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Abstract

The paper presents a case study of the use of model
checking for the analysis of an industrial protocol, a time
triggered version of the CAN protocol (TTCAN). Our analy-
sis of this protocol was carried out using the model checker
Spin. The original CAN protocol can easily be modeled in
Spin, but specifying TTCAN requires the provision of ex-
plicitly using time in the modeling language. With a view to
express time triggered properties we use a discrete time ver-
sion of Spin (DT-Spin). This extension allows one to quan-
tify discrete time elapse between events by specifying the
time slice in which they occur. Using DT-Spin we have been
able to model TTCAN, and subsequently, verify a few of its
time-triggered properties. This experience shows that it is
possible to largely model TDMA-based protocols using dis-
crete time.

1 Introduction

Model-checking techniques are increasingly being used
for debugging and proving correctness of finite-state con-
current reactive systems. Many different types of properties
of a system can be checked by these techniques: deadlocks,
dead code, unspecified receptions, buffer overruns, etc. In
this paper we present an application of model checking for
the analysis of a time triggered version of CAN protocol.
The Controller Area Network (CAN) [7, 10] is a high-speed
serial bus system with real-time capabilities, widely used
in embedded systems. It was developed by Robert Bosch
GmbH, a leading manufacturer of automotive equipment.
CAN has found extensive uses in automotive industries, in-
dustrial machineries, medical equipments, and even in some
domestic appliances.

The arbitrating mechanism of CAN protocol (in [12] a
comprehensive description of CAN protocol has been pre-
sented) ensures that all messages are transferred according
to the priority of their identifiers and the message with the
highest priority will not be disturbed. The next generation
vehicles and some mission critical subnetworks will require
additionally deterministic behavior in communication dur-

ing service. Even at maximum bus load, the transmission
of all safety related messages must be guaranteed. One way
to solve this issue using CAN is the extension of the stan-
dard CAN protocol to a time triggered protocol TTCAN [4].
The communication is based on the periodic transmission
of a reference message by a time master. This allows to
introduce a system wide global network time with high pre-
cision. Based on this time different messages are assigned
to different time windows within a basic cycle.

M. van Osch and S. C. Smolka [12] have formally spec-
ified the data link layer of the Controller Area Network
(CAN). They checked their specification against twelve im-
portant properties of CAN, eight of which are gleaned from
the ISO standard; the other four are desirable properties not
directly mentioned in the standard. Krakora and Hanzlek
have done a series of work on the verification of CAN Proto-
col using the framework of timed automata [9]. They model
the CAN protocol as a network of timed automata and prove
a few properties in UPPAAL. In other research [8] they
undertook a similar work where they model parts of the
distributed system (application SW, operating system and
communication bus) by automata which use synchroniza-
tion primitive enabling their interconnection. Leen and Hef-
fernen have carried out a formal specification and verifica-
tion of TTCAN using the UPPAAL model checker [11]. A
model of TTCAN was created using UPPAAL system edi-
tor. Models of three TTCAN network nodes and the phys-
ical medium were designed, while nine formal properties
including deadlock were examined using the UPPAAL ver-
ification engine.

In this paper, we report a concise yet formal specifica-
tion of the time triggered version of CAN Protocol [4] and
the results of a number of verification experiments we have
performed on the protocol. Our analysis of the protocol
was performed using the model checker Spin [6]. Model-
ing of TTCAN requires one to express time explicitly and
towards that we use a Discrete time version of Spin (DT-
Spin) [1, 2]. This extension lets one quantify discrete
time elapsed between events by specifying the time slice in
which they occur. Using DT-Spin we specify TTCAN and



verify a few of its time-triggered properties. Our modeling
approach demonstrates the potential of DT-Spin to model
TDMA-based protocols like TTCAN.

2 Modeling TTCAN in DT-Spin

Time triggered communication in TTCAN is based on
the reference message being transmitted regularly by the
time master. Following the reference message there is a
sequence of time windows of variable sizes that provide
the time slots for individual message transmissions. Since
the cyclic transmission schedule is synchronized by the re-
peated transmission of the reference message transmitted
by the time master we assume that this message restarts the
cycle time. In our model, the cycle time is captured by a
timer basiccycle which is set to an arbitrary length of 16
time units in the init process.

In our model there is one Time Master master which has
a single writebuffer and a single readbuffer. In TTCAN
more than one Time Master are predefined to establish fault
tolerance and functionality. A start-up algorithm picks up
only a Time Master among all the potential time masters
and it does not change unless the current Time Master de-
velops a fault within itself. In this work we do not address
the start-up issues of TTCAN protocol. We are only inter-
ested in the operation of TTCAN when the network is sta-
ble and the Time Master is working properly. Under these
circumstances it is enough to consider one Time Master
only. There are three other controllers modeled by an array,
controller[0], controller[1] and controller[2]. In the basic
model, all these controllers have a single readbuffer and a
single writebuffer. The readbuffer and the writebuffer are
of the datatype Msg which contains two data fields: msgid
denoting the message identity, and destination denoting the
controller which the message is meant for. The bus is mod-
eled as a datatype containing three fields: msgid, source de-
noting the source of the message, and destination denoting
the destination of the message.

The reference message is represented by the msgid 0.
We assume that there are six messages with msgid ranging
from 1 to 6. We arbitrarily assign these messages to the
three controllers: controller[0] can send messages with ms-
gid 1 and 6, controller[1] messages with msgid 3 and 5,
and controller[2] messages with msgid 2 and 4. The max-
value (=7) represents that no message exists in the write-
buffer of a controller or in the bus. The number of messages
are kept lower to get rid of state space explosion problem.
We assume that the master is responsible only for sending
the reference message, it does not send or receive any other
messages. In the init process, the message with msgid O
is written in the msgid data field in writebuffer of the mas-
ter. For the other three controllers, appropriate messages
are generated randomly. In the beginning of a new basiccy-
cle a function startbasiccycle writes a message with msgid

0 in the writebuffer of the master. If only the msgid of the
writebuffer of any controller is maxvalue (i.e., there is no
message to write for that controller), then a new message is
generated in the writebuffer of that controller.

Now we describe how we design different time windows
within a basiccycle. In the design of the TTCAN protocol,
the system designer enjoys enough freedom to decide on
the number of time windows and their sizes. An off-line
design tool is used to analyze the communication pattern,
so that no conflict will happen. DT-Spin can be used to ex-
press temporal and causal relationships between two events
in an interval of discrete time, i.e., we can say two events A
and B occur in an interval [i,7 + 1], ¢ > 0, or event A trig-
gers event B in the same interval. We use this fact to model
TTCAN in DT-Spin [1, 2]. The main challenge in model-
ing protocols like TTCAN is to formally specify the time
windows so that events in different windows should occur
in a deterministic manner. We use the set-expire construct
of DT-Spin to model a window. To model a basiccycle with
n windows wl, w2, ... wn, we require n+1 timers - one to
represent the basiccycle itself, and n timers to represent the
duration of n windows. The basic window has a duration
of d time-unit, and this basiccycle is divided among n win-
dows with duration d1, d2,.... dn. We model the basiccycle
as follows.We represent the timer corresponding to the ba-
siccycle as bc, and that corresponding to the n windows as
tmrl, tmr2,...tmrn.

do
:: (be>0) && (bc<=d) ->
atomic{
if
:: ((be>=d-d1+1) && (bc<=d) ) ->
set (tmrl, di);

// sequential statements for window wil

expire (tmrl) ;
: ((be>=d-d1-d2+1) && (bc<d-d1+1)) ->
set (tmr2, d2);

// sequential statements for window w2

expire (tmr2) ;

:: ((be>0) && (bc<d-d1-d2-
set (tmrn, dn);

// sequential statements for window wn

expire (tmrn) ;
else->
fi;
}

od

Modeling of the consecutive windows in this way ensures
that the events occurring in one window will not be inter-
leaved with those belonging to another window, because

-d(n-1)+1))->



tmrl can only expire if all the sequential statements of win-
dow w1 have been executed, and timer tmr2 is set once tmrl
expires.

We have designed the windows in a basiccycle in such a
way that all the features of TTCAN can be properly spec-
ified. We have assumed delays for individual controllers
which have been accommodated suitably by the length of
each exclusive slot. The basiccycle has been divided into
five time windows of different sizes mentioned below.

e The first window, where basiccycle decrements from
16 to 13, is made as an exclusive window for the mas-
ter. In this slot it writes the reference message to the
bus, other controllers read the reference message from
the bus.

e The second window, ranging from 12 to 9 time units is
designed as an exclusive slot for controller[1] where
it writes the message on the bus that it wants to send.
This is followed by the controller reading of the bus,
for whom the controller[ 1] has written.

e The third window is kept free for future use. This free
slot ranges from time units lower than 9 to 7.

e The fourth window is designed as an arbitrating win-
dow where basiccycle goes down from lower than 7
to 4. Here the controllers compete to write to the bus
and the winner is determined by the arbitration proce-
dure. During the arbitration the controller with mini-
mum msgid is selected as the winner, and is allowed to
write to the bus. The message is read from the bus by
the destination controller in the same time slot.If there
is no controller ready to write to the bus then the flag
nowinnerflag is set, thus nothing happens in this slot.

o The fifth or last time slot with basiccycle time ranging
from lower than 4 to 0 is designed as the exclusive slot
for controller[2]. The operation in the slot is same as
in the second slot.

Note that there is no exclusive slot for controller[0]. This
is done intentionally, for it is required for the validation of
some properties.

Remote Data Request. The model for Remote Data Re-
quest has been developed by enhancing the basic model. In
the Msg datatype two new fields are introduced: a bit re-
quest which indicates whether a controller wants to send a
message or wants to request for a message, and a request-
edmsgid holding the msgid of the message requested. In
the first basiccycle there is no requested message. In the
beginning of next basiccycles the startbasiccycle function
initially checks for every controller whether it has some
message to send or request for. Otherwise it determines
whether a controller wants to send a message, or wants to

request for a message, the data field request of the write-
buffer of the controller is made 0 or 1 accordingly. A con-
troller sends a request for a message only if it has already
received its previously requested message. In the exclusive
slot for a controller, if the controller has to send any re-
quest then it writes the requestedmsgid from its writebuffer
to the bus. Also, it writes the requested message id in the re-
questedmsgid field of its readbuffer. The request field of its
readbuffer is made 1. If the msgid of the writebuffer of the
requested controller is different from maxvalue then the re-
quest is dropped. Otherwise the msgid of the bus (requested
message id) is copied in the msgid of the writebuffer of the
requested controller. The content of the source field of the
bus is written in the destination field of the writebuffer of
the requested controller. In the arbitration slot the winner
performs the same operation as that of a controller in its
exclusive slot. Only the arbitration is modified, requested
messages get more priority than the general messages.

When a controller receives a message, it checks whether
the received message is same as the message it requested
previously. It does so by checking whether the received ms-
gid is equal to requestedmsgid of its readbuffer. If it is so,
then it makes the request field of the readbuffer 0.

Error Handling. Corrupt messages may occur due to
signal dispersion during propagation along the bus line. If a
controller detects an error in a message it is currently receiv-
ing, it will cease the reception of that message and transmits
an error flag. The way we model the error handling is that in
each slot after the transmission of a message, the bus is ran-
domly given a status ( a boolean variable), ok or corrupt.
In the case of a normal message transmission, if the message
is corrupt, then the msgid of readbuffer of the receiving con-
troller is set to maxvalue, and the flag errorflag is set to 1.
The msgid data field of the writebuffer of the sender of the
corrupt message does not change, as it tries to resend the
same message in an arbitration slot in the same basiccycle
or in the next basiccycle. In case of Remote Data Request,
the receiver of the corrupt message simply sets the errorflag
to 1.

Fault Confinement. To model fault confinement, three
new data fields have been introduced in the datatype Node:
tec (denoting the transmit error counter), rec (denoting the
receive error counter) and status. The value of the sta-
tus field is 0, 1 or 2, depending on whether a controller is
in error-active, error-passive or bus-off state. In the init
process these three data fields are set to O for all the con-
trollers, as all the controllers starts in error-active condi-
tion. If a data transmission is in error, the value of tec of
the source controller, and rec of the controller receiving the
transmitted data are increased by 1. The status field of the
controllers is updated according to the value of their tec or
rec field. After a successful message transmission the value
of tec of the source controller and the value of rec of the



destination controller is decremented by 1, provided their
value is greater than 0. If the status of any controller is 2 (in
bus-off state), then in the startbasiccycle procedure the ms-
gid and requestedmsgid fields of writebuffer are set to max-
value so that they cannot participate in any data transmis-
sion. The arbitration procedure has been changed to model
the fact that the controllers which are error-passive can only
write to the bus if no error-active controller wants to write
to the bus. In this procedure, first, error-active controllers
are checked whether they want to transmit or request a mes-
sage. If no such error-active controller is present then error-
passive controllers take part in arbitration. Also, if there is
an error then only error-active controller can transmit the
errorflag.

Fault-Tolerance. Fault-tolerance of TTCAN has been
modeled enhancing the model for Error Handling. In this
model, Master and Node datatype contains a new field bus-
corruptflag. Two buses are named busl an bus2. If the
buserrorflag for any controller is 0, it transmits its mes-
sage through bus], if the flag is 1, then the controller sends
its message through bus2. When a transmission is in error,
then if the flag buscorruptflag of the source controller of the
corrupted message is 0, then it in set to 1, and when the con-
troller gets chance for the next time (either by winning in an
arbitration slot or in its exclusive slot in the next basiccy-
cle), it transmits the same message through bus2. If the flag
buscorruptflag for a controller is 1 while its sent message is
corrupted, then the flag is set to 0, and the message is dis-
carded by writing maxvalue in the msgid or requestedmsgid
field in the writebuffer of that controller.

3 Verification of Properties of TTCAN

We construct five models of TTCAN in DT-Spin - basic
model, basic model with remote request, basic model with
error handling, basic model with fault confinement and ba-
sic model with fault tolerance. We checked for the specifi-
cation of properties that are gleaned from the properties of
the original CAN protocol from ISO 11898.

Progression of Time (POT) Naturally we would like to
avoid situations when the passage of time is blocked
(referred to as zero cycle Bosnacki and Dams [1]).
This property should be verified to check the sanity of
the model.

Starvation Freedom Properties We checked a few starva-
tion freedom properties for the master and the dedi-
cated node in a particular exclusive slot.

Starvation Freedom for the Time Master (SF1) In
the first slot the time master eventually writes to the
bus.

Starvation Freedom for the for the controller for
which slots have been allocated in the basic cycle

(SF2) We check two properties: in the second slot con-
troller([ 1] eventually succeeds in writing to the bus; in
the fifth slot controller[2] eventually succeeds in writ-
ing to the bus.

Starvation Freedom for the deprived node (SF3)
Controller[0] eventually writes to the bus.

Data Consistency (DC) In the first slot all controllers
eventually read whatever Time Master writes to the
bus.

Bus Off (BO) In the third slot (Free Slot) no controller
writes any message to the bus.

Bus Access Method (BAM) In the fourth slot (Arbitration
Slot) either the bus is idle or the message with the high-
est priority gains access to the bus.

Automatic Retransmission (AR) A node that has lost ar-
bitration will attempt to retransmit its message in the
immediate next basic cycle.

Remote Data Request (RDR) If a node sends a remote
data request, another node eventually provides an an-
swer to the request.

Error Signaling (ES1) A corrupted frame is eventually
flagged by the receiver of the frame.

Error Signaling (ES2) A corrupted frame is eventually
flagged by the receiver controller if the controller is
error active.

Fault Tolerance (FT1) In a basiccycle if busl becomes
corrupt for transmission from a controller then the con-
troller sends the same message on bus2 in the next ba-
siccycle.

Fault Tolerance (FT2) In a basiccycle if bus2 becomes
corrupt for transmission from a controller then the
message is discarded, and a fresh message is transmit-
ted through bus] in the next basic cycle.

Each of these properties was encoded in SPIN using
the standard LTL constructs. POT is a recurrence property
while BO is an invariance property. SF1, SF2, DC, ESs
and FT1 are response properties. BAM, AR, RDR and FT2
are precedence properties while SF3 is a guarantee prop-
erty. For LTL formulas with the next X operator we used
the converter “ltl2ba” (which converts standard LTL formu-
las into PROMELA never claims) [5]. For the limitation of
space, we present only the LTL encodings of the property
Bus Access Method (BAM) below.

Bus Access Method (BAM)

O —rU{V $((sl As2)Uq)))
p = basiceycle < 7, q = basiccycle >=
4, r = basiccycle! = 0, t =



pro- | basic | basic + | basic+ | basic+ | basic+
per- remote | remote | remote | remote
ties req. req. + | req.+ | req. +
error fault fault
handl. | confin. | toleran.
POT Yes Yes Yes Yes Yes
SF1 Yes Yes Yes Yes Yes
SF2 Yes Yes Yes Yes Yes
SF3 No No No No No
DC Yes Yes Yes Yes Yes
BO Yes Yes Yes Yes Yes
BAM | Yes Yes Yes Yes Yes
RDR NA No No No No
AR Yes Yes Yes Yes Yes
ES1 NA NA Yes Yes Yes
ES2 NA NA NA Yes NA
FT1 NA NA NA NA Yes
FT2 NA NA NA NA Yes

Table 1. Verification Results for TTCAN

nowinner flag == 1, s1 =  busl.msgid ==
controller[winner].writebu f fer.msgid,
52 = busl.destination ==
controller|winner].writebuf fer.destination.

In LTL O stand for “always”, <> stands for “eventually”,
and U stands for “strong until”.

3.1 Verification results

The results of verification runs are presented in Table 1.
An entry of “Yes” indicates that the given property holds
of the given specification while an entry of “No” indicates
otherwise. AN entry of “NA” indicates that the property
was not relevant to the specification in question.

Our model does not suffer from any deadlock as it does
not get into a zero cycle. The guaranteed timeliness prop-
erty of TTCAN ensures the validity of starvation freedom
properties like SF1 and SF2 and data consistency DC, while
bus access method BAM remains true of all the specifica-
tions as expected. The remote data request property (RDR)
can never be guaranteed to hold in our model as the destina-
tion node (for which the controller sends the message) may
not always be able to write to the bus during a basiccycle as
either it has to compete with other nodes or it may not en-
joy the exclusive privilege to write to the bus in a slot. Error
signalling and fault tolerance properties hold in the appro-
priate models. We also study the effect of guaranteed fair
data transmission. It is captured by the following fairness
property: every node attempting to write a message to the
bus eventually succeeds in doing so, in other words, it is al-
ways the case that all the write buffers eventually become
empty. These are modeled by Starvation Freedom proper-

ties. Our results show that this property is valid only for the
controllers for which exclusive slots are provided.

4 Conclusion

Although we have considered a much simplified (level
1) design of TTCAN [4] in future we aim to add more com-
plexities to the protocol design before formally analyzing it
which can include an analysis of the startup algorithm of the
protocol. Towards that we can use timeout based models [3]
for synchronization of different events during start-up using
discrete timers which can be easily captured by DT-Spin.

As observed earlier, our specifications are parameterized
by the number of controllers in the network and the number
of distinct message identifiers. In future we plan to verify
these properties on parameterized versions of specifications
using inductive techniques.
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