
Charging Station Placement for Indoor Robotic Applications

Tanmoy Kundu1 and Indranil Saha2

Abstract— For an autonomous mobile robot, when the avail-
able power goes below a certain threshold, the robot needs to
abort its current task and move towards a charging station to
recharge its battery. The efficiency of an autonomous mobile
robot depends significantly on the location of the charging
stations. In this paper, we address the charging station place-
ment problem for mobile robots in a controlled workspace.
We propose two algorithms to place a number of charging
stations so that a robot is always capable of reaching one
of the charging stations from any obstacle-free location in
the workspace without aborting its task too early. We reduce
the charging-station placement problem to a series of SMT
solving problems and use the off-the-shelf SMT solver Z3 to
implement our algorithm. The algorithm produces as output
the locations of the minimal number of charging stations
in the workspace and the trajectories from all obstacle-free
locations to one of the charging stations. Our experimental
results show how our algorithm can efficiently find the location
of the charging stations and robot trajectories to reach the
charging stations. We demonstrate through simulation how the
generated trajectories can be effectively used by a robot to reach
a charging stations autonomously without getting depleted with
power.

I. INTRODUCTION

Autonomous indoor robots are an emerging class of
robotic systems that have significant potential to trans-
form our day-to-day life. Indoor robots are widely used in
manufacturing or material handling in factories and ware-
houses [1], [2]. For example, in Amazon Warehouse, robots
are used to pick an object from some place and drop it
to another place. Robots also find place in our homes to
help us in routine work [3]. For example, the robot Roomba
from i-Robot Create can autonomously clean a room using
vacuum cleaning technology. Recent trend suggests that
robots will find applications in commercial spaces such as
hotels, hospitals, offices, banks, malls, and museums [4].

Indoor robots are generally battery powered and require
to charge their battery at a regular interval. Depending on
the location of the charging station, the robots need to
plan to recharge their battery at a regular interval so that
they become devoid of power to move further. The power
efficiency of the robots depends on the location of the power
station significantly. In this paper, we address the following
question: Given the workspace and the dynamics of the
robots, what is the optimal locations for placing the charging
stations?

*Tanmoy Kundu is supported by Visvesvaraya Ph.D. Fellowship by
the Department of Electronics and Information Technology, Ministry of
Communication and Information Technology, Government of India

1 Tanmoy Kundu is with Department of Computer Science
and Engineering, Indian Institute of Technology Kanpur
tanmoy@cse.iitk.ac.in

2 Indranil Saha is with Department of Computer Science and Engineering,
Indian Institute of Technology Kanpur isaha@cse.iitk.ac.in

While planning for the charging station placement for the
robots, the following questions need to be answered. First,
what is the threshold on the amount of power based on which
the robot decides when it aborts its current mission and
starts moving towards a charging station? Second, How many
charging stations should we install in a given workspace?
Third, what will be the locations of the charging stations?
These issues are not independent, for example, if the power
threshold is high then the number of required charging station
is less.

In this paper, we formulate two variants of charging station
placement problem. In the first problem, we assume that the
power threshold for the robot is given, and we aim to find the
minimum number of charging stations and their locations. In
the second problem, we assume that the number of charging
station to be installed is given, and we attempt to find their
locations and the value of the minimum power threshold for
the robot.

We provide SMT-based algorithms to solve the above
two problems. Both the problems can be formulated as a
sequence of SMT solving problems. However, naive SMT-
based formulation does not scale with the size of the
workspace. We then provide an algorithm based on finding
unsatisfiable core [5] in a set of constraints. In our context,
an unsatisfiable core provides a small subset of the obstacle-
free locations in the workspace that can not be served by the
current power threshold or the current number of charging
stations.

We have implemented our algorithm using the SMT solver
Z3 [6]. Z3 provides a mechanism to indicate a subset of
constraints that can be used to produce an unsatisfiable core.
Through a series of experiments we demonstrate that our
unsatisfiable core based algorithm outperforms the naive
SMT-based algorithm significantly in terms computation
time. We also demonstrate through ROS simulation how the
trajectories generated by our tool can be used to steer a robot
to the nearest charging station when the battery power of the
robot reaches a pre-decided threshold.

Related work. The charging station placement problem is
a variant of facility location problem [7], [8]. The inputs
to the facility location problem are generally a set of users
and a set of potential sites to establish some service facility.
The goal of any algorithm solving the problem is to find a
subset of the potential sites of size k such that some objective
function, for example, minimizing the maximum distance
between a user and its nearest facility, can be minimized.
Most of the early work on this problems assumed the users to
be static. However, recent work on facility location problem
considers the users to be mobile and assume a flow model
to characterize the mobility of the users [9], [10], [11].

Such models have been used to solve the refueling station
location problem [12], [13], [14] and macro-cell planning
for mobile users [15]. While at the higher level, the charging
station location problems for mobile robots resembles facility
location problem for mobile users, the complex dynamics of
the robots entails different solutions to this problem.

The approach presented in this paper can be viewed as
joint location planning for the charging stations and motion
planning for the robots. Planning is a classical problem
in AI and robotics [16], [17], [18] and we borrow ideas
from the planning literature. For example, following the
AI literature, we approximate the dynamics of the robots
using a set of motion primitives [19], [18]. Our algorithmic
solution to the problem is based on a reduction to a sequence
of SMT solving problems. SMT solvers are recently being
popular in solving the task and motion planning problems
for robots (e.g. [20], [21], [22], [23], [24], [25], [26]).
Composition of motion primitives by means of an SMT
solver to generate trajectories satisfying some high level
description was introduced in [23]. The capability of an SMT
solver to generate an unsatisfiable core has been exploited
in [24] to solve the multi-robot motion planning in a scalable
manner.

Paper organization. The rest of the paper is organized as
follows. In Section II, we introduce the notations used in the
paper, and provide formal problem definition with illustrative
examples. We describe our algorithms in Section III. In
Section IV we describe our experimental setup and provide
experimental results to demonstrate the efficacy of the pro-
posed algorithms. Finally, we conclude in Section ?? with
some insights on possible future directions.

II. PROBLEM

A. Preliminaries
1) Workspace: In this work, we assume that the robots

operate in a 2-D workspace which we represent as a 2-D oc-
cupancy grid map. The grid decomposes the workspace into
square shaped blocks which are assigned unique identifiers to
represent their locations in the workspace. We denote the set
of locations in the workspace by W and the set of locations
covered by obstacles by O. The set of free locations in the
workspace is denoted by F , where F = W \O.

2) Robot State: The state of a robot σ consists of (1) its
position in the space, σ.x (which determines a unique block
in the occupancy grid) and (2) its velocity configuration,
σ.v, which represents current magnitude and direction of
the velocity of the robot. We denote the set of all velocity
configurations by V and assume it contains a value v0
denoting that the robot is stationary.

3) Motion Primitives.: We capture the motion of a robot
using a set of of motion primitives Γ. We assume that the
robot moves in an occupancy grid in discrete steps of τ time
units. A motion primitive is a short controllable action that
the robot can perform in any time step. A robot can move
from its current location to a destination location executing
a sequence of motion primitives.

With each motion primitive γ ∈ Γ, we associate a a
pre-condition pre(γ), which is a formula over the states

specifying under which conditions a motion can be executed.
We write post(σ, γ) for the state of a robot after the motion
primitive γ is applied to a state σ satisfying pre(γ). We use
intermediate(σ, γ) to denote the set of grid blocks through
which the robot may traverse when γ is applied at state
σ, including the beginning and end blocks. Each motion
primitive γ is associated with a energy cost as denoted by
cost(γ), which represents the amount of energy spent by
the robot while executing the motion primitive. To simplify
the exposition, we assume that the execution of all the
motion primitives for a robot lead to same amount of energy
expenditure.

We assume that in Γ there exists a motion primitive that
can be applied when the robot is at the velocity configuration
v0 and it keeps the robot in the same state. This special
primitive is called the rest primitive.

4) Motion Plan and Trajectory: The runtime behavior of
the robot r is described by a discrete-time transition system
T . Let σ1 and σ2 be two states of the robot and γ be the
motion primitive applied to the robot in state σ1. We define
a transition σ1

γ−→ σ2 iff
• σ1 |= pre(γ) and σ2 = post(σ1, γ).
• the trajectory of the robot between the states σ1 and σ2

does not pass through a block occupied by an obstacle,
i.e., intermediate(σ1, γ) ∩ O = ∅.

A motion plan for a robot is defined as a sequence of
motion primitives to be applied to the robot to move from
from a location li ∈ F to another location lf ∈ F . A motion
plan is denoted by ρ = (γ1, . . . , γk), where γi ∈ Γ for all
i ∈ {1, . . . , k}.

Given the current location of the robot l0 and a motion
plan ρ = (γ1, . . . , γk), the trajectory of the robot is given by
ξ = (σ0σ1 . . . σk) such that for all i ∈ {1, . . . , k}, σ(i−1)

γi−→
σi. If any transition is invalid then the motion plan does not
lead to a valid trajectory. In the rest of the paper, we use
the word “step” to denote a transition governed by a motion
primitive.

B. Problem Definition

Given a workspace, our goal is to find a location for the
charging stations for a robot so that the robot can reach the
charging station from any location on its trajectory without
getting depleted with power. The robot starts its operation
from a given initial location and may follow any trajectory
that enables it to satisfy the specification. Initially, the robot
starts with full power. When the power available to the
robot goes below a pre-decided threshold, the robot needs
to abort its mission and reach the charging station to charge
its battery.

We assume that the robot has access to a motion planner
that knows the location of the charging stations. Given the
current location of the robot and the available battery power
to the robot, the motion planner can find a path for the robot
to reach a charging station, if there exists a path for the
robot from its current location to a charging station location,
which can be realized with the available power to the robot
in its current location. If the robot knows the threshold on the
power with which it is possible to reach a charging station

from any location in the workspace, it is easy for the robot to
determine when to abort its current mission and invoke the
path planner. The robot has to only keep track of its power
level, and when it goes below the threshold it can invoke the
path planner.

In this work, we assume that each motion primitive of the
robot requires equal amount of energy and thus, there is a
co-relation between the amount of battery power left to the
robot and the number of motion primitive the robot will be
executed with the remaining power. To represent the battery
power available to the robot, we use the number of steps the
robot is capable of executing with the available power.

Formally, the charging station placement problems can be
captured as follows:

Problem 2.1: Given a workspace and a threshold on the
number of transitions d, minimize the number of charging
stations N and and find their locations CS = {lc1, . . . , lcN}
in the workspace so that the robot can always reach the
charging station from any obstacle-free location lf ∈ F in the
workspace without executing more than d motion primitives.

Mathematically, the problem can be written as:

minimize N
subject to ∀lf ∈ F. ∃ξ = (σ0 . . . σd) with

σ0.x = lf ∧
(σd.x = lc1 ∨ . . . ∨ σd.x = lcN) ∧
σd.v = v0

In this optimization problem, the decision variables are the
motion plan ρ = (γ1, . . . , γd) for each each lf ∈ F and the
locations of the charging stations captured as CS.

Problem 2.2: Given a workspace and a natural number
N for the number of charging stations, find the location of
the charging stations in such a way that maximum number of
transitions required to reach one of the charging stations from
any obstacle-free location in the workspace in minimized.

Mathematically, the problem can be written as:

minimize d
subject to ∀lf ∈ F. ∃ξ = (σ0σ1 . . . σd) with

σ0.x = lf ∧
(σd.x = lc1 ∨ . . . ∨ σd.x = lcN) ∧
σd.v = v0

In Problem 2.1, the number of transitions in a trajectory
is given and the number of charging stations is a decision
variable. On the other hand, in Problem 2.2, number of charg-
ing stations is given, whereas the number of transitions in
the trajectory is a decision variable. In both the optimization
problems, the motion plan ρ = (γ1, . . . , γd) for each each
lf ∈ F and the locations of the charging stations are also
decision variables.

Though the required trajectories to reach a charging station
from different obstacle-free locations may be of different
length, we can attempt to synthesize the trajectories of the
same length which is maximum among all the trajectories.
Note that the presence of the rest primitive allows us to
extend a trajectory to arbitrary finite length without changing
the final state of the robot.

(a) d = 7 (b) ncs = 5

Fig. 1. The location of charging stations for different robots in a warehouse
like workspace

C. Motivating Example

We illustrate the charging station placement problems
through a simple example. Figure 1 shows the top view of
a warehouse like workspace where a robot performs some
tasks. The workspace is divided into cells using a rectangular
grid. The black regions denote the locations occupied by
obstacles. The robot may move through any obstacle-free
location to perform its task.

In Figure 1(a), we show the location of the charging
stations for three different robots for a fixed threshold for
the number of transitions on a trajectory from any obstacle-
free location in the workspace to a charging station. The
threshold is taken as d = 7. The location of the charging
stations for different robots have been shown in different
symbols. As shown in the figure, the minimum number of
charging stations required for the robot Turtlebot and the
quadcopter is 2, whereas for Dubins vehicle, the number is
7. This is due to the fact that the dynamics of a Dubins
vehicle is quite restricted. Also, unlike the Turtlebot and
the quadcopter, the Dubins vehicle has a specific heading.
From the same location, a dubins vehicle may be capable of
reaching a charging station with a fixed threshold for d for
some orientation, but not for the other orientations.

In Figure 1(a), we show the location of the charging
stations when the number of charging stations is given. Here
we assumed that the number of the charging stations is 5.
For the Turtlebot and the quadcopter, the obtained value for
d is 5, whereas for the Dubins vehicle, d = 8. Note that for
the same workspace, increasing the value of the threshold d
from 7 to 8 helps us reduce the number of charging stations
for a Dubins vehicle by 2.

In the next section, we will describe our algorithms in
detail.

III. ALGORITHMS

In this section, we present our charging station placement
algorithm.

A. Constraint Based Formulation

To solve the charging station placement problem for a
workspace W , the set of motion primitives Γ for the robot
and the set of locations for the obstacles O, we need to find
the locations of a minimal number of charging stations CS
given the value of d, or the minimum value of d and the

location of the charging stations, given the desired number
of charging stations.

In both the cases, we need to find trajectories from all
the obstacle-free locations in the workspace to one of the
charging stations in CS. For the first problem, the number
of charging stations and their locations are the decision vari-
ables and d is given. For the second problem, the charging
station locations are given and d is a decision variable. In
both the cases, we have the motion primitives that form
the motion plan to move the robot from any obstacle-free
location to a charging station location to be the decision
variables.

The following set of constraints ensure that for all
obstacle-free locations li ∈ F , for all velocity configuration
vi ∈ V , there exists a trajectory ξ = (σ0 . . . σd) and the
corresponding motion plan ρ = (γ1 . . . γd) for reaching one
of the charging station location lcs ∈ CS from li.

∀li ∈ F , ∀vi ∈ V :

σ0.l = li ∧ σ0.v = vi (III.1)
∀t ∈ {0, . . . , d− 1} : σt |= pre(γ(t+1)) (III.2)
∀t ∈ {1, . . . , d} : σt = post(σ(t−1), γt) (III.3)
∀t ∈ {0, . . . , d− 1} : intermediate(σt, γ(t+1)) /∈ O (III.4)∨
lcs∈CS

σd.l = lcs ∧ σd.v = 0 (III.5)

Equation III.1 captures that initially the robot may be
in any obstacle-free location in the workspace and may be
in any velocity configuration. Equation III.2 ensures that at
each time step t, the state σt of the robot should satisfy the
precondition of the motion primitive applied to the robot at
time instant t. Similarly, Equation III.3 ensures that the state
σt should satisfy the postcondition of the motion primitive
applied to the robot at time instant t − 1. Equation III.4
captures that no location on a trajectory should be covered
with an obstacle. Finally, Equation III.6 captures that at the
final state of the trajectory, the robot will in one of the
charging stations and stationary.

B. Algorithms for finding minimum number of charging
stations

1) A Brute-Force Algorithm: We start with providing
a brute-force algorithm for solving the charging station
placement problem. The inputs to our algorithm are the set of
free blocks in the workspace (F), the set of blocks occupied
by the obstacles (O), the set of motion primitives for the
robot under consideration (Γ), and a limit on the number of
steps that the robot can take before getting depleted with
the battery power. In this algorithm, we use the variable
ncs to denote the number of required charging stations,
which is initially set to 1. The algorithm iterates until we
find sufficient number of charging stations to cover all the
free blocks in the workspace. In each iteration, we generate
constraints C that capture (III.1)-(III.6). While generating
the constraints, we assume that |CS| = ncs and treat all
lcs ∈ CS to be the decision variables. In any iteration,
if the constraints in C are satisfiable then the function
solve_constraints return “SAT ” in the variable res,
otherwise, the function returns “UNSAT ” to indicate that

the constraints in C are unsatisfiable. If res = SAT then a
solution of the constraints in returned in the variable model.
The function get_charging_stations extracts the loca-
tions of the charging stations from model. The motion plan
for any free location in F to reach one of the charging station
is also extracted form the model by the get_motion_plans
function.

Algorithm III.1: Algorithm to find new location
Input: F : Free blocks in the workspace, O: set of obstacles,

Γ: the set of motion primitives, d: maximum number
of steps to reach the charging station

Output: Cfinal : final positions of the charging station

1 function findChargingStation(F,O,Γ,d)
2 begin
3 ncs = 1;
4 while true do
5 C = generate_constraints(F,O,Γ, d, ncs);
6 [res,model] = solve_constraints(C);
7 if res = SAT then
8 CS = get_charging_stations(model);
9 P = get_motion_plans(model);

10 return 〈CS, P 〉;
11 else
12 ncs = ncs+ 1;
13 end
14 end
15 end

Theorem 3.1: Algorithm III.1 provides minimal number
of charging stations to solve Problem 1.

Proof: From the soundness of the SMT solver it follows
that if we get the result of the function solve_constraints
to be unsatisfiable for ncs = k in an iteration, there does
not exist a solution to the problem with ncs = k. Thus, a
satisfiable solution for ncs = k and an unsatisfiable solution
for ncs = k− 1 ensures that at least k charging stations are
required in the solution of the problem. In Algorithm III.1, as
we start with ncs = 1 and increase ncs by 1 in each iteration
until we get a solution, it is guaranteed that the solution
provided by Algorithm III.1 contains minimum number of
charging stations.

2) A Scalable Algorithm: Algorithm III.1 tries to find the
minimum number of charging stations and their locations
iteratively. As we will see in the experimental results, the
algorithm scales poorly with the size of the workspace and
complexity of the robot dynamics. The main limitation of the
algorithm is that when it does not find a solution for a specific
value of ncs, it does not attempt to learn any information
from that exercise and initiate a fresh new search for ncs+1.
However, while solving the constraint for an ncs, if there
is no solution, we may extract the information for which
part of the obstacle-free workspace cannot be covered using
ncs charging station. This information may make the search
process easier for ncs + 1 charging stations. This insight
leads to Algorithm III.2 that we present in this section.

The inputs to Algorithm III.2 are the same as those of
Algorithm III.1 (for this moment, ignore the input δ). In
this algorithm, η denotes the current set of charging stations.
initially, η is empty and ncs = 1. We generate constraints

Algorithm III.2: Algorithm to find new location
Input: F : Free blocks in the workspace, O: set of obstacles,

Γ: the set of motion primitives, d: maximum number
of steps to reach the charging station,δ: relaxation
parameter

Output: Cfinal : final positions of the charging station

1 function findChargingStation(F,O,Γ,d, δ)
2 begin
3 ncs = 1;
4 η = { };
5 while true do
6 C = generate_constraints(F,O,Γ, d, η, ncs, δ);
7 [res,model, ucore] = solve_constraints(C);
8 if res = SAT then
9 CS = get_charging_stations(model);

10 P = get_motion_plans(model);
11 return 〈CS, P 〉;
12 else
13 U = get_initial_locations(ucore);
14 flag1 = false;
15 ncs = ncs+ 1;
16 while flag1 = false do
17 C =

generate_constraints(U,O,Γ, d, η, ncs, δ);
18 [res,model, ucore] =

solve_constraints(C);
19 if res = SAT then
20 η = get_charging_stations(model);
21 flag1 = true;
22 else
23 ncs = ncs+ 1;
24 end
25 end
26 end
27 end
28 end

from the inputs F , O, Γ, and d, the set of charging stations η
and ncs by using (III.1)-(III.6). In any iteration, |η| ≤ ncs.
Thus, we treat η elements in CS to be fixed and the rest
ncs − |η| elements in CS to be the decision variables.
Moreover, we include the constraints of the form σ0.l = li
for all li ∈ F in the set of constraints that will be used for
the generation of unsatisfiable core. Now, if we do not find
a solution for a specific value of ncs, we can generate a set
of locations U , U ⊆ F , that captures some of the obstacle-
free locations in the workspace that cannot be served using
ncs charging stations. Now, we increase the value of ncs
by 1 and generate constraints only to cover the locations in
U . We keep on increasing ncs until we get a solution that
provides the locations of the charging stations η that cover
the locations in U . With this set η, now we move to Line 6
to validate if the current locations of the charging stations
η can serve all the locations in F . If not then we repeat
the process. In any iteration, if the constraints can be solved
successfully on Line 7, the model generated by the solver
can be used for finding the location of the charging stations
and the motion plans for all the locations in l ∈ F to reach
one of the charging stations.

The algorithm described above may not provide a solution
with minimal number of charging stations, as a solution

obtained from the locations given by the unsatisfiable core
may not be the optimal solution when we consider all the
locations in the outer loop in Algorithm III.2. However, as
we check the feasibility of the having minimal number of
charging stations for several iterations only for the locations
in U instead of the locations in F and the set U is signifi-
cantly smaller than the set U , we achieve significant speed-
up. Here, we comprise optimality to reduce the complexity
of the problem and get a solution faster.

We will now describe how we use the parameter δ in
our algorithm to get more optimal result. For δ = 0,
the algorithm works as described above. If δ > 0 then
in generating the constraints, we replace the constraints
in (III.6) by the following constraints:∨

lcs∈CS
σd.l ∈ Lδcs ∧ σd.v = 0 (III.6)

where Lδcs denotes a set containing all the locations which are
within δ Manhattan distance away from the location lcs. A
δ > 0 let us consider the neighboring regions of the charging
station locations obtained by considering only the locations
provided by the unsatisfiable core, without expanding the
search space too much.

C. Algorithms to Find the minimum number of transitions
In this section, we will present an algorithm to the solve

Problem 2.2, that is, given a number of charging stations
find the location of the charging stations and the minimum
number of transitions with which a robot will be able to
reach one of the charging stations from any location l ∈ F .
The algorithm is rather straightforward. We start with d = 1
and we keep on increasing d until we can establish that for
that value of d, there exists ncs charging stations locations
CS so that a robot in any location in F will be able to reach
one of the charging stations given in CS.

Algorithm III.3: Algorithm to find new location
Input: F : free blocks in the workspace, O: the set of

obstacles, Γ: the set of motion primitives, ncs: the
number of charging stations

Output: dmin : the minimum number of transitions

1 function findChargingStation(F,O,Γ,)
2 begin
3 d = 1;
4 while true do
5 C = generate_constraints(F,O,Γ, ncs);
6 [res,model] = solve_constraints(C);
7 if res = SAT then
8 CS = get_charging_stations(model);
9 P = get_motion_plans(model);

10 return 〈d,CS, P 〉;
11 else
12 d = d+ 1;
13 end
14 end
15 end

Theorem 3.2: Algorithm III.3 provides minimal number
of steps for the robot to reach a charging station from any
obstacle-free location in the workspace.

Proof: The proof is similar to the proof of Theorem 3.1.

Algorithm III.4: Algorithm to find charging station
location to minimize d

Input: F : Free blocks in the workspace, O: set of obstacles,
Γ: the set of motion primitives, ncs: the number of
charging station,δ: relaxation parameter

Output: Cfinal : final positions of the charging station, d:
the minimum number of steps to reach the charging
station

1 function findChargingStation(F,O,Γ,ncs, δ)
2 begin
3 d = 1;
4 η = { };
5 while true do
6 C = generate_constraints(F,O,Γ, d, η, ncs, δ);
7 [res,model, ucore] = solve_constraints(C);
8 if res = SAT then
9 CS = get_charging_stations(model);

10 P = get_motion_plans(model);
11 return 〈d,CS, P 〉;
12 else
13 U = get_initial_locations(ucore);
14 flag1 = false;
15 d = d+ 1;
16 while flag1 = false do
17 C =

generate_constraints(U,O,Γ, d, η, ncs, δ);
18 [res,model, ucore] =

solve_constraints(C);
19 if res = SAT then
20 η = get_charging_stations(model);
21 flag1 = true;
22 else
23 d = d+ 1;
24 end
25 end
26 end
27 end
28 end

As Algorithm III.3 suffers from the lack of scalability,
we design an unsatisfiable core based algorithm (Algo-
rithm III.4.) to solve Problem 2.2. The algorithm is similar
to Algorithm III.2, the main difference is that here d is
unknown, and ncs is given.

IV. EVALUATION

A. Experimental Setup

We have carried out rigorous experiments to judge the effi-
cacy of the proposed algorithms. Our experiments have been
carried out in a laptop with Intel Core i7-6500U processor
with 2.50GHz clock speed, 16GB RAM, and Ubuntu 14.04
on it. We use Z3 SMT solver [6] from Microsoft Research
as backend constraint solver. The algorithms have been
implemented in C++. For visualization of the workspace
with the charging stations, we have developed a tool in
MATLAB. Furthermore, we carry simulation in ROS [27]
using Turtlebot robot.

1) Workspaces: Three types of workspaces, viz. Ware-
house, Artificial floor and Maze have been used in two-
dimensional setting. Number of free locations is largest in
Artificial floor, and smallest in Warehouse. We have tested
our algorithms for two different dimensions — 12× 12 and
17× 17 of these workspaces.

2) Robots and Motion Primitives: We have carried out our
experiments with three different types of robots —Turtlebot,
Quadcopter and Dubin’s vehicle. These robots have very
different set of motion primitives. The Turtlebot has nine
motion primitives - one is the rest primitive and the others are
to move the robot by one grid cell in eight uniform directions.
For the quadcopter, we have 58 motion primitives that have
been generated by the algorithm presented in [28], [29].

We have created 16 motion primitives for a Dubin’s
vehicle. Unlike the Turtlebot or quadcopter, we need to
consider the orientation of the robot. While composing two
motion primitives for a Turtlebot, we ensure that the orien-
tation of the robot after executing the first motion primitive
matches with the initial orientation required by the second
primitive. Moreover, as the robot can be in any direction in
any obstacle-free location initially, We consider all location-
orientation combinations in formulating the constraints in our
algorithms.

B. Results

In this section we present our experimental results. We
ran Algorithm III.1 and Algorithm III.2 with fixed number
of trajectory points d = 7 with various parameters like
workspace type, workspace dimension, robot type, δ and
number of trajectory points. The experimental results are
shown in Table I and Table II. For Algorithm III.2, with
the increase in δ, the number of charging stations decreases
significantly. Though the execution time increases with the
increase of δ, the result produced by Algorithm III.2 reaches
closer to the optimal solution provided by Algorithm III.1 as
we keep on increasing δ. We have carried out experiments
up to δ = 2. As we compare the results of naive algorithm,
we can see that in many cases the optimal ncs is reached
with δ = 2. Most importantly, the execution time of Algo-
rithm III.2 is 80–85% better compared to the Algorithm III.2
(naive algorithm).

To find out minimum number of steps d with fixed number
of charging stations ncs, we executed AlgorithmIII.3 and
AlgorithmIII.4. We did our experiment for δ = 0 to δ = 3.
In Table III, we carried out our experiments for fixed ncs = 5
and Turtlebot, with varying parameters like workspace type,
workspace dimension and δ. Table III shows that with the
increase of δ our Algorithm III.4 steadily approaches to
the optimal value of d, which is given by the naive Algo-
rithm III.3 . TableIV contains results for two different robots
—quadrotor and Dubin’s vehicle with warehouse workspace.
Execution time of Algorithm III.4 is 30 − 85% better than
the naive AlgorithmIII.3. For quadrotor, we have carried out
experiments for ncs = 7 and for Dubins vehicle we have
carried out experiments for ncs = 9.

Figure 2 shows how the computation time increases and
the number of charging stations decreases steadily with the

Workspace Algorithm dimension 12× 12 dimension 17× 17
T ncs CS T ncs CS

Warehouse δ = 0 0m 17s 3 (7 5),(4 1),(0 10) 2m 12s 9 (15 16),(1 10),(2 6),(16 9),(16 2),(14 4),(10 9),(4 13),(0 3)
δ = 1 0m 32s 3 (8 5),(4 1),(5 7) 3m 59s 7 (16 13),(3 10),(2 4),(14 4),(13 16),(7 0),(4 15)
δ = 2 0m 32s 2 (6 7),(5 0) 4m 0s 5 (13 16),(1 12),(3 4),(13 10),(12 2)
naive 3m 22s 2 (3 6),(7 5) 47m 16s 4 (12 1),(12 13),(3 12),(4 1)

Artificial floor δ = 0 0m 13s 2 (8 5),(2 5) 1m 8s 4 (10 14),(3 2),(4 12),(14 5)
δ = 1 0m 26s 2 (8 5),(3 6) 3m 3s 5 (11 13),(4 4),(3 11),(14 8),(10 2)
δ = 2 0m 45s 2 (9 6),(2 5) 4m 55s 4 (12 10),(4 5),(1 11),(12 4)
naive 5m 55s 2 (10 5),(3 6) 152m 16s 4 (15 3),(4 4),(13 11),(6 11)

Maze δ = 0 0m 15s 4 (10 4),(5 9),(5 2),(2 5) 1m 38s 7 (3 4),(14 10),(10 3),(8 10),(4 10),(5 14),(12 11)
δ = 1 0m 29s 3 (9 5),(4 8),(5 2) 3m 25s 7 (4 4),(14 10),(2 14),(6 10),(5 2),(14 4),(10 11)
δ = 2 1m 59s 3 (8 2),(9 8),(2 5) 7m 59s 6 (1 4),(14 10),(4 14),(10 6),(13 4),(4 7)
naive 9m 36s 3 (1 7),(9 6),(4 2) 57m 36s 5 (10 14),(2 5),(13 5),(9 6),(3 12)

TABLE I
EXPERIMENTAL RESULTS FOR Turtlebot WITH FIXED VALUE OF d = 7

Workspace Algorithm Quadcopter Dubin’s vehicle
T ncs CS T ncs CS

Warehouse δ = 0 1m 16s 2 (7 6),(4 6) 6m 33s 10 (9 4),(6 7),(11 5),(2 3),(5 11),(9 11),(1 8),(3 1),(11 2),(2 11)
δ = 1 5m 12s 2 (8 6),(3 5) 34m 12s 10 (3 5),(8 10),(2 3),(4 9),(9 3),(7 10),(7 1),(10 8),(1 8),(0 1)
δ = 2 7m 23s 2 (5 8),(6 4) 26m 46s 7 (10 0),(0 9),(5 11),(1 0),(2 3),(11 10),(7 5)
naive 36m 31s 2 (3 10),(6 3) > 200m timeout

Artificial floor δ = 0 2m 59s 4 (7 4),(5 10),(4 5),(9 4) 14m 27s 13 (9 6),(6 9),(3 1),(1 9),(7 0),(10 7),(9 4),(8 2),(0 8),(7 10),(5 7),(5 2),(1 3)
δ = 1 10m 49s 4 (6 5),(8 9),(10 4),(1 5) 22m 36s 10 (10 7),(6 9),(4 4),(0 8),(8 2),(9 4),(1 3),(7 10),(6 1),(5 7)
δ = 2 4m 31s 2 (6 5),(6 8) 76m 57s 10 (8 2),(2 7),(10 7),(5 1),(1 3),(6 5),(6 9),(7 10),(10 4),(5 7)
naive 43m 22s 2 (2 5),(9 6) > 200m timeout

Maze δ = 0 3m 7s 5 (6 9),(0 8),(9 6),(7 6),(2 7) 11m 31s 13 (2 6),(9 8),(8 2),(4 2),(2 9),(2 7),(9 6),(9 5),(8 4),(3 4),(7 9),(6 6),(7 7)
δ = 1 9m 5s 4 (5 9),(2 6),(11 3),(7 7) 14m 18s 8 (1 7),(8 9),(2 2),(8 2),(4 8),(9 5),(9 4),(7 7)
δ = 2 16m 58s 4 (7 7),(2 6),(10 2),(7 9) 45m 22s 8 (1 7),(8 2),(4 7),(2 2),(6 9),(9 8),(9 4),(7 7)
naive 61m 31s 3 (1 7),(7 7),(9 8) > 200m timeout

TABLE II
EXPERIMENTAL RESULTS FOR Quadcopter AND Dubin’s vehicle WITH DIFFERENT WORKSPACES OF SIZE 12× 12 AND FIXED VALUE OF d = 7

Workspace Algorithm Dimension 12× 12 Dimension 17× 17
T d CS T d CS

Warehouse δ = 0 0m 10s 6 (11 9),(10 0),(9 4),(0 2),(4 10) 4m 56s 13 (6 3),(9 4),(16 14),(13 16),(16 13)
δ = 1 0m 17s 5 (11 10),(7 2),(8 5),(1 3),(2 8) 6m 15s 11 (1 10),(4 13),(12 3),(9 6),(7 16)
δ = 2 0m 24s 5 (10 7),(8 1),(7 5),(2 4),(4 9) 5m 56s 9 (1 12),(1 16),(9 4),(3 6),(9 16)
δ = 3 0m 37s 5 (10 7),(9 4),(1 3),(1 8),(1 7) 5m 21s 7 (12 3),(14 16),(3 4),(10 9),(4 13)
naive 4m 14s 5 (9 11),(7 2),(1 3),(8 6),(2 7) 64m 26s 7 (13 12),(5 13),(11 3),(3 4),(4 2)

Artificial floor δ = 0 0m 14s 7 (0 8),(5 10),(7 0),(10 2),(1 5) 2m 56s 11 (10 1),(7 15),(9 8),(9 15),(11 7)
δ = 1 0m 30s 7 (6 5),(4 2),(0 8),(2 7),(8 2) 8m 8s 10 (4 12),(15 7),(6 7),(14 3),(7 3)
δ = 2 0m 40s 6 (4 4),(9 6),(6 1),(2 7),(3 8) 2m 44s 10 (10 1),(9 0),(15 7),(6 7),(6 3)
δ = 3 0m 18s 4 (3 8),(3 3),(9 3),(8 9),(5 2) 7m 33s 8 (9 9),(4 3),(5 5),(12 6),(6 11)
naive 1m 45s 4 (3 6),(1 9),(9 3),(8 9),(3 3) 14m 34s 5 (1 4),(4 12),(13 3),(12 12),(8 4)

Maze δ = 0 0m 20s 8 (2 7),(6 9),(2 4),(1 9),(7 2) 52m 44s 15 (12 10),(14 8),(4 14),(9 5),(11 14)
δ = 1 0m 30s 7 (6 3),(9 8),(9 2),(2 5),(8 4) 67m 50s 12 (9 4),(8 12),(7 9),(10 9),(12 4)
δ = 2 1m 8s 6 (7 9),(9 4),(0 8),(6 3),(2 5) 15m 30s 8 (4 7),(10 5),(14 12),(6 12),(14 7)
δ = 3 0m 35s 5 (2 4),(6 3),(10 2),(7 9),(0 8) 15m 13s 9 (4 8),(14 12),(0 13),(6 9),(9 5)
naive 3m 29s 5 (2 4),(6 3),(10 2),(7 10),(4 9) 94m 52s 7 (2 5),(15 4),(0 14),(10 15),(9 6)

TABLE III
EXPERIMENTAL RESULTS FOR Turtlebot WITH FIXED VALUE OF ncs = 5

Workspace Algorithm Quadcopter (ncs = 7) Dubin’s vehicle (ncs = 9)
T d CS T d CS

Warehouse δ = 0 0m 55s 6 (3 1),(3 2),(4 10),(0 2),(9 7),(9 4),(6 0) 6m 51s 8 (9 4),(5 0),(9 11),(10 3),(0 9),(3 6),(11 1),(11 9),(1 4)
δ = 1 3m 2s 5 (2 0),(5 3),(4 9),(3 5),(7 10),(10 4),(6 0) 34m 51s 8 (9 3),(8 2),(9 0),(2 3),(7 5),(2 8),(5 8),(1 0),(8 9)
δ = 2 4m 47s 5 (6 3),(5 7),(3 10),(1 3),(9 4),(10 7),(3 1) 24m 45s 6 (0 5),(9 4),(9 11),(0 9),(5 4),(9 0),(2 0),(9 7),(4 9)
δ = 3 1m 16s 4 (5 3),(5 0),(1 7),(0 2),(6 11),(8 6),(11 5) 44m 27s 6 (9 11),(4 6),(9 8),(2 0),(0 9),(5 11),(1 3),(8 1),(10 3)
naive 9m 55s 4 (7 10),(8 3),(8 8),(11 5),(4 10),(0 5),(3 3) > 200m timeout

TABLE IV
EXPERIMENTAL RESULTS FOR Quadcopter (ncs = 7) AND Dubin’s vehicle (ncs = 9) WITH WORKSPACE SIZE 12× 12

increase in d. Figure 3 shows how d decreases with the
increase in ncs.

REFERENCES

[1] R. Bogue, “Growth in e-commerce boosts innovation in the
warehouse robot market,” Industrial Robot: An International

Journal, vol. 43, no. 6, pp. 583–587, 2016. [Online]. Available:
http://dx.doi.org/10.1108/IR-07-2016-0194

[2] E. Guizzo, “Three engineers, hundreds of robots, one warehouse,”
IEEE Spectrum, vol. 45, no. 7, pp. 26–34, 2008.

http://dx.doi.org/10.1108/IR-07-2016-0194

4 6 8 10

50

100

150

d

C
om

pu
ta

tio
n

tim
e

(a)

4 6 8 10

5

10

d

N
um

be
ro

fc
ha

rg
in

g
st

at
io

ns

(b)

Fig. 2. The effect of increasing d on the computation time and the number
of charging stations obtained

2 4 6 8

50

100

150

Number of charging stations

C
om

pu
ta

tio
n

tim
e

(a)

2 4 6 8

4

5

6

7

8

9

Number of charging stations

d

(b)

Fig. 3. The effect of increasing the number of charging station on the
computation time and d

[3] B. Tedeschi, “The year in robots: 10 home robots to
lighten your domestic chores,” The New York Times, 2014.
[Online]. Available: https://www.nytimes.com/2014/12/25/garden/
10-home-robots-to-lighten-your-domestic-chores.html?mcubz=3

[4] T. Deyle, “Why indoor robots for commercial spaces are
the next big thing in robotics,” IEEE Spectrum, 2017.
[Online]. Available: https://spectrum.ieee.org/automaton/robotics/
robotics-hardware/indoor-robots-for-commercial-spaces

[5] C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli, “Satisfiability
modulo theories,” in Handbook of Satisfiability, A. Biere, H. van
Maaren, and T. Walsh, Eds. IOS Press, 2009, vol. 4, ch. 8.

[6] L. M. de Moura and N. Bjørner, “Z3: An efficient smt solver,” in
International Conference of Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), 2008, pp. 337–340.

[7] Z. Drezner, Facility location: a survey of applications and methods.
Springer, 1995.

[8] H. W. Hamacher and Z. Drezner, Facility location: applications and
theory. Springer, 2002.

[9] M. Boccia, A. Sforza, and C. Sterle, “Flow intercepting facility
location: Problems, models and heuristics,” J. Mathematical Modelling
and Algorithms, vol. 8, no. 1, pp. 35–79, 2009.

[10] W. Zeng, I. Castillo, and M. J. Hodgson, “A generalized model for
locating facilities on a network with flow-based demand,” Networks
and Spatial Economics, vol. 10, no. 4, pp. 579–611, 2010.

[11] S. Mitra, P. Saraf, R. Sharma, A. Bhattacharya, S. Ranu, and H. Bhan-
dari, “Netclus: A scalable framework for locating top-k sites for
placement of trajectory-aware services,” in ICDE, 2017, pp. 87–90.

[12] M. Kuby, L. Lines, R. Schultz, Z. Xie, J.-G. Kim, and S. Lim,
“Optimization of hydrogen stations in florida using the flow-refueling
location model,” International journal of hydrogen energy, vol. 34,
no. 15, pp. 6045–6064, 2009.

[13] S. Lim and M. Kuby, “Heuristic algorithms for siting alternative-fuel
stations using the flow-refueling location model,” European Journal
of Operational Research, vol. 204, no. 1, pp. 51–61, 2010.

[14] S. MirHassani and R. Ebrazi, “A flexible reformulation of the refueling
station location problem,” Transportation Science, vol. 47, no. 4, pp.
617–628, 2012.

[15] S. Mitra, S. Ranu, V. Kolar, A. Telang, A. Bhattacharya, R. Kokku,
and S. Raghavan, “Trajectory aware macro-cell planning for mobile
users,” in INFOCOM, 2015, pp. 792–800.

[16] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach.
Pearson, 2009.

[17] H. Choset, K. M. Lynch, S. Hutchinson, G. A. Kantor, W. Burgard,
L. E. Kavraki, and S. Thrun, Principles of Robot Motion. A Bradford
Book, 2005.

[18] S. M. LaValle, Planning Algorithms. Cambridge University Press,
2006.

[19] R. Fikes and N. J. Nilsson, “STRIPS: A new approach to the
application of theorem proving to problem solving,” Artif. Intell.,
vol. 2, no. 3/4, pp. 189–208, 1971.

[20] W. N. N. Hung, X. Song, J. Tan, X. Li, J. Zhang, R. Wang, and P. Gao,
“Motion planning with Satisfiability Modulo Theroes,” in ICRA, 2014,
pp. 113–118.

[21] S. Nedunuri, S. Prabhu, M. Moll, S. Chaudhuri, and L. E. Kavraki,
“SMT-based synthesis of integrated task and motion plans from plan
outlines,” in ICRA, 2014, pp. 655–662.

[22] Y. Wang, N. T. Dantam, S. Chaudhuri, and L. E. Kavraki, “Task and
motion policy synthesis as liveness games,” in ICAPS, 2016, p. 536.

[23] I. Saha, R. Ramaithitima, V. Kumar, G. J. Pappas, and S. A. Seshia,
“Automated composition of motion primitives for multi-robot systems
from safe LTL specifications,” in IROS, 2014, pp. 1525–1532.

[24] ——, “Implan: Scalable incremental motion planning for multi-robot
systems,” in ICCPS, 2016, pp. 43:1–43:10.

[25] A. Desai, I. Saha, J. Yang, S. Qadeer, and S. A. Seshia, “DRONA: a
framework for safe distributed mobile robotics,” in ICCPS, 2017, pp.
239–248.

[26] I. Gavran, R. Majumdar, and I. Saha, “ANTLAB: a multi-robot task
server,” in EMSOFT, 2017.

[27] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA Workshop on Open Source Software, 2009.

[28] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and
control for quadrotors,” in ICRA, 2011, pp. 2520–2525.

[29] M. Pivtoraiko, D. Mellinger, and V. Kumar, “Incremental micro-UAV
motion replanning for exploring unknown environments,” in ICRA,
2013, pp. 2452–2458.

https://www.nytimes.com/2014/12/25/garden/10-home-robots-to-lighten-your-domestic-chores.html?mcubz=3
https://www.nytimes.com/2014/12/25/garden/10-home-robots-to-lighten-your-domestic-chores.html?mcubz=3
https://spectrum.ieee.org/automaton/robotics/robotics-hardware/indoor-robots-for-commercial-spaces
https://spectrum.ieee.org/automaton/robotics/robotics-hardware/indoor-robots-for-commercial-spaces

	Introduction
	Problem
	Preliminaries
	Workspace
	Robot State
	Motion Primitives.
	Motion Plan and Trajectory

	Problem Definition
	Motivating Example

	Algorithms
	Constraint Based Formulation
	Algorithms for finding minimum number of charging stations
	A Brute-Force Algorithm
	A Scalable Algorithm

	Algorithms to Find the minimum number of transitions

	Evaluation
	Experimental Setup
	Workspaces
	Robots and Motion Primitives

	Results

	References

