
T* : A Heuristic Search Based Path Planning Algorithm for Temporal
Logic Specifications

Danish Khalidi1, Dhaval Gujarathi2 and Indranil Saha3

Abstract— The fundamental path planning problem for a
mobile robot involves generating a trajectory for point-to-point
navigation while avoiding obstacles. Heuristic-based search
algorithms like A* have been shown to be efficient in solving
such planning problems. Recently, there has been an increased
interest in specifying complex path planning problem using
temporal logic. In the state-of-the-art algorithm, the temporal
logic path planning problem is reduced to a graph search
problem, and Dijkstra’s shortest path algorithm is used to
compute the optimal trajectory satisfying the specification.

The A* algorithm, when used with an appropriate heuristic
for the distance from the destination, can generate an optimal
path in a graph more efficiently than Dijkstra’s shortest path
algorithm. The primary challenge for using A* algorithm in
temporal logic path planning is that there is no notion of
a single destination state for the robot. We present a novel
path planning algorithm T* that uses the A* search procedure
opportunistically to generate an optimal trajectory satisfying
a temporal logic query. Our experimental results demonstrate
that T* achieves an order of magnitude improvement over the
state-of-the-art algorithm to solve many temporal logic path
planning problems in 2-D as well as 3-D workspaces.

I. INTRODUCTION

Path planning is one of the core problems in robotics,
where we design algorithms to enable an autonomous robot
to carry out a complex real-world task successfully [1]. A
basic path planning task consists of point-to-point navigation
while avoiding obstacles and satisfying some user-given
constraints. There exist many methods to solve this problem,
among which graph search algorithms like A* [2] and
sampling-based techniques such as rapidly exploring random
trees [3] are two prominent ones.

Recently, there has been an increased interest in specifying
complex path plans using temporal logic (e.g. [4], [5], [6],
[7], [8], [9], [10], [11], [12]). Using temporal logic [13], one
can specify requirements that involve a temporal relationship
between different operations performed by robots. Such
requirements arise in many robotic applications, including
persistent surveillance [9], [14], assembly planning [15],
evacuation [16], search and rescue [17], localization [18],
object transportation [19], and formation control [20].

Several algorithms exist to solve Linear Temporal Logic
(LTL) path planning problems in different settings (e.g [21],
[12], [22], [23], [9], [24], [25]). For an exhaustive review on
this topics, the readers are directed to the survey by Plaku and
Karaman [26]. In this paper, we focus on the class of LTL
path planning problems where a robot has discrete dynamics
and seek to design a computationally efficient algorithm to
generate an optimal trajectory for the robot.

*The authors thankfully acknowledge the Defence Research Develop-
ment Organisation (DRDO), India for funding the project through JCBCAT,
Kolkata.

1Danish Khalidi is with NetApp India. This work was carried out when
Danish was an M.Tech student at Indian Institute of Technology Kanpur.
danish.khalidi08@gmail.com

2Dhaval Gujarathi is with SAP India. This work was carried out when
Dhaval was an M.Tech student at Indian Institute of Technology Kanpur.
dhavalsgujarathi@gmail.com

3Indranil Saha is with Department of Computer Science and Engineering,
Indian Institute of Technology Kanpur. isaha@cse.iitk.ac.in

Traditionally, the LTL path planning problem for the
robots with discrete dynamics is reduced to the problem of
finding the shortest path in a weighted graph, and Dijkstra’s
shortest path algorithm is employed to generate an optimal
trajectory satisfying an LTL query [23]. However, for a large
workspace and a complex LTL specification, this approach is
merely scalable. Heuristics based search algorithms such as
A* [27] have been successfully used in solving point to point
path planning problems and is proven to be significantly
faster than Dijkstra’s shortest path algorithm. In this paper,
we present T*, an algorithm that incorporates the A* search
algorithm in LTL path planning to generate an optimal
trajectory satisfying an LTL query efficiently.

We have applied our algorithm to solving various LTL path
planning problems in 2-D and 3-D workspaces and compared
the results with that of the algorithm presented in [23].
Our experimental results demonstrate that T* in many cases
achieves an order of magnitude better computation time than
that of the traditional approach to solve LTL path planning
problems.

II. PRELIMINARIES

A. Workspace, Robot Actions and Trajectory
In this work, we assume that the robot operates in a 2-D or

a 3-D workspace W , which we represent as a grid map. The
grid divides the workspace into square-shaped cells. Each
of these cells denotes a state in the workspace W , which is
referenced by its coordinates. Some cells in the grid could
be marked as obstacles and cannot be visited by the robot.
Let OT be the set of obstacle cells in W .

We capture the possible movements of a robot using a set
of Actions Act. The robot changes its state in the workspace
by performing the actions from Act, which is associated with
a cost capturing the energy consumption or time delay to
execute it. A robot can move to satisfy a given specification
by executing a sequence of actions in Act generating a
trajectory of states through which it proceeds. The cost of a
trajectory is the sum of costs of these actions.
B. Transition System

We can model the movements of the robot in the
workspace W as a weighted transition system, which is
defined as T := (ST , s0, ET ,ΠT , LT , wT) where, (i) ST
is the set of states/vertices denoting the obstacle-free cells
in W , (ii) s0 ∈ ST is the initial state of the robot, (iii)
ET ⊆ ST×ST is the set of transitions/edges, (s1, s2) ∈ ET
iff s1, s2 ∈ ST and s1

act−−→ s2, where act ∈ Act, (iv) ΠT is
the set of atomic propositions, (v) LT : ST → 2ΠT is a map
which provides the set of atomic propositions satisfied at a
state in ST , and (vi) wT : ET → R>0 is a weight function.

We can think of a transition system T as a weighted
directed graph GT with ST vertices, ET edges, and wT
weight function. Whenever we use some graph algorithm
on a transition system T , we mean to apply it over GT .

Example 2.1: Throughout this paper, we will use the
workspace W shown in Figure 1(a) for the illustration

(a) Transition system T with propo-
sitions P1, P2 and P3

(b) Büchi automaton B for query:
�(3P1 ∧3P2 ∧ ¬P3)

Fig. 1: Transition System and Büchi Automaton

purpose. We build a transition system T over W where
ΠT = {P1, P2, P3}. The proposition Pi is satisfied if the
robot is at one of the locations denoted by Pi. From any cell
in W , the robot can move to one of its neighbouring four
cells with cost 1. The cells with black colour represent the
obstacles (OT).
C. Linear Temporal Logic

The path planning query/task in our work is given in terms
of formulas written using Linear Temporal Logic (LTL). The
LTL formulae over the set of atomic propositions ΠT are
formed according to the following grammar [13]:

Φ ::= true | a | φ1 ∧ φ2 | ¬φ | Xφ | φ1Uφ2.

The basic ingredients of an LTL formula are the atomic
propositions a ∈ ΠT , the Boolean connectors like conjunc-
tion ∧ and negation ¬, and two temporal operators X (next)
and U (until). The semantics of an LTL formula is defined
over an infinite trajectory σ. The trajectory σ satisfies a
formula ξ if the first state of σ satisfies ξ. The logical
operators conjunction ∧ and negation ¬ have their usual
meaning. For an LTL formula φ, Xφ is true in a state if
φ is satisfied at the next step. The formula φ1 U φ2 denotes
that φ1 must remain true until φ2 becomes true in a state in
future. Two widely used LTL operators that can be derived
are � (Always) and 3 (Eventually). The formula �φ denotes
that the formula φ must be satisfied all the time in the future.
The formula 3φ denotes that the formula φ has to hold
sometime in the future. We denote negation ¬P as !P and
conjunction ∧ as & in the figures.
D. Büchi Automaton

For any LTL formulae Φ over a set of propositions
ΠT , we can construct a Büchi automaton with input al-
phabet ΠB = 2ΠT . We can define a Büchi automaton as
B := (QB , q0,ΠB , δB , Qf), where, (i) QB is a finite set of
states, (ii) q0 ∈ QB is the initial state, (iii) ΠB = 2ΠT is
the set of input symbols accepted by the automaton, (iv)
δB ⊆ QB × ΠB × QB is a transition relation, and (v)
Qf ⊆ QB is the set of final states. An accepting state in
the Büchi automaton is the one that needs to occur infinitely
often on an infinite length string consisting of symbols from
ΠB to get accepted by the automaton.

Example 2.2: Figure 1(b) shows the Büchi automaton for
an LTL task �(3P1 ∧ 3P2 ∧ ¬P3). The state q0 here
denotes the start state as well as the final state. It informally
depicts the steps to be followed to complete the task Φ. The

transitions q1 → q2 → q0 leads us to visit a state where
P1∧¬P2∧¬P3 (which represents an element {P1,¬P2,¬P3}
of ΠB) is satisfied by going through only those states which
satisfy ¬P1 ∧ ¬P3 and then go to state where P2 ∧ ¬P3 is
satisfied going through the states which satisfy ¬P2 ∧ ¬P3.
We can understand the meaning of the other transitions from
the context.
E. Product Automaton

The product automaton P between the transition sys-
tem T and the Büchi automaton B is defined as P :=
(SP , SP,0, EP , FP , wp) where, (i) SP = ST × QB , (ii)
SP,0 := (s0, q0) is an initial state, (iii) EP ⊆ SP × SP ,
where ((si, qk), (sj , ql)) ∈ EP if and only if (si, sj) ∈ ET
and (qk, LT (sj) , ql) ∈ δB , (iv) FP := ST × Qf is the
set of final states, and (v) wP : EP → R>0 such that
wP ((si, qk), (sj , ql)) := wT (si, sj). By its definition, all
the states and transitions in the product automaton follow
the LTL query. Refer [23] for product automaton/graph
examples.

III. PROBLEM DEFINITION

Consider a robot moving in a static workspace W . Its
movements are modeled as a transition system T . A run over
the transition system T starting at initial state s0 defines the
trajectory of the robot in W . Suppose that the robot has
been given an LTL task φ over ΠT . The propositions in ΠT

are defined based on the states of the transition system. We
write s � π, s ∈ ST and π ∈ ΠT , to denote that the state s
satisfies the proposition π. In this paper, we focus on those
LTL specifications that capture infinite behavior of a robotic
system.

We construct a Büchi automaton B from φ. Let Πc =
{c | c ∈ ΠB and ∃δB(qi, c) = qj , where qi ∈ QB and qj ∈
Qf}. Let Fπ = {si | si ∈ ST and si � πj where πj ∈ Πc}.
Fπ represents the set of all the possible final states (last state)
to be visited by the robot on the path to complete the task.
Our objective is to find the path for the robot in the form of
a cycle with minimum cost which it can follow and complete
the task repetitively. Such path will always contain one of
the states from Fπ .

Let us assume that there exists at least one run over T
which satisfies φ. Let R = s0, s1, s2, ... be an infinite length
run/path over T which satisfies φ. Thus, there exists f ∈ Fπ
which occurs on R infinitely many times. From R, we can
extract all the time instances at which f occurs. Let tfR(i),
i ∈ N, denote the time instance of the ith occurrence of state
f on R. Our goal is to synthesize an infinite run R which
satisfies the LTL formulae φ and minimizes the cost function

C(R) = lim sup
i→+∞

tfR(i+1)−1∑
k=tfR(i)

wT (sk, sk+1) (III.1)

A. Prefix-Suffix Structure
The accepting run R of infinite length can be divided into

two parts namely prefix (Rpre) and suffix (Rsuf). A prefix is
a finite run from the initial state of the robot to an accepting
state f ∈ Fπ and a suffix is a finite length run starting and
ending at f reached by the prefix, and containing no other
occurrence of f . This suffix will be repeated periodically and
infinitely many times to generate an infinite length run R.
So, we can represent run R as Rpre.Rωsuf , where ω denotes
the suffix being repeated infinitely many times.

Lemma 3.1: For every run R which satisfies LTL formula
φ and minimizes cost function III.1, there exists a run Rc
which also satisfies φ, minimizes cost function III.1 and is in
prefix-suffix structure. Refer [23] for the proof of this lemma.

The cost of such run Rc is the cost of its suffix. So,
now our goal translates to designing an algorithm that finds
the minimum cost suffix run starting and ending at a state
f ∈ Fπ and having a finite length prefix run starting at initial
state s0 ∈ ST and ending at f . So, let R = Rpre.Rωsuf ,
where Rpre = s0, s1, s2, ..., sp be a prefix and Rsuf =
sp+1, sp+2, ..., sp+r, where sp+r = sp, be a suffix. We can
redefine the cost function given in III.1 as

C(R) = C(Rsuf) =

p+r−1∑
i=p

wT (si, si+1) (III.2)

Problem 3.1: Given a transition system T capturing the
movements of the robot in workspace W and an LTL
formulae φ representing the task given to the robot, find an
infinite length run R in the prefix-suffix form over T which
minimizes the cost function III.2.

The basic solution to the above problem uses the automata-
theoretic model checking approach. It computes product
automaton and then uses Dijkstra’s algorithm to compute the
required minimum cost suffix run having a valid prefix [23].

IV. T∗ ALGORITHM

Heuristic information can be used to speed up the plan-
ning process in discrete workspaces by directing the search
towards a concrete destination/goal [2]. However, in the path
planning problem for LTL specifications, a task might consist
of visiting multiple locations where a particular proposition
is true, and a particular proposition could be satisfied at
multiple locations. In such a scenario, we cannot specify
a destination uniquely. T∗ attempts to use the heuristic
information in such scenarios and thus achieves a substantial
speedup in terms of computation time over the basic solution
[23]. The complete listing of T* algorithm is provided in Al-
gorithm 1. T∗ does not compute the complete product graph.
Instead, it computes a reduced version of the product graph,
which we call the reduced graph Gr, and thus achieves faster
computation time and lower memory consumption.
A. Reduced Graph

Consider a product automaton P of the transition system
T shown in Figure 1(a) and the Büchi automaton B shown
in Figure 1(b). Suppose s0 = (4, 7), and therefore SP,0 =
((4, 7), q0). Now, from here, we must use the transitions in
Büchi automaton to find the path in T in the prefix-suffix
form. Suppose, we have found such a path on which we move
to state ((4, 6), q1) from ((4, 7), q0) as per the definition
of the product automata. From ((4, 6), q1), we must visit
a location where P1 ∧ ¬P2 ∧ ¬P3 is satisfied so that we
can move to Büchi state q2 from q1 and all the intermediate
states till we reach such a state must satisfy ¬P1 ∧ ¬P3,
the condition on the self-loop on q1. Suppose we next move
from ((4, 6), q1) to ((0, 2), q2) on this path which satisfies
P1∧¬P2∧¬P3 and this path is ((4, 6), q1)→ ((4, 5), q1)→
((4, 4), q1) → ... → ((1, 2), q1) → ((0, 2), q2). On the path
from ((4, 6), q1) to ((0, 2), q2), all the intermediate nodes
satisfy self loop transition condition on q1. As an analogy,
we can consider the self-loop transition condition ¬P1∧¬P3

over q1 as the constraint which must be followed by the
intermediate states while completing a task of moving to the
location which satisfies the transition condition from q1 to

Algorithm 1: T*
1 Input: A transition system T , the set of obstacle locations OT , an

LTL formulae φ
2 Output: A minimum cost run R over T that satisfies φ
3 B(QB , q0,ΠB , δB , Qf)← ltl_to_Buchi (φ)
4 Gr(Vr, v0, Er,Ur, Fr, wr)← Generate_Redc_Graph(B, T)
5 for all f ∈ Fr do
6 N ← 1
7 while N > 0 do
8 Rf ← Dijkstra_Algorithm(Gr, f , f)
9 N ← Update_Edges(Rf , T,OT , Gr, B)

10 end
11 Rsuf

f ←Rf

12 v0 ← (s0, q0)
13 Rpre

f ← Find_Path(Gr, v0 , f)
14 end
15 Rsuf

P ← argmin
Rsuf

f
with a valid prefix

C
(
Rsuf

f

)
16 Rpre

P ← find_prefix(Gr,Rsuf
P)

17 RP ←Rpre
P .Rsuf

P
18 project RP over T to compute R
19 return R

20 Procedure Generate_Redc_Graph(B, T)
21 vinit ← v0(s0, q0)
22 let Q be a queue data-structure
23 Initialize empty reduced graph Gr
24 label vinit as discovered and add it to Gr
25 Q.enqueue(vinit)
26 while Q is not empty do
27 vi(si, qi)← Q.dequeue()
28 if ∃δB(qi, cneg) = qi and @δB(qi, cneg) = qj then
29 for all vl(sl, ql) such that δB(qi, cpos) = ql and

sl |= cpos do
30 wr(vi, vl)← heuristic_cost(si, sl)
31 Ur(vi, vl)← false
32 if vl is not labelled as discovered then
33 label vl as discovered and add it to Gr
34 Q.enqueue(vl)
35 end
36 end
37 else
38 for all vl(sl, ql) such that δB(qi, c) = ql,

(si, sl) ∈ ET and sl |= c do
39 wr(vi, vl)← cost(si, sl)
40 Ur(vi, vl)← true
41 if vl is not labelled as discovered then
42 label vl as discovered and add it to Gr
43 Q.enqueue(vl)
44 end
45 end
46 end
47 end
48 return Gr

49 Procedure: Update_Edges(Rf , T,OT , Gr, B)
50 count← 0
51 for each edge vi(si, qi)→ vj(sj , qj) in Rf do
52 if ∃δB(qi, cneg) = qi and Ur(vi, vj) = false then
53 O′

T ← {s | s ∈ ST and s |= ¬cneg}
54 O = OT ∪ O′

T
55 d← Astar(T,O, si, sj)
56 wr(vi, vj)← d, Ur(vi, vj)← true
57 count← count+ 1
58 end
59 end
60 return count

q2, i.e., the self-loop is the only means to navigate to the next
state. Using this as an abstraction method over the product
automaton, we directly add an edge from state ((4, 6), q1)
to state ((0, 2), q2) in the reduced graph assuming that there
exists a path between these two states and explore this path
opportunistically only when it is required. This is the main
idea behind T∗ algorithm.

Throughout this paper, we call an atomic proposition with
negation as a negative proposition and an atomic proposition

without negation as a positive proposition. For example, ¬P2

is a negative proposition and P2 is a positive proposition.
We divide the transition conditions in B into two types. A
transition condition, which is a conjunction of all negative
propositions, is called a negative transition condition and is
denoted by cneg . The one which is not negative is called
a positive transition condition and is denoted by cpos. For
example, ¬P1 ∧ ¬P3 is a negative transition condition,
whereas P1 ∧ ¬P2 ∧ ¬P3 is a positive transition condition.

While constructing the reduced graph, we add an edge
from node vi(si, qi) to vj(sj , qj) as per following condition:
Condition: ∃δB(qi, cneg) = qi and @δB(qi, cneg) = qj ,
i.e., there exists a negative self loop on qi and there does not
exist any other negative transition from qi to some state in
the Büchi automaton.

1) If condition is true then add edges from vi to all
vj such that ∃δB(qi, cpos) = qj and sj |= cpos. Here,
qi and qj can be the same. In short, in this condition
we add all the nodes as neighbours which satisfy an
outgoing cpos transition from qi and skip nodes which
satisfy cneg self loop transition assuming that cneg self
loop transition can be used to find the actual path from
vi to vj later in the algorithm. We add a heuristic cost
as the edge weight between vi and vj . In this case, we
call vj a distant neighbour of node vi and henceforth we
refer this condition as the distant neighbour condition.

2) If Condition is false then add edges from vi to
all vj such that ∃δB(qi, c) = qj , (si, sj) ∈ ET and
sj |= c. This condition is same as the definition of the
product automaton II-E. Here, as si and sj are actual
neighbours in the transition system, we add the actual
cost as the edge weight between vi and vj . Here also,
qi and qj can be the same. We add all the neighbours
as per product automaton condition for all the outgoing
transitions from qi.

Now we formally define the Reduced Graph for the
transition system T and the Büchi automaton B as
Gr := (Vr, v0, Er,Ur, Fr, wr), where, (i) Vr ⊆ ST × QB ,
the set of vertices, (ii) v0 = (s0, q0) is an initial state, (iii)
Er ⊆ Vr × Vr, is a set of edges added as per the above
conditions, (iv) Ur : Er → {true, false} a map which tracks
if the edge weight is a heuristic value or actual value, (v)
Fr ⊆ Vr and vi(si, qi) ∈ Fr iff qi ∈ Qf , the set of final
states, and (vi) wr : Er → R>0, the weight function.

The computation of the reduced graph in Algorithm 1 is
performed in procedure Generate_Redc_Graph, where we
run the Breadth-First-Traversal starting from node (s0, q0)
and add the neighbours using the condition mentioned above.
The map Ur stores the updated status of the edges in Gr.
Ur(vi, vj) = false says that the weight of the edge (vi, vj)
is a heuristic cost between the two nodes, and we have not
computed the actual cost between them yet.

Example 4.1: The reduced graph obtained from the tran-
sition system T in Figure 1(a) and the Büchi automaton B
from Figure 1(b) is shown in Figure 2. The edge weights in
blue color represent the actual costs whereas, in red represent
the heuristic costs. Also, all the weights mentioned in round
brackets ‘(-)’ represent their values in the reduced graph
when it is constructed for the first time using procedure
Generate_Redc_Graph, whereas the value beside the round
brackets in blue represents the actual value computed using
procedure Update_Edges later in the T∗ algorithm.

Suppose the robot’s starting location is s0 = (0, 0) and
therefore v0 = ((0, 0), q0). As q0 does not have a self loop

Fig. 2: Reduced Graph for Transition System from Figure
1(a) and Büchi Automaton from Figure 1(b)

with negative transition condition, we add edges from v0

to ((1, 0), q1) and ((0, 1), q1) as per the product automaton
condition. The weight of both the edges is 1 as these
edges have been added with actual cost. Next, we add the
neighbours of node ((1, 0), q1). As q1 has a self loop with
negative transition condition ¬P1 ∧ ¬P3, we add all the
distant neighbours of ((1, 0), q1). We add an edge from
((1, 0), q1) to ((6, 7), q2) as (6, 7) |= (P1 ∧ ¬P2 ∧ ¬P3).
In Figure 2, we represent this transition using notation
P1 ∧ ¬P2 ∧ ¬P3{¬P1 ∧ ¬P3} which says that (6, 7) |=
(P1∧¬P2∧¬P3) and all the intermediate nodes between the
path from (1, 0) and (6, 7) satisfy the condition ¬P1 ∧¬P3.
As this node is added using distant neighbour condition, we
update its edge weight with heuristic cost which is 12 as
shown using red color in bracket in Figure 2. This way we
keep on adding nodes to Gr. Figure 2 shows the complete
reduced graph Gr.
Note: We use Manhattan distance as the heuristic cost.
Heuristic cost should be a lower bound to the actual cost [2].
B. T∗ Procedure

We outline the basic steps of T∗ in Algorithm 1. We first
compute B and Gr. For each state f ∈ Fr, we find the
minimum cost cycle/suffix run Rf starting and ending at f
using the Dijkstra’s shortest path algorithm over Gr. Now,
this cycle might have edges with heuristic cost. In the next
line, we update all the edges in R with their actual costs
using the procedure Update_Edges. For all the edges with
heuristic cost, we compute the actual path between the source
and the destination nodes such that all the intermediate nodes
satisfy the self-loop condition cneg present in the Büchi
automata state of the source node. To achieve this, we collect
all the nodes which do not satisfy cneg into the set O′T and
combine it with the set of obstacles OT to get O. Then we
use the procedure Astar(T,O, si, sj) to compute the actual
cost of the path from si to sj in GT considering all the
cells in O as obstacles. In the end, we return the number of

edges updated in the run Rf . If the number of updated edges
is more than 0, then graph Gr has been updated and so we
again find the suffix run for f and repeat the same procedure.
However, if the number of edges updated is 0, then we have
found the minimum cost cycle starting and ending at f . We
then find a prefix run from initial node v0(s0, q0) to f using
the procedure Find_Path. In this procedure, we first find a
path from initial node v0(s0, q0) to f in Gr and then update
all the edges as we did for suffix run except we do it just
once. We have omitted the details of this procedure, as it
could be understood easily from the context. We then move
on to the next final state and continue with the outer loop
on line 5. Once we find the minimum cost suffix runs for all
f ∈ Fr, we select the minimum cost suffix run among all
Rsuff having a valid prefix as the final suffix RsufP and its
prefix RpreP , giving the optimal path RP . We project it over
T to obtain the final satisfying run R.

Example 4.2: We continue with the example we have
studied so far in this paper. The final states Fr in Figure 2
are shown using dotted circles. We start with ((0, 7), q0).
Using Dijkstra’s algorithm, we compute cycle Rf =

((0, 7), q0)
1−→ ((0, 6), q1)

4−→ ((0, 2), q2)
5−→ ((0, 7), q0). We

run Update_Edges over Rf . Edge ((0, 7), q0)
1−→ ((0, 6), q1)

is already updated, no further modification is required. We
compute actual weight for edge ((0, 6), q1)

4−→ ((0, 2), q2)
considering all the states which satisfy ¬(¬P1 ∧ ¬P3) =
P1 ∨ P3 as obstacles and running Astar to find the shortest
path from (0, 6) to (0, 2) in T . This weight comes out to be
12. Similarly, we update the weight of edge ((0, 2), q2) →
((0, 7), q0) to 13. Since, we have updated 2 edges in Gr
(shown using blue color beside red bracketed value in Figure
2), we run Dijkstra’s algorithm again to compute a new
cycle as Rf = ((0, 7), q0)

1−→ ((1, 7), q1)
5−→ ((6, 7), q2)

6−→
((0, 7), q0) and again update edge weights as ((0, 7), q0)

1−→
((1, 7), q1))

17−→ ((6, 7), q2)
18−→ ((0, 7), q0). Similarly, in

the third iteration, we update the cycle edge weights as
Rf = ((0, 7), q0))

1−→ ((1, 7), q1))
12−→ ((0, 2), q2)

13−→
((0, 7), q0). And then we get Rf as Rf = ((0, 7), q0))

1−→
((0, 6), q1))

12−→ ((0, 2), q2)
13−→ ((0, 7), q0). All the edges

on this run have been updated. Thus, this is the minimum
cost run containing the final state ((0, 7), q0). Similarly, for
f = ((7, 0), q0), we find the cycle Rf = ((7, 0), q0)

1−→
((7, 1), q1)

7−→ ((6, 7), q2)
8−→ ((7, 0), q0). In this, we find the

actual cost of all the non-updated edges. Actual costs of all
the non-updated edges in this run are same as heuristic costs.
So, none of edge weights is updated in Gr. So, this is our
suffix run containing final state ((7, 0), q0).

For final state ((7, 0), q0), we were able to compute the
required suffix, without exploring all the other possible cycles
using the heuristic value. This shows how T∗ solves the
problem faster. In Figure 2, all the edges which have a red
value in the bracket and do not have a blue value beside it
remain un-explored during T ∗ and represent the work saved
using heuristic value.

From above cycles, we select the cycle ((7, 0), q0)
1−→

((7, 1), q1)
7−→ ((6, 7), q2)

8−→ ((7, 0), q0) as RsufP . We skip
the computation of prefix RpreP . Here, the prefix is RpreP =

((0, 0), q0)
1−→ ((1, 0), q1)

12−→ ((6, 7), q2)
8−→ ((7, 0), q0).

We project it over T to obtain final solution as {(0, 0) →
(1, 0)→ (6, 7)}{(7, 0)→ (7, 1)→ (6, 7)}ω .

C. Computational Complexity
Let the total number of sub-formulae in LTL formula φ be

denoted as |φ|. The LTL to Büchi automaton conversion has
the computational complexity O(2|Φ|) [28]. We compute the
reduced graph using the BFS algorithm. Thus, the complexity
to compute the reduced graph is given as O(|Vr| + |Er|).
In T∗, we use Dijkstra’s algorithm over Gr to compute a
suffix run for each final state f ∈ Fr. During each run of
Dijkstra’s algorithm, we find a cycle and update all its edges.
In the worst case, we might have to run Dijkstra’s algorithm
as many times as the number of edges in the reduced graph
Gr. Also, in Update_Edges algorithm, we compute the actual
weight of the edge using A∗ algorithm over T . So, A∗ can
also be invoked as many times as number of edges in Gr
in the worst case and the complexity of each invocation of
A∗ could be same as that of Dijkstra’s algorithm in the
worst case, which is O(|ST | ∗ log(|ET |)). So, the overall
computational complexity of the T∗ can be given as O(2|φ|+
(|Vr|+ |Er|) + |Er| ∗ |Er| ∗ log|Vr|+ |Er| ∗ |ST | ∗ log|ET |).

Let Sφ be the set of states of T at which some proposition
is defined. A state in T has a constant number of neighbours.
Thus, in the worst case, the number of nodes in the reduced
graph |Vr| is O(|Sφ|) and the number of edges in reduced
graph |Er| is O(|Vr|2).
D. Correctness and Optimality

Due to the lack of space, we omit the proof of optimality
and correctness of T∗ algorithm from this paper. The proofs
are available in the extended version of the paper [29]. We
prove that the trajectory generated by the T∗ satisfies the
given LTL formula and minimizes the cost function III.2.

V. EVALUATION

In this section, we present several results to establish
the computational efficiency of T* algorithm. The results
have been obtained on a desktop computer with a 3.4
GHz quadcore processor with 16 GB of RAM. We use
LTL2TGBA tool [28] as the LTL query to Büchi automaton
converter. The C++ implementations of T∗ algorithm and the
baseline algorithm are available in the following repository:
https://github.com/iitkcpslab/TStar.
A. Workspace Description and LTL Queries

The robot workspace is represented as a 2-D or a 3-D
grid. Each cell in the grid is referenced using its coordinates.
Each cell in 2-D workspace has 8 neighbours, whereas in
3-D workspace, has 26 neighbours. The cost of each edge
between the neighbouring cells is the distance between their
centers considering the length of the side as 1 unit.

We evaluated T∗ algorithm on seven LTL queries borrowed
from [30]. The LTL queries are denoted by ΦA,ΦB , . . . ,ΦG.
Here, we mention two of those LTL specifications, ΦC and
ΦD, in detail. Here, the propositions p1, p2, p3 denote the
data gathering locations and propositions p4 and p5 denote
the data upload locations.

1) We want the robot to gather data from all the three
locations and upload the gathered data to one of the data
upload locations. Moreover, after visiting an upload location,
the robot must not visit another upload location until it visits
a data gathering location. The query can be represented as
ΦC = �(3p1∧3p2∧3p3)∧�(3p4∨3p5)∧�((p4∨p5)→
X((¬p4 ∧ ¬p5)U(p1 ∨ p2 ∨ p3))).

2) In addition to query Φc, it can happen that the data of
each location has to be uploaded individually before moving
to another gathering place. This can be captured as ΦD =

https://github.com/iitkcpslab/TStar

Fig. 3: Trajectories for query ΦC and ΦD in 2D workspace
generated by T*

Spec 2D Workspace (100× 100) 3D Workspace (100× 100× 20)
Baseline T* Speedup Baseline T* Speedup

ΦA 1.09 0.28 3.89 105.88 36.10 2.93
ΦB 1.02 0.13 7.85 101.66 23.03 4.41
ΦC 3.58 0.16 22.38 412.79 28.58 14.44
ΦD 4.93 0.27 18.26 464.69 51.19 9.08
ΦE 4.72 0.52 9.08 402.62 81.27 4.95
ΦF 9.57 0.29 33.00 869.98 47.01 18.51
ΦG 5.57 0.26 21.42 501.95 46.61 10.77

TABLE I: Comparison of computation time with the standard
LTL path planning algorithm [23]. Times are in seconds.

ΦC∧�((p1∨p2∨p3)→ X((¬p1∧¬p2∧¬p3)U(p4∨p5))).

B. Results on Comparison with the Baseline Algorithm [23]
We compare T* algorithm with Dijkstra’s algorithm based

LTL path planning algorithm [23] on the workspace shown
in Figure 3. The workspace is 100 × 100. The trajectories
for queries ΦC and ΦD as generated by T* algorithm are
shown in Figure 3. For ΦC , prefix is (0, 0)→ p4→ p3 and
suffix is p3 → p5 → p1 → p2 → p3. For ΦD, prefix is
(0, 0) → p4 → p3 and suffix is p3 → p5 → p1 → p4 →
p2→ p5→ p3.

Table I shows the speedup of T* in computation time over
the standard algorithm for 2-D workspace (100 × 100) and
3-D workspace (100×100×20). From the table, it is evident
that for both the workspaces and for several LTL queries, T*
provides over an order of magnitude improvement in running
time with respect to the standard algorithm.

Table II compares the memory used by both the algorithms
when we scale the workspace in Figure 3, keeping other
parameters constant. With the increase in size, the size of
the product automaton increases, but the size of the reduced
graph remains the same. After 500× 500, memory required
to run A∗ dominates, and hence memory consumption of T∗
also starts increasing slowly.
C. Analysis of T* Performance with Different Parameters

This section contains the results related to the speedup
of T* in comparison to the standard algorithm with the
change in obstacle density, the size of the workspace, and
the complexity of the LTL queries.

10 20 30 40

40

60

80

obstacle density

sp
ee

du
p

(a) Obstacle density

4 6 8 10 12

20

40

60

80

100

number of locations

sp
ee

du
p

(b) Spec complexity

0 100 200 300 400 500

12

14

16

18

20

22

x-axis dimension

sp
ee

du
p

(c) Workspace size

Fig. 4: Speedup achieved by T*

• Obstacle density: On increasing the obstacle density
from 5 to 40 percent in a 2-D workspace, the speedup of

Workspace Size Spec Baseline(KB) T*(KB) % Savings
100× 100 ΦD 42.7 18.8 56.0
200× 200 ΦD 167.3 18.5 88.9
300× 300 ΦD 375.7 18.5 95.1
400× 400 ΦD 671.7 18.5 97.2
500× 500 ΦD 1072.38 25.5 97.6
600× 600 ΦD 1510 34.34 97.7

TABLE II: Memory usage comparison with the baseline
solution [23]

T∗ in comparison to the standard algorithm for LTL query
ΦD decreases as shown in Figure 4(a). Here, the obstacle
locations have been generated randomly.

Due to the increase in the obstacle density, the heuristic
distances become significantly less than the actual distances,
which results in an increase in the number of times the
Dijkstra’s algorithm is invoked during the computation of
Rsuff and updates to edge costs in Gr. This causes a
reduction in the performance of T∗. As T∗ is a heuristic-
based algorithm, the less the difference between the heuristic
cost and the actual cost, the higher is the performance.
• Complexity of LTL Query: We consider the LTL query

ΦD for this experiment. Starting with 2 gather and 1 upload
locations, the number of gather locations is incremented by
2 and that of the upload locations by 1 for 4 instances. The
speedup is as shown in Figure 4(b). The Speedup increases
as T∗ explores available choices opportunistically based on
the heuristic values, whereas the baseline solution explores
all the choices gradually.
• Workspace Size: We experimented with query ΦD on 2D

workspace shown in Figure 3 by increasing the workspace
size keeping the other parameters the same. As shown in
Figure 4, the speedup initially increases as T∗ directs the
search towards the optimal solution using the heuristic cost.
But, as the workspace size increases, the reduced graph
remains the same, and hence this advantage remains constant.
With the increase in the size, the time to run A∗ algorithm
increases in T∗, and also the time to run Dijkstra’s algorithm
(as the size of product graph increases) in the baseline
solution almost at the same rate. Hence, the speedup becomes
almost constant.
D. Experiments with Robot

We used the trajectory generated by T* algorithm to carry
out experiments with a Turtlebot on a 2-D grid of size
5 × 5 with four non-diagonal movements to the left, right,
forward, and backward direction. The cost of the forward
and backward movement is 1, whereas the cost of the left
and right movement is 1.5 as it involves a rotation followed
by a forward movement. The trajectories corresponding to
the two queries ΦC and ΦD were executed by the Turtlebot.
The location of Turtlebot in the workspace was tracked using
Vicon localization system [31]. A video of our experiment
is available at https://youtu.be/gKR4cRLVaM4.

VI. CONCLUSION

In this work, we have developed a static LTL path plan-
ning algorithm for robots with a transition system with
discrete state-space. Our algorithm opportunistically utilizes
A* search which expands less number of nodes and thus is
significantly faster than the standard LTL path planning algo-
rithm based on Dijkstra’s shortest path algorithm. Our future
work include evaluating our algorithm for non-holonomic
robotic systems and extending it for multi-robot systems and
dynamic environments.

https://youtu.be/gKR4cRLVaM4

REFERENCES

[1] S. M. LaValle, Planning Algorithms. New York, NY, USA: Cam-
bridge University Press, 2006.

[2] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE Transactions
on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, July
1968.

[3] S. M. LaValle and J. James J. Kuffner, “Randomized kinodynamic
planning,” The International Journal of Robotics Research, vol. 20,
no. 5, pp. 378–400, 2001.

[4] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Where’s Waldo?
Sensor-based temporal logic motion planning,” in ICRA, 2007, pp.
3116–3121.

[5] S. Karaman and E. Frazzoli, “Sampling-based motion planning with
deterministic µ-calculus specifications,” in CDC, 2009, pp. 2222–
2229.

[6] A. Bhatia, L. E. Kavraki, and M. Y. Vardi, “Motion planning with
hybrid dynamics and temporal goals,” in CDC, 2010, pp. 1108–1115.

[7] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon
temporal logic planning,” IEEE Trans. Automat. Contr., vol. 57, no. 11,
pp. 2817–2830, 2012.

[8] Y. Chen, J. Tůmová, and C. Belta, “LTL robot motion control based
on automata learning of environmental dynamics,” in ICRA, 2012, pp.
5177–5182.

[9] A. Ulusoy, S. L. Smith, X. C. Ding, C. Belta, and D. Rus, “Optimality
and robustness in multi-robot path planning with temporal logic
constraints,” I. J. Robotic Res., vol. 32, no. 8, pp. 889–911, 2013.

[10] I. Saha, R. Ramaithitima, V. Kumar, G. J. Pappas, and S. A. Seshia,
“Automated composition of motion primitives for multi-robot systems
from safe LTL specifications,” in IROS, 2014, pp. 1525–1532.

[11] T. Kundu and I. Saha, “Energy-aware temporal logic motion planning
for mobile robots,” in ICRA, 2019, pp. 8599–8605.

[12] Y. Kantaros and M. M. Zavlanos, “Sampling-based optimal control
synthesis for multirobot systems under global temporal tasks,” IEEE
Trans. Automat. Contr., vol. 64, no. 5, pp. 1916–1931, 2019.

[13] C. Baier and J.-P. Katoen, Principles of Model Checking (Represen-
tation and Mind Series). The MIT Press, 2008.

[14] C. Yoo, R. Fitch, and S. Sukkarieh, “Online task planning and control
for fuel-constrained aerial robots in wind fields,” The International
Journal of Robotics Research, vol. 35, no. 5, pp. 438–453, 2016.

[15] D. Halperin, J.-C. Latombe, and R. H. Wilson, “A general framework
for assembly planning: The motion space approach,” in Annual Sym-
posium on Computational Geometry, 1998, pp. 9–18.

[16] S. Rodríguez and N. M. Amato, “Behavior-based evacuation planning,”
in ICRA, 2010, pp. 350–355.

[17] J. S. Jennings, G. Whelan, and W. F. Evans, “Cooperative search and
rescue with a team of mobile robots,” in ICRA, 1997, pp. 193–200.

[18] D. Fox, W. Burgard, H. Kruppa, and S. Thrun, “A probabilistic ap-
proach to collaborative multi-robot localization,” Autonomous Robots,
vol. 8, no. 3, pp. 325–344, 2000.

[19] D. Rus, B. Donald, and J. Jennings, “Moving furniture with teams of
autonomous robots,” in IROS, 1995, pp. 235–242.

[20] T. Balch and R. Arkin, “Behavior-based formation control for multi-
robot teams,” IEEE Transaction on Robotics and Automation, vol. 14,
no. 6, pp. 926–939, 1998.

[21] A. Bhatia, L. E. Kavraki, and M. Y. Vardi, “Sampling-based motion
planning with temporal goals,” in ICRA, 2010, pp. 2689–2696.

[22] C. I. Vasile and C. Belta, “Sampling-based temporal logic path
planning,” CoRR, vol. abs/1307.7263, 2013. [Online]. Available:
http://arxiv.org/abs/1307.7263

[23] S. L. Smith, J. Tůmová, C. Belta, and D. Rus, “Optimal path planning
under temporal logic constraints,” in IROS, 2010, pp. 3288–3293.

[24] Y. Shoukry, P. Nuzzo, I. Saha, A. L. Sangiovanni-Vincentelli, S. A.
Seshia, G. J. Pappas, and P. Tabuada, “Scalable lazy SMT-based
motion planning,” in 55th IEEE Conference on Decision and Control,
CDC 2016, Las Vegas, NV, USA, December 12-14, 2016. IEEE, 2016,
pp. 6683–6688.

[25] Y. Shoukry, P. Nuzzo, A. Balkan, I. Saha, A. L. Sangiovanni-
Vincentelli, S. A. Seshia, G. J. Pappas, and P. Tabuada, “Linear
temporal logic motion planning for teams of underactuated robots
using satisfiability modulo convex programming,” in CDC. IEEE,
2017, pp. 1132–1137.

[26] E. Plaku and S. Karaman, “Motion planning with temporal-logic
specifications: Progress and challenges,” AI Commun., vol. 29, no. 1,
pp. 151–162, 2016.

[27] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
3rd ed. Upper Saddle River, NJ, USA: Prentice Hall Press, 2009.

[28] A. Duret-Lutz and D. Poitrenaud, “Spot: An extensible model checking
library using transition-based generalized büchi automata,” in MAS-
COTS, 2004.

[29] D. Khalidi, D. Gujarathi, and I. Saha, “T* : A heuristic search
based algorithm for motion planning with temporal goals,” CoRR,
vol. abs/1809.05817, 2018. [Online]. Available: http://arxiv.org/abs/
1809.05817

[30] S. L. Smith, J. Tumova, C. Belta, and D. Rus, “Optimal path planning
for surveillance with temporal-logic constraints,” I. J. Robotics Res.,
vol. 30, no. 14, pp. 1695–1708, 2011.

[31] “Vicon motion capture system.” [Online]. Available: http://www.
vicon.com/

http://arxiv.org/abs/1307.7263
http://arxiv.org/abs/1809.05817
http://arxiv.org/abs/1809.05817
http://www.vicon.com/
http://www.vicon.com/

	Introduction
	Preliminaries
	Workspace, Robot Actions and Trajectory
	Transition System
	Linear Temporal Logic
	Büchi Automaton
	Product Automaton

	Problem Definition
	Prefix-Suffix Structure

	T* Algorithm
	Reduced Graph
	T* Procedure
	Computational Complexity
	Correctness and Optimality

	Evaluation
	Workspace Description and LTL Queries
	Results on Comparison with the Baseline Algorithm belta5650896
	Analysis of T* Performance with Different Parameters
	Experiments with Robot

	Conclusion
	References

