_ncp by
introducing rest primitives in the trajectories, the algorithm
uses the function extract_trajectories to extract the
recharger trajectories (rtrajnew) by eliminating the tran-
sitions with rest primitives from the last feasible model.
Worker trajectories (wtrajnew) are also derived from the
model.

Local Optimization. Though global optimization finds the
trajectories of the rechargers by minimizing their total



Algorithm III.3: Local minimization of the trajectory
lengths of the rechargers

Input: F : the set of obstacle-free blocks, O: Set of obstacles,
Γr : the set of motion primitives for the recharger,
Γw: the set of motion primitives for any worker,
fixed : [ncp, d, nrech, rtraj, wtraj] : passed from
Algorithm III.1.

Output: rtrajnew , wtrajnew .

1 function local_optimization(F , O, Γr , Γw , fixed)
2 begin
3 Fpart := partition_workspace(rtraj, wtraj);
4 r := 1;
5 while r ≤ nrech do
6 [ncprnew, rtrajrnew, wtrajrnew] :=

generate_trajectories(Fr
part,O,Γr,Γw, d, nrech=1);

7 r := r + 1;
8 end
9 return [rtrajnew, wtrajnew];

10 end

(a) Sub-optimal trajec-
tories

(b) Globally optimized
trajectories

(c) Locally optimized
trajectories

Fig. 2. Deployment of mobile rechargers in an Artificial floor (17× 17).
Covered locations by different rechargers are indicated by different colors.

(cumulative) length, the algorithm suffers from lack of
scalability. In Algorithm III.3, we present a scalable local
optimization method to improve the trajectory lengths for
the rechargers without compromising the optimality of their
total cost (as in global optimization) significantly.

Given two fixed parameters and the decision parameter,
we first invoke our basic algorithm (Algorith III.1) to find
the recharger trajectories (denoted by rtraj) and the worker
trajectories from any obstacle-free location l ∈ F (denoted
by wtraj). We pass rtraj and wtraj to this algorithm
(Algorithm III.3). Now, by using the trajectories in rtraj
and wtraj, for each mobile recharger r ∈ R with trajec-
tory ξr = (σr0 . . . σ

r
ncp), we find the subset Frpart (of the

entire obstacle-free cells F) which is served by recharger r
by using partition_workspace function. Mathematically,
Frpart can be captured as:

Frpart = {l | ∃ ξw = (σw0 . . . σ
w
d ) ∈ wtraj such that

σw0 .p = l ∧
(
σwd .p ∈ N (σr1.p)∨. . .∨σwd .p ∈ N (σrncp.p)

)
}

For each recharger r, we now find the optimal
trajectory rtrajrnew (hence ncprnew) by invoking the
generate_trajectories method in Algorithm III.1 with
parameter Frpart instead of F , the fixed d-value and
nrech=1, and ncprnew as the decision variable. Finally, it
returns the trajectories for the rechargers and workers.

C. Optimization Example
Figure 2(a) shows the trajectories computed by the basic

Algorithm III.1 where we consider lengths of recharger
trajectories to be equal. In the figure, we show the partition

of the workspace into two regions (shown in green and
cyan color) corresponding to the coverage areas of the two
rechargers.

Figure 2(b) shows the optimal trajectories of the rechargers
as computed by the global optimization approach (Algo-
rithm III.2). For the Artificial floor, sub-optimal trajectories
(Figure 2(a)) are generated with the maximum trajectory
length of each recharger to be 8. It can be seen in Figure 2(a)
that for both the rechargers, the trajectory length is 8 (some
edges may be traversed more than once). However, when
optimized globally, we obtain two different trajectory loops
– one with length 8 and the other with length 6.

Figure 2(c) shows the trajectories obtained by applying
local optimization (Algorithm III.3). The algorithm starts
with the sub-optimally covered regions obtained from the
basic algorithm and then finds the optimal trajectory for each
region individually. As shown in Figure 2(c), the recharger
trajectory length for one of the regions reduces (to 6 from
8) when compared to sub-optimal trajectories (Figure 2(a)).

In terms of total trajectory length, local optimization
produces a result that is at par with the one produced by
the global optimization. However, in terms of computation
time, the local optimization (49min) beats its counterpart
(162min) by a good margin.

IV. EVALUATION

A. Experimental Setup

We run our algorithms on two different workspaces (Ware-
house and Artificial floor, as shown in Figure 1) with
dimensions 12 × 12 and 17 × 17, and two types of worker
robots – Turtlebot [34] and Quadcopter [35]. All the workers
are the same type of robots: either Turtlebot (9 primitives)
or Quadcopter (57 primitives). The recharger robots are of
Turtlebot type with 13 primitives, as mentioned before. We
assume that the Quadcopters fly at a specific height, and they
require a negligible amount of energy to come down to the
ground from their flying plane.

Conventions like Ware-12 and Art-17 are for Warehouse
(12 × 12) and Artificial floor (17 × 17) respectively. All
the experiments have been carried out on a system with i7-
6500U CPU @ 2.50 GHz, and 16 GB RAM. We have used
SMT solver Z3 [36] in our experiments.

B. Results

We present our experimental results in detail here.
ncp vs d: Figures 3(a) to 3(e) show the trajectory lengths
(ncp) of the rechargers against different d-values. Results
are obtained by running Algorithm III.1 for five different
input instances (〈workspace, robot〉 pairs) and up to three
rechargers (nrech=1,2,3).

Workspace dimension plays a key role in deciding the
ncp-value. See Figures 3(b) and 3(c) where the same type
of workspaces with different dimensions are considered.
As the Artificial floor workspace is inflated to a larger
size, ncp-value increases. Here, d-value and nrech are kept
unchanged.

Figures 3(b) and 3(e) compare two different robots in the
same workspace (Artf-12). A Quadcopter has a richer set
of motion primitives compared to a Turtlebot, resulting in a
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(=1, 2, 3). Results are shown for different robots and workspaces of varying
dimensions. Figure (f): Computation time (in minutes) for input instances in
figures (a) to (e). Ranges of computation time and their average is shown.
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Fig. 4. Trajectory lengths of the rechargers for – Sub-optimal (red), Locally
optimized (cyan) and Globally optimized (yellow) solutions. The number of
subdivisions in each bar indicates the number of rechargers. Length of a
subdivision indicates the trajectory length of some recharger. Results are
shown for Turtlebot worker robots. No bar indicates a timeout (3 hours).

smaller ncp-value for a Quadcopter compared to a Turtlebot.
Figures 3(a) and 3(d) show similar results.

Table I gives the computation time of Algorithm III.1
running on the input instances in Figures 3(a) to 3(e), while
Figure 3(f) shows the minimum, maximum and average com-
putation time for those input instances. With less obstacle
density, Artificial floor takes less computation time which
is evident for input instances (a) and (b) in Figure 3(f).
With richer motion primitives, a Quadcopter requires more
computation time in (a) and (d) instances and so on.

Optimization of recharger trajectories: In Figure 4, we
compare the results obtained from the three algorithms
(Algorithm III.1, Algorithm III.1 + global optimization,
Algorithm III.1 + local optimization) for different dimensions
of the Warehouse workspace and different values for d. The
figure shows that local optimization does not always find
the minimum cumulative or individual trajectory lengths,
unlike global optimization. However, in many cases, the
global optimization algorithm simply faces timeout (3 hours)
(Figure 4). In the cases when the global optimization algo-
rithm does not face timeout, the execution time of the local
optimization algorithm is ≈ 3x − 10x faster compared to

TABLE I
COMPUTATION TIME (IN MINUTES) OF ALGORITHM III.1 FOR

DIFFERENT INPUT INSTANCES SHOWN IN FIGURE 3.

Turtlebot Quadcopter
Ware-12 Art-12 Art-17 Ware-12 Art-12
nrech nrech nrech nrech nrech

d 1 2 3 1 2 3 d 1 2 3 d 1 2 3 1 2 3
3 18 12 18 8 3 9 5 118 35 47 3 71 118 53 31 23 32
4 15 7 6 4 2 6 6 51 10 65 4 18 15 25 36 24 32
5 3 1 3 2 2 4 7 45 14 46 5 19 35 14 37 30 32
6 3 1 2 2 2 3 8 17 16 41 6 28 19 18 28 23 28
7 2 2 3 2 2 4 9 29 52 86 7 40 33 27 22 86 52

TABLE II
COMPARISON BETWEEN STATIC AND MOBILE RECHARGERS IN TERMS

OF OBTAINED d-VALUES. MAXIMUM WAITING TIME HAS BEEN SHOWN

FOR MOBILE RECHARGERS. RESULTS SHOWN FOR nrech =1,2 AND 3.

Turtlebot Quadcopter
Ware-12 Art-12 Art-17 Ware-12 Art-12

S M S M S M S M S M
nrech ds dm wm ds dm wm ds dm wm ds dm wm ds dm wm

1 8 6 6 8 5 6 11 8 8 8 5 5 7 6 6
2 6 4 5 6 4 4 8 6 6 6 4 4 6 4 4
3 6 4 4 6 4 4 8 5 5 5 3 4 5 3 3

the global optimization algorithm. However, for most of the
instances, local optimization provides a result close to the
globally optimal solution.
Comparison with the Static Charging Stations: We compare
our proposed mobile recharger based power management
framework (Algorithm III.1) with a framework that employs
only static charging stations installed at strategic locations
(see Table II). In Table II, ds denotes, in the static charging
station scenario, the threshold for the worker, which is a
measure of both the maximum energy consumption and max-
imum wait time required to complete a recharge operation.
On the other hand, these two performance measures for the
mobile rechargers are denoted by dm and wm, respectively.
For a given workspace and the number of charging stations
(nrech), the value of ds is computed by the algorithm
presented in [13]. To compute the value of dm and wm, we
identify the 〈d, ncp〉 pair for which the wait time, given by
w = max(d, ncp − 1), is minimized and the corresponding
d and w are denoted by dm and wm. As evident in Table II,
using our mobile recharging framework, we can improve
both the performance criteria significantly.

V. CONCLUSION

We have presented the algorithms for determining the
trajectories of the mobile rechargers to fulfill the energy
requirements of mobile robots in a static environment. Our
experimental results show that our SMT-based algorithm
can synthesize trajectories for the mobile rechargers serving
worker robots with different dynamics and acting in different
kinds of workspaces. Our plan synthesis framework is not
only useful in scenarios where static charging stations are
challenging to install but also for the applications where
static charging stations can be deployed. In the latter case,
our mobile recharger based solution outperforms the static
charging station based solution both in terms of the required
time and energy to recharge batteries of the worker robots. In
the future, we would address the problem for heterogeneous
worker robots and workspaces having dynamic obstacles.
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