
Specification Guided Automated Synthesis of Feedback
Controllers

NIKHIL KUMAR SINGH, IIT Kanpur, India

INDRANIL SAHA, IIT Kanpur, India

The growing use of complex Cyber-Physical Systems (CPSs) in safety-critical applications has led to the de-

mand for the automatic synthesis of robust feedback controllers that satisfy a given set of formal specifications.

Controller synthesis from the high-level specification is an NP-Hard problem. We propose a heuristic-based

automated technique that synthesizes feedback controllers guided by Signal Temporal Logic (STL) specifi-

cations. Our technique involves rigorous analysis of the traces generated by the closed-loop system, matrix

decomposition, and an incremental multi-parameter tuning procedure. In case a controller cannot be found to

satisfy all the specifications, we propose a technique for modifying the unsatisfiable specifications so that the

controller synthesized for the satisfiable subset of specifications now also satisfies the modified specifications.

We demonstrate our technique on eleven controllers used as standard closed-loop control system benchmarks,

including complex controllers having multiple independent or nested control loops. Our experimental results

establish that the proposed algorithm can automatically solve complex feedback controller synthesis problems

within a few minutes.

CCS Concepts: • Computer systems organization→ Embedded systems, Cyber Physical Systems; •
ComputingMethodology→Modelling and Simulation, Matrix Decomposition, Multi-parameter Optimization;
• Software and its engineering→ Formal Methods.

Additional Key Words and Phrases: Feedback control, controller synthesis, multi-parameter tuning, parametric

signal temporal logic, falsification

ACM Reference Format:
Nikhil Kumar Singh and Indranil Saha. 2021. Specification Guided Automated Synthesis of Feedback Controllers.

In EMSOFT ’21: EMSOFT ’21: ACM SIGBED International Conference on Embedded Software (EMSOFT), October
10–15, 2021, Virtual Conference. ACM, New York, NY, USA, 25 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Modern cyber-physical systems (CPSs) are used in many safety-critical applications such as trans-

portation, agriculture, medical devices, smart grids, space explorations, to name a few. Most

cyber-physical systems involve sophisticated feedback controllers for regulating the behavior of the

physical processes. The overall efficiency and correctness in the CPS behavior depend significantly

on the performance of the feedback controllers.

The CPSs used in safety-critical applications need stringent correctness guarantees on their

behavior. Formal verification techniques based on translating a closed-loop system to hybrid

This article appears as part of the ESWEEK-TECS special issue and was presented in the International Conference on

Embedded Software (EMSOFT), 2021.

Authors’ Address: N. K. Singh and I. Saha. Department of Computer Science and Engineering, Indian Institute of Technology

Kanpur, Uttar Pradesh 208016, India. Email: {nksingh,isaha}@cse.iitk.ac.in.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

EMSOFT ’21, October 10–15, 2021, Virtual Conference
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/10.1145/1122445.1122456

1

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

EMSOFT ’21, October 10–15, 2021, Virtual Conference Nikhil Kumar Singh and Indranil Saha

automata and then performing reachability analysis can provide guarantees on the behavior of the

closed-loop system with respect to safety properties [7]. However, there are different classes of

properties, often involving timing constraints, that are beyond the scope of this approach. For such

specifications, runtime monitoring and falsification based methodologies [5] are employed to gain

confidence in the feedback controller. A major deficiency of the formal and semi-formal verification

methodologies is that they provide almost no guidelines on how to improve the feedback controllers

so that the verification of the closed-loop system succeeds with respect to the formal specifications.

An alternative to formal verification for ensuring the reliability of safety-critical systems is the

automated synthesis of the system from a set of formal specifications. In the context of CPS, the

synthesis problem is the following: Given a physical process and a set of formal specifications,

could we synthesize a feedback controller so that the closed-loop system would satisfy all the

specifications? Synthesis of feedback controllers has been widely studied in control theory, where

the form of the controller is decided first, and then the parameters of the controller are tuned

based on some experimental procedure to ensure that the controller provides satisfactory closed-

loop behavior. For example, the widely used PID controller has parameters corresponding to the

proportional, integral, and derivative gains, which can be tuned using the well-established Ziegler-

Nichols method [38] or other tuning methodologies [4, 52]. Although MATLAB provides a PID tuner

that lets us choose optimal PID values, this lacks on the following counts. First, it only uses a

qualitative notion of performance and robustness for tuning, while specifications in CPSs are

versatile and complex. Second, it still requires manual intervention to provide a balance between

the two metrics.

Of late, there have been significant efforts towards formalizing specifications of the closed-loop

control system as signal temporal logic (STL) formulas [25]. This enables us to use STL formulas

as formal specifications for synthesizing feedback controllers for CPSs. While feedback controller

synthesis is a well-researched area, to the best of our knowledge, synthesizing them to satisfy a set

of signal temporal logic specifications has not been addressed in the literature yet.

In this paper, we propose a technique for controller synthesis for complex nonlinear systems using

specifications given in STL. This technique is based on rigorous analysis of the controller parameters

involved in the generation of control inputs. Often the controller synthesis involves tuning of

multiple parameters. We tune different parameters over successive iterations by selecting which

parameter has the most impact on the specification violation at that moment. Hence, we provide

an incremental and iterative parameter tuning based controller synthesis algorithm. Moreover, it

is worth mentioning that this technique is not limited to any particular class of controllers (as in

the case of the MATLAB PID tuner) but is applicable to all parameterized controllers. In case a

feedback controller that satisfies all the specifications cannot be synthesized, i.e., our algorithm

stops without finding a solution, we identify the maximal subset of the specifications that can be

satisfied by a controller. Then, we adjust the parameters of the unsatisfied specifications so that the

closed-loop system with the synthesized controller satisfies them now.

We demonstrate the effectiveness of our method by synthesizing controllers (even complex

ones having multiple nested control loops) that satisfy a set of complex STL specifications. Our

experimental results establish that our proposed technique can synthesize feedback controllers for

complex nonlinear systems within a few minutes.

Our contribution can be summarised as follows:

• We present an algorithm for synthesizing multi-parameter complex feedback controllers

for cyber-physical systems to enable them to satisfy a given set of signal temporal logic

specifications. To the best of our knowledge, this is the first work that synthesizes parameter-

based feedback controllers that satisfy a set of complex STL specifications.

2

Specification Guided Synthesis of Feedback Controllers EMSOFT ’21, October 10–15, 2021, Virtual Conference

Fig. 1. A closed-loop control system

• In case our algorithm cannot synthesize such a controller, we find a maximal subset of the

specifications that can be satisfied by a synthesized controller. Then, we tune the parameters

of the unsatisfied specifications so that the closed-loop system with the synthesized controller

satisfies all specifications. Thus, we provide a complete controller design solution involving

both controller parameter tuning and specification mining.

• We implement our algorithm in a MATLAB based automated tool. We apply our software

to synthesize the feedback controller in the form of a parameterized controller for eleven

systems, including complex nested/cascaded/multi-loop controllers.

2 PROBLEM
2.1 Preliminaries
2.1.1 Closed-loop Control System with Parameterized Controller. In a closed-loop control system

(CCS), the output of the system is used to generate control input that is applied to the system

to regulate its behavior. Open-loop systems often either are not stable or do not satisfy desired

properties. Control engineers design feedback controllers for open-loop systems so that the closed-

loop system becomes stable and also satisfies many desired properties. In Figure 1, a block diagram

of a closed-loop system is shown, where the plant P with state vector 𝜒 (𝑡) generates the output
𝜉 (𝑡) according to the following dynamical equations:

¤𝜒 (𝑡) = 𝑓 (𝜒 (𝑡), 𝜐 (𝑡)), (1)

𝜉 (𝑡) = 𝑔(𝜒 (𝑡)) . (2)

Here 𝜐 (𝑡) denotes the continuous-time control signal applied to the plant. To generate the control

signal, the output of the plant is fed to an A/D converter. The output of the A/D converter is the

discrete-time output signal 𝑦𝑡 , which is fed to the controller C along with a discrete-time reference

signal with value 𝑟𝑡 at time 𝑡 . The discrete-time control signal 𝑢𝑡 is processed through a D/A

converter that produces the continuous-time control signal 𝜐 (𝑡).
The feedback controller C may contain multiple parameters denoted as vector P. The control

generated by this controller is given by

𝑢𝑡 = 𝑘P (𝑦𝑡 , 𝑟𝑡). (3)

Here, 𝑘P is the controller function with a parameter vector P whose size is equal to the number of

parameters in the controller. For example, in the case of a PID controller 𝑘P would be a vector of

three elements - the proportional, integral, and derivative gains [52].

The model of a CCS (M) is defined as the composition of the controller and the plant, i.e.,

M = P ◦ C, (4)

where ◦ denotes the synchronous side-by-side composition with feedback [16]. We denote the

state of the systemM at time 𝑡 by 𝑧𝑡 ∈ Z, where 𝑧𝑡 = (𝑟𝑡 , 𝑦𝑡) andZ denotes the statespace of the

system. A trace 𝜔 = (𝑧0, 𝑧1, . . .) is defined as the sequence of states of the system evolving with

discrete time-steps. We use L(M) to denote the set of all traces ofM.

3

EMSOFT ’21, October 10–15, 2021, Virtual Conference Nikhil Kumar Singh and Indranil Saha

High-Level
Controller

Low-Level
Controller QuadcopterTrajectory

Fig. 2. A model of PX4 AutoPilot [37] for a quadcopter, the low-level controller here runs in a cascaded loop

A closed-loop control system can be highly complex, representing very powerful CPSs. The

controllers for such systems may have multiple simpler controllers nested or cascaded to generate

a more complex control. For instance, Figure 2 shows the block diagram of standard PX4 autopilot

for a quadcopter [37], where there are two controllers in a cascaded loop - one controls the position

and the other controls the orientation. Tuning the parameters of such controllers is a challenging

task. We have used several such controllers in our experiments (refer to Section 4).

2.1.2 Signal Temporal Logic. Signal Temporal Logic (STL) [30] is an extension overMetric Temporal

Logic (MTL) [27] and Linear Temporal Logic [41]. It consists of real-time predicates over the signals.

It provides us the capability to reason about the real-time properties of signals (simulation traces).

The syntax of an STL specification 𝜙 is defined by the grammar

𝜙 = true | 𝜋 | ¬𝜙 | 𝜙1 ∧ 𝜙2 | 𝜙1𝑈𝐼 𝜙2, (5)

where 𝜋 ∈ Π, Π is a set of atomic predicates, and 𝐼 ⊆ R+ is an arbitrary interval of non-negative real

numbers. The operators ¬ and ∧ denote logical NOT and AND operators. Other logical operators

like logical OR (∨) or implication (=⇒) can be derived using ¬ and ∧. The temporal operator

𝑈𝐼 (until) implies that 𝜙2 becomes true within the time interval 𝐼 and 𝜙1 must remain true until
𝜙2 becomes true. Two other popular operators are eventually (♢𝐼) and always (□𝐼), which can be

derived from the operators defined above. The formula ♢𝐼 𝜙 means that the formula 𝜙 will be true
sometime in the time interval 𝐼 . The formula □𝐼 𝜙 means that the formula 𝜙 will always be true in
the time interval 𝐼 . We use the temporal operators𝑈 , ♢ and □ to denote the operators𝑈𝐼 , ♢𝐼 and □𝐼
with the time interval 𝐼 to be [0,∞).
Robustness Semantics of STL: The robustness semantics of STL used in this paper is defined in [15].

We use Euclidean metric as the norm to measure the distance 𝑑 between two values 𝑣, 𝑣 ′ ∈ R, i.e.,
𝑑 (𝑣, 𝑣 ′) =∥ 𝑣 − 𝑣 ′ ∥. Let 𝑣 ∈ R be a value, 𝐴 ⊆ R be a set. Then the signed distance from 𝑣 to 𝐴 is

defined as:

Dist(𝑣, 𝐴) =
{

𝑖𝑛𝑓 {𝑑 (𝑣, 𝑣 ′) | 𝑣 ′ ∉ 𝐴} if 𝑣 ∈ 𝐴,
−𝑖𝑛𝑓 {𝑑 (𝑣, 𝑣 ′) | 𝑣 ′ ∈ 𝐴} if 𝑣 ∉ 𝐴.

(6)

Intuitively, Dist(𝑣, 𝐴) measures how far a value 𝑣 is from the violation of the inclusion in the

set 𝐴. In both cases, we search for the minimum distance between 𝑣 and a point on the boundary

of 𝐴. As2 the case 𝑣 ∉ 𝐴 refers to a violation, and thus the negative sign is used in the definition.

We use O : Π → 2
Z
to denote the mapping of a predicate 𝜋 to a set of states. Given a trace

𝜔 = (𝑧0, 𝑧1, . . . , 𝑧𝑡 , . . .) and the mapping O, we define the robust semantics of 𝜔 w.r.t. 𝜙 at time

𝑡 ∈ R, denoted by [[𝜙]] (𝜔, 𝑡), by induction as follows:

[[true]] (𝜔, 𝑡) = +∞, (7a)

[[𝜋]] (𝜔, 𝑡) = Dist(𝑧𝑡 ,O(𝜋)), (7b)

[[¬𝜙]] (𝜔, 𝑡) = −[[𝜙]] (𝜔, 𝑡), (7c)

[[𝜙 ∧𝜓]] (𝜔, 𝑡) = min([[𝜙]] (𝜔, 𝑡), [[𝜓]] (𝜔, 𝑡)), (7d)

[[𝜙 𝑈𝐼 𝜓]] (𝜔, 𝑡) = sup

𝑡 ′∈𝑡+𝐼
min([[𝜓]] (𝜔, 𝑡 ′), inf

𝑡 ′′∈[𝑡,𝑡 ′]
[[𝜙]] (𝜔, 𝑡 ′′)). (7e)

4

Specification Guided Synthesis of Feedback Controllers EMSOFT ’21, October 10–15, 2021, Virtual Conference

If [[𝜙]] (𝜔, 𝑡) ≠ 0, its sign indicates the satisfaction status. Also, if 𝜔 satisfies 𝜙 at time 𝑡 , any

other trace 𝜔 ′ whose Euclidean distance from 𝜔 at time 𝑡 is smaller than [[𝜙]] (𝜔, 𝑡) also satisfies 𝜙
at time 𝑡 . The robustness metric [[𝜙]] maps each simulation trace 𝜔 to a real number 𝜌 . Intuitively,

the robustness of a trace 𝜔 ∈ L(M) with respect to an STL formula 𝜙 is the radius of the largest

ball centered at trace 𝜔 that we can fit within L𝜙 , where L𝜙 is the set of all signals that satisfy 𝜙 .

Falsification: We define the falsification problem as follows: For a given systemM, a specification

𝜙 , and a simulation time 𝑇 , find 𝜔̄= ⟨𝑧0, 𝑧1, . . . , 𝑧𝑇 ⟩ such that 𝜔 = (𝑧0, 𝑧1, . . . , 𝑧𝑇 , . . .) ∈ L(M) and
[[𝜙]] (𝜔, 𝑡) < 0. This is generally captured as an optimization problem:

𝜔∗ = arg min

𝜔 ∈L(M)
[[𝜙]] (𝜔̄), (8)

where, we define [[𝜙]] (𝜔̄) as the minimum robustness of trace 𝜔̄ w.r.t. 𝜙 .

2.1.3 Parameteric Signal Temporal Logic. A Parameteric Signal Temporal Logic (PSTL) [2] formula

is an STL formula template where the numeric constants are represented by symbolic parameters.

Let us denote the parameters as 𝑝 = (𝑝1, ...𝑝𝑛), where 𝑝 ∈ R𝑛 . Let 𝜋 denotes numerical predicates

of the form 𝑓 (𝑧𝑡) < 𝑐 . The syntax of a PSTL specification 𝜙 is defined as:

𝜙𝑝 = 𝜋 | ¬𝜙𝑝 | 𝜙𝑝 ∧ 𝜙𝑝 | 𝜙𝑝 𝑈 [𝜏1,𝜏2] 𝜙𝑝 . (9)

By substituting the value 𝜈 (𝑝) ∈ R𝑛 for the parameters 𝑝 in a PSTL formula 𝜙𝑝 , we get an STL

formula 𝜙𝑝 (𝑝 = 𝜈 (𝑝)). Different values of these parameters give us different signals that satisfy the

PSTL specification.

The valuation 𝜈 (𝑝) is called a 𝛿-tight valuation, if a small perturbation in 𝜈 (𝑝) makes the PSTL

specification unsatisfiable w.r.t.M i.eM ⊭ 𝜙𝑝 (𝑝 = 𝜈 (𝑝) + 𝛿) orM ⊭ 𝜙𝑝 (𝑝 = 𝜈 (𝑝) − 𝛿). This is
important because valuations of the too relaxed parameters correspond to STL specifications with

less restrictive constraints.

The polarity 𝜁 (𝑝, 𝜙) of a parameter 𝑝 w.r.t. a PSTL formula 𝜙 is positive if increasing the value of

𝑝 increases the robustness of satisfaction of 𝜙 and negative otherwise. A formula 𝜙 is monotonic
w.r.t given parameters if all the parameters are of fixed polarity [2].

2.1.4 Standard specifications for a CCS. A closed-loop control system has several desired specifica-

tions, such as settling time, rise time, convergence, maximum overshoot, and smoothness. The goal of
synthesizing a feedback controller 𝑘P for a plant P is to find the values of the parameters P in such

a way that the closed-loop systemM satisfies all the specifications. Recently, Kapinsky et al. [25]

have provided the templates of the specifications in STL. We use them as the formal specifications

while synthesizing a feedback controller for a plant. The template STL specifications are presented

below. Each specification consists of predicates on output 𝑦𝑡 produced by plant P under the control

of C. The reference signal is denoted by 𝑟𝑡 . We consider step signal as the reference input pattern
in defining the template STL specification as step-response is routinely used to characterize the

behaviour of the closed-loop control system. We assume that step takes place at 𝑡 = 0 (step-time).

• Settling time. It is defined as the time taken by the output of the CCS to enter and remain

within a specific error band (𝜖1). Formally, □[𝜏𝑠 ,𝑇] (|𝑦𝑡+𝛿1
−𝑦𝑡 | < 𝜖1), where, 𝜏𝑠 is the settling time,

𝑇 refers to the time when the simulation ends and 𝛿1 is a small time offset.

• Rise time. It is defined as the time required (𝜏𝑟) for the output signal 𝑦𝑡 to reach 𝛽-times

(0 < 𝛽 ≤ 1) of its final value from its initial value, i.e., ♢[0,𝜏𝑟] (𝑦𝑡 > 𝛽 · 𝑟𝑡).
• Convergence. This specification ensures that the actual output 𝑦𝑡 converges with the desired

output 𝑟𝑡 within a specified time (𝜏𝑐) and range (𝜖2), i.e., ♢[0,𝜏𝑐]□(| (𝑦𝑡 − 𝑟𝑡 | < 𝜖2).
• Overshoot. This specification enforces a bound on the output exceeding its final, steady-state

value. Formally, □(𝑦𝑡 < 𝛼 · 𝑟𝑡), where 𝛼 enforces the bound.

5

EMSOFT ’21, October 10–15, 2021, Virtual Conference Nikhil Kumar Singh and Indranil Saha

• Smoothness This condition ensures that there are no sharp changes (spikes) in the output

signal values. This is because sharp changes can lead to unacceptable system performance. This

sharp change is specified by slope 𝜇 (w.r.t time-shift 𝛿2) in the following specification. Formally,

□(¬((𝑢𝑝) ∧ ♢[0,𝜏𝑠𝑚] (𝑑𝑜𝑤𝑛))), where, 𝑢𝑝 :=
(𝑦𝑡+𝛿

2
−𝑦𝑡)

𝛿2

> 𝜇, 𝑑𝑜𝑤𝑛 :=
(𝑦𝑡+𝛿

2
−𝑦𝑡)

𝛿2

< −𝜇. Here, 𝜏𝑠𝑚 is

the width of the spike.

The reason of using step-time 𝑡 = 0 for our step-response input is simplification. Consider the case

of overshoot specification written with a generalised step-response of form "□[0,𝑇] (step(𝑟𝑡) =⇒
□(𝑦𝑡 < 𝛼 · 𝑟𝑡)". Now, the time for which the predicate step(𝑟𝑡) is false, the whole specification
remains true. This specification is violated only when predicate step(𝑟𝑡) is true and predicate

□(𝑦𝑡 < 𝛼 · 𝑟𝑡) is false. Thus, in our simplification, we use step-time 𝑡 = 0 and check the predicate

□(𝑦𝑡 < 𝛼 · 𝑟𝑡) for violation instead.

2.2 Problem Definition
The controller C is associated with a function 𝑘P, where P denotes the tuple containing the controller
parameters. We denote by P.𝜅 the 𝜅-th parameter of the controller. The controller C with the values

𝑝𝑣𝑎𝑙 for the parameters P is denoted by C[P← 𝑝𝑣𝑎𝑙].
An atomic specification 𝜙 represents an acceptable behaviour of a CCSM (for example, settling

time). The specification Φ for a CCS is given as the conjunction of several atomic specifications

𝜙1, 𝜙2, . . . , 𝜙𝑚 , i.e., Φ ≡ 𝜙1 ∧ 𝜙2 ∧ . . . ∧ 𝜙𝑚 . In some context, we also represent the specification

Φ as the set of all its atomic specifications, i.e., Φ = {𝜙1, 𝜙2, . . . , 𝜙𝑚}. Any subset {𝜙 ′
1
, 𝜙 ′

2
, . . . , 𝜙 ′

𝑙
}

of Φ is called a subspecification of Φ. Thus, for {𝜙 ′
1
, 𝜙 ′

2
, . . . , 𝜙 ′

𝑙
} ⊆ Φ, Φ′ = 𝜙 ′

1
∧ 𝜙 ′

2
∧ . . . ∧ 𝜙 ′

𝑙
is a

subspecification of Φ. Any atomic specification of Φ is a subspecification of Φ.
For an atomic specification 𝜙 to get satisfied byM, any trace 𝜔 ∈ L(M) should belong to the

language of 𝜙 , i.e., ∀𝜔 ∈ L(M), 𝜔 ∈ L𝜙 . However, for an atomic specification 𝜙 , if there exists a

trace 𝜔 ′ ∈ L(M) such that 𝜔 ′ does not belong to the language of 𝜙 , i.e., ∃𝜔 ′ ∈ L(M), 𝜔 ′ ∉ L𝜙 ,
then the modelM does not satisfy the atomic specification 𝜙 , and we writeM ̸|= 𝜙 . In such a

situation, our goal is to tune the controller parameters such that the system satisfies the specification.

Ideally, after the tuning process, we would likeM to satisfy all the atomic specifications in Φ.
However, after sufficient tuning of the controller parameters, if we fail to getM to satisfy an atomic

specification 𝜙 ′, then that may be due to the reason that 𝜙 ′ itself is not consistent with the other

atomic specifications in Φ. In that case, we attempt to tune the unsatisfied atomic specification 𝜙 ′

in such a way thatM with the tuned controller satisfying the other atomic specifications now also

satisfy modified 𝜙 ′.
The problems addressed in this paper are formally presented below.

Problem 1. For a given plant P, a template controller C with the set of parameters P, and a specifi-
cation Φ, find the values 𝑝𝑣𝑎𝑙 for the controller parameters in P such that the CCSM obtained

by composing P and C[P← 𝑝𝑣𝑎𝑙] satisfies Φ, i.e., mathematically, P ◦ C[P← 𝑝𝑣𝑎𝑙] |= Φ.
If there does not exist a valuation 𝑝𝑣𝑎𝑙 for P such that P ◦ C[P ← 𝑝𝑣𝑎𝑙] |= Φ, find the

maximal subspecification setΦ𝑚𝑎𝑥𝑠𝑎𝑡 ofΦ (Φ𝑚𝑎𝑥𝑠𝑎𝑡 ∈ 2
Φ
) and the values 𝑝𝑣𝑎𝑙 for the controller

parameters in P such that P ◦ C[P← 𝑝𝑣𝑎𝑙] |= Φ𝑚𝑎𝑥𝑠𝑎𝑡 .

Problem 2. For the unsatisfiable subspecification Φ𝑢𝑛𝑠𝑎𝑡 , given by Φ \ Φ𝑚𝑎𝑥𝑠𝑎𝑡 , find the revised

subspecification Φ𝑟 such that P ◦ C[P← 𝑝𝑣𝑎𝑙] |= Φ𝑚𝑎𝑥𝑠𝑎𝑡 ∧ Φ𝑟 .

2.3 Example
We illustrate the problem with an example of a Quadcopter-SISO (single-input single-output) CCS,

shown in Figure 3. This CCSM contains a PID controller [52] (light gray) which controls the

6

Specification Guided Synthesis of Feedback Controllers EMSOFT ’21, October 10–15, 2021, Virtual Conference

Fig. 3. Quadcopter-SISO model. The area in light gray represents the controller. The orange blocks represent
the tunable parameters. TheQuadcopter plant is represented in dark gray.

0 5 10 15 20 25 30

0

1

2

3

4

5

6

7

8

9

10

time

Z

Zref

0 5 10 15 20 25 30

−0.2

0

1

time

Boolean SAT

Robustness

Fig. 4. Falsification forQuadcopter-SISOmodel. In the figures, we plot the signals𝑍𝑟𝑒 𝑓 ,𝑍 and the satisfaction
(boolean and quantitative) for 𝜙 .

Quadcopter. The terms 𝐾𝑝 , 𝐾𝑖 , and 𝐾𝑑 refer to the gain constants associated with the proportional,

integral, and derivative terms.

The input to the controller is the reference Z-coordinate 𝑍𝑟𝑒 𝑓𝑡 . The Quadrotor is allowed to

move only along the Z-axis, and hence 𝑍𝑡 is the actual output. The PID controller generates the

control 𝑢𝑡 using the error signal 𝑒𝑡 = 𝑍𝑟𝑒 𝑓𝑡 −𝑍𝑡 . The input 𝑍𝑟𝑒 𝑓𝑡 can take any value between [1, 5]
during the simulation. The default values of 𝐾𝑝 , 𝐾𝑖 and 𝐾𝑑 are 5, 1, and 10, respectively.

Let us consider the following specification: The actual output 𝑍𝑡 converges to the desired output

𝑍𝑟𝑒 𝑓𝑡 (with error band 𝜖) within 𝜏 seconds. We express this as the following STL specification:

𝜙 = ♢[0,𝜏]□(|𝑍𝑡 − 𝑍𝑟𝑒 𝑓𝑡 | < 𝜖). (10)

When we simulate the model ofM w.r.t. 𝜙 with 𝜏 = 15 and 𝜖 = 0.1 for 30s, the specification

is falsified. The timestamps where specification violation occurs are those where the robustness

value is negative (refer to Figure 4). Here, we assume that the plant model is correct, and we want

to generate correct control signals for this plant such that the specification is satisfied. Thus, the

goal is to find the correct values for the controller parameters 𝐾𝑝 , 𝐾𝑖 , and 𝐾𝑑 . As we will see later,

the correct controller parameter values found using our algorithm that satisfies 𝜙 is (7.5, 1, 10).

Here, the increase in proportional gain makes the system more responsive to error and hence helps

achieve convergence faster.

We can monitor the simulation traces of the system for the specifications 𝜙 using various

tools [1, 14, 40]. In case of violation of a specification 𝜙 , the information provided by these tools

is not sufficient for fixing the controller. So, we need an automated procedure that can help us

tune the controller parameters ofM. In the next section, we propose an algorithm for controller
synthesis (Problem 1). We will also show how our basic algorithms can be extended to solve the

maximal satisfiable subspecification identification and subspecification repair (Problem 2) problems.

We will illustrate our algorithms using this example.

7

EMSOFT ’21, October 10–15, 2021, Virtual Conference Nikhil Kumar Singh and Indranil Saha

3 ALGORITHM
3.1 Controller Synthesis
3.1.1 NP-Hardness. The standard SOF (Static Output Feedback) stabilization problem in control

theory is a well-known NP-Hard problem [6]. This complexity result holds even for simple linear

systems with a gain parameter in the controller while considering the stability property. On the

other hand, in our controller synthesis problem, (a) we consider general nonlinear systems, (b)

our controller parameters are more general, and (c) the STL specifications that we consider are

more general than the stability property. Specifically, the convergence specification is stronger

than stability, as it requires the output signal to converge within a given time-bound. Hence, the

SOF problem can be reduced to our controller synthesis problem in polynomial time. This implies

that our controller synthesis problem is as hard as the original SOF problem. The above discussion

leads to the following theorem.

Theorem 3.1. [NP-Hardness] The controller synthesis problem (Problem 1) described in Section 2.2
is NP-Hard.

The above complexity result encourages us to explore heuristics based solutions like multi-

parameter tuning to solve the controller synthesis problem.

3.1.2 Controller Synthesis Algorithm. In this section, we present our controller synthesis algorithm

(Algorithm 1). The algorithm takes as input a plant P, a parameterized controller C, and an STL

specification Φ. Note that Φ can have two different meanings depending on the context - it can

represent an STL formula as a conjunction or as a set of the atomic specifications.

In our algorithm, we iteratively synthesize a new controller that, after each iteration, is in-

crementally better than the previous controller in terms of robustness of the specifications. A

parameterized controller consists of multiple tunable parameters. In each iteration, we identify the

parameter whose tuning has the potential to result in the maximum improvement in robustness

(w.r.t. specification). For this purpose, we use a matrix decomposition technique where we find the

most significant parameter corresponding to the largest singular value of the matrix that contains

the falsified portion of the traces associated with the controller parameters. As the chosen parameter

has the maximum contribution towards the falsification of the given specification, we focus on

tuning it in the current iteration.

We now describe the algorithm in detail. In line 2, we compose the plant P and the controller C
to generate the CCSM. In line 3, 𝜌𝑐𝑢𝑟 stores the current minimum robustness of the falsification

of the modelM w.r.t. Φ. In falsification, we uniquely identify the most critical point in the falsified

trace using the minimum robustness value. Most falsifiers return this value whenever a specification

is violated. In line 4, we store the default values of all the parameters of C in 𝑑𝑒 𝑓 𝑎𝑢𝑙𝑡_𝑣𝑎𝑙 . In line 6,

we initialize two parameters - 𝜕𝑙 and 𝜕𝑟 - in order to explore the values smaller and larger than

𝑑𝑒 𝑓 𝑎𝑢𝑙𝑡_𝑣𝑎𝑙 . The 𝑛𝑒𝑤_𝑣𝑎𝑙 variable stores the default values of controller parameters (line 7). In

lines 9-46, we run themain loop until we are able to generate new values for 𝜕. In our implementation,

we start with a default value of 𝜂 = 0.5 and update it (line 45) when necessary conditions are

satisfied.

In line 10, the select_parameter procedure gives us the index 𝜅 of the parameter which is the

largest contributor to the falsification of specification Φ. In lines 11-20, we find the minimum robust-

ness for two controllers (i.e. 𝜌𝑙 and 𝜌𝑟) - one with corresponding parameter larger than 𝑛𝑒𝑤_𝑣𝑎𝑙 [𝜅],
i.e., 𝑛𝑒𝑤_𝑣𝑎𝑙 [𝜅] ∗ 𝜕𝑟 , and the other with corresponding parameter smaller than 𝑛𝑒𝑤_𝑣𝑎𝑙 [𝜅], i.e.,
𝑛𝑒𝑤_𝑣𝑎𝑙 [𝜅] ∗ 𝜕𝑙 . Note that we simply check robustness for the controllers at the given values, but

we do not assign these values to the controller parameters. Such assignments only happen at line 27

and 37. Then, we check if either of those robustness values is positive, i.e., the specification Φ is

8

Specification Guided Synthesis of Feedback Controllers EMSOFT ’21, October 10–15, 2021, Virtual Conference

Algorithm 1: Controller Synthesis Algorithm

1 procedure controller_synthesis (P, C, Φ)
2 M ← P ◦ C
3 𝜌𝑐𝑢𝑟 ← min_robustness(M, Φ)

4 𝑑𝑒𝑓 𝑎𝑢𝑙𝑡_𝑣𝑎𝑙 ← get_parameter_values(C)
5 𝑚𝑎𝑥_𝑐𝑜𝑢𝑛𝑡 ← 0 ; Φ𝑚𝑥𝑙 ← ∅
6 𝜕𝑙 ← 1 − 𝜂; 𝜕𝑟 ← 1 + 𝜂
7 𝑛𝑒𝑤_𝑣𝑎𝑙 ← 𝑑𝑒𝑓 𝑎𝑢𝑙𝑡_𝑣𝑎𝑙

8 /* starting exploration for controller parameter values */
9 while |𝜕𝑙 − 𝜕𝑟 | > 𝑡𝑜𝑙𝜕 do
10 𝜅 ← select_parameter(P,C, Φ)
11 M𝑙 ← P ◦ C[P.𝜅 ← 𝑛𝑒𝑤_𝑣𝑎𝑙 [𝜅] ∗ 𝜕𝑙]
12 𝜌𝑙 ← min_robustness(M𝑙 , Φ)

13 if 𝜌𝑙 > 0 then
14 C ← C[P.𝜅 ← 𝑛𝑒𝑤_𝑣𝑎𝑙 [𝜅] ∗ 𝜕𝑙]
15 return C
16 M𝑟 ← P ◦ C[P.𝜅 ← 𝑛𝑒𝑤_𝑣𝑎𝑙 [𝜅] ∗ 𝜕𝑟]
17 𝜌𝑟 ← min_robustness(M𝑟 , Φ)

18 if 𝜌𝑟 > 0 then
19 C ← C[P.𝜅 ← 𝑛𝑒𝑤_𝑣𝑎𝑙 [𝜅] ∗ 𝜕𝑟]
20 return C
21 𝑐𝑡𝑟 ← 0

22 if 𝜌𝑟 > 𝜌𝑙 then
23 /* exploring larger parameter values */
24 while (|𝜌𝑟 − 𝜌𝑐𝑢𝑟 | > 𝑡𝑜𝑙𝜌) ∧ (𝑐𝑡𝑟 < 𝐻) do
25 𝜌𝑐𝑢𝑟 ← 𝜌𝑟

26 𝑛𝑒𝑤_𝑣𝑎𝑙 [𝜅] ← 𝑛𝑒𝑤_𝑣𝑎𝑙 [𝜅] ∗ 𝜕𝑟
27 C ← C[P.𝜅 ← 𝑛𝑒𝑤_𝑣𝑎𝑙 [𝜅]]
28 M ← P ◦ C
29 𝜌𝑟 ← min_robustness(M, Φ)

30 if 𝜌𝑟 > 0 then return C
31 𝑐𝑡𝑟 ← 𝑐𝑡𝑟 + 1

32 else
33 /* exploring smaller parameter values */
34 while (|𝜌𝑙 − 𝜌𝑐𝑢𝑟 | > 𝑡𝑜𝑙𝜌) ∧ (𝑐𝑡𝑟 < 𝐻) do
35 𝜌𝑐𝑢𝑟 ← 𝜌𝑙

36 𝑛𝑒𝑤_𝑣𝑎𝑙 [𝜅] ← 𝑛𝑒𝑤_𝑣𝑎𝑙 [𝜅] ∗ 𝜕𝑙
37 C ← C[P.𝜅 ← 𝑛𝑒𝑤_𝑣𝑎𝑙 [𝜅]]
38 M ← P ◦ C
39 𝜌𝑙 ← min_robustness(M, Φ)

40 if 𝜌𝑙 > 0 then return C
41 𝑐𝑡𝑟 ← 𝑐𝑡𝑟 + 1

42 ⟨Φ𝑚𝑥𝑙 ,𝑚𝑎𝑥_𝑐𝑜𝑢𝑛𝑡 ⟩ ← maximal_sat_spec (M,

Φ,Φ𝑚𝑥𝑙 ,𝑚𝑎𝑥_𝑐𝑜𝑢𝑛𝑡)

43 /* reset if exploration goes too far */
44 if ∥ 𝑛𝑒𝑤_𝑣𝑎𝑙 − 𝑑𝑒𝑓 𝑎𝑢𝑙𝑡_𝑣𝑎𝑙 ∥> 𝑡𝑜𝑙 then
45 ⟨𝜕𝑙 , 𝜕𝑟 ⟩ ← update(𝜕𝑙 , 𝜕𝑟)
46 𝑛𝑒𝑤_𝑣𝑎𝑙 ← 𝑑𝑒𝑓 𝑎𝑢𝑙𝑡_𝑣𝑎𝑙

47 return C

48 /* Find the index 𝜅 of the parameter which is the largest
contributor to the falsification of specification Φ */

49 procedure select_parameter (P, C, Φ)
50 M ← P ◦ C
51 𝜔 𝑓 ← falsify(M,Φ)
52 if 𝜔 𝑓 = ∅ then return ∅
53 𝛾 ← 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟_𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠_𝑠𝑖𝑔𝑛𝑎𝑙𝑠 (C)
54 /* consolidating system traces into matrix X */

55 X← [𝜔 𝑓 .𝜏]
56 for 𝑖 = 1 : length (𝛾) do
57 𝑠 ← plot_sig_portrait (𝜔 𝑓 , 𝛾 [𝑖])
58 X← [X 𝑠]
59 /* getting the robustness plot for the falsified trace */
60 𝜌 ← plot_robust_sat (𝜔 𝑓 , Φ)

61 /* consolidating timestamps where specification is
violated into matrix Y */

62 Y← []; 𝑗 ← 1

63 for 𝑖 = 1 : length (𝜌) do
64 if 𝜌 [𝑖] < 0 then
65 Y[𝑗] ← [𝜏 [𝑖] 𝜌 [𝑖]]; 𝑗 ← 𝑗 + 1

66 /* consolidating system traces where specification is
violated into matrix W */

67 W← join(X, Y, 𝜏)
68 W← remove_columns (W, {𝜏, 𝜌 })
69 /* finding the parameter corresponding to the largest

singular value */
70 [Q, R, E] ← matrix_decomposition(W)
71 𝜅 ← 𝐸 [1]
72 return 𝜅

73 /* Find the maximal subset of Φ which is satisfied by the
current closed loop system, and add it to the set Φ𝑚𝑥𝑙 */

74 procedure maximal_sat_spec (M, Φ, Φ𝑚𝑥𝑙 ,𝑚𝑎𝑥_𝑐𝑜𝑢𝑛𝑡)
75 𝑐𝑜𝑢𝑛𝑡 ← 0 ; Φ𝑠𝑜𝑙 ← ∅
76 for 𝜙 ∈ Φ do
77 if min_robustness(M, 𝜙) > 𝜖 then
78 Φ𝑠𝑜𝑙 ← Φ𝑠𝑜𝑙 ∪ {𝜙 }
79 𝑐𝑜𝑢𝑛𝑡 ← 𝑐𝑜𝑢𝑛𝑡 + 1

80 /* if more sub-specifications are satisfied than the
current count */

81 if 𝑐𝑜𝑢𝑛𝑡 >𝑚𝑎𝑥_𝑐𝑜𝑢𝑛𝑡 then
82 Φ𝑚𝑥𝑙 ← {Φ𝑠𝑜𝑙 }
83 𝑚𝑎𝑥_𝑐𝑜𝑢𝑛𝑡 ← 𝑐𝑜𝑢𝑛𝑡

84 else
85 /* if another combination of sub-specs is satisfied */

86 if 𝑐𝑜𝑢𝑛𝑡 =𝑚𝑎𝑥_𝑐𝑜𝑢𝑛𝑡 ∧ Φ𝑠𝑜𝑙 ∉ Φ𝑚𝑥𝑙 then
87 Φ𝑚𝑥𝑙 ← Φ𝑚𝑥𝑙 ∪ {Φ𝑠𝑜𝑙 }

88 return ⟨Φ𝑚𝑥𝑙 ,𝑚𝑎𝑥_𝑐𝑜𝑢𝑛𝑡 ⟩

9

EMSOFT ’21, October 10–15, 2021, Virtual Conference Nikhil Kumar Singh and Indranil Saha

satisfied (line 13 and 18). In line 21, we initialize a counter 𝑐𝑡𝑟 , which is used to ensure that we

never exceed our computation budget. Now, we compare the two robustness values and move

in the direction where robustness improves (lines 22 -41). In the while loops (lines 24-31 and

lines 34-41), we keep on moving in the same direction until either of these two conditions satisfy -

(1) the robustness stops improving and (2) we have exhausted our computation budget (denoted by

𝐻). In line 27 and line 37, we assign 𝑛𝑒𝑤_𝑣𝑎𝑙 [𝜅] to the 𝜅-th controller parameter P.𝜅. In line 42,

the maximal_sat_spec function tracks the maximum number of sub-specifications (𝑚𝑎𝑥_𝑐𝑜𝑢𝑛𝑡)

satisfied so far and also the corresponding maximal set Φ𝑚𝑥𝑙 . These two variables are initialised in

line 5. In lines 44-46, we ensure that our exploration for new parameter values is not too far from

the default parameter values (in terms of Euclidean distance). In case we deviate from the specified

range, we update the values of 𝜕𝑙 and 𝜕𝑟 . Intuitively, by updating those values, we control the

speed of this exploration of parameter values (line 45). Here, we assume that the correct parameter

values that fix the model lie within a certain distance from the default parameter values. This is

a reasonable assumption since we assume that the default values are set using the insight of an

experienced control engineer. In this way, we synthesize the controller incrementally.

An important point worth mentioning here is that our exploration strategy for new parameter

values is not static but dynamic, i.e., we do not control the direction of exploration but always

move in the direction in which the robustness improves. However, we do control the speed of this

exploration, as discussed above.

In lines 49- 72, we define the function select_parameter. In line 51, we find the trace 𝜔 𝑓 of the

modelM that causes the falsification of Φ. In line 53, 𝛾 represents all the signals associated with

the controller parameters. For example, in the model shown in Figure 3, the signals are 𝑠𝑖𝑔_𝑝 , 𝑠𝑖𝑔_𝑖 ,

and 𝑠𝑖𝑔_𝑑 . In line 55, we create a matrix X with one column containing all the time-stamps 𝜏 of the

trace 𝜔 𝑓 . Mathematically, 𝜏 = [0 ℎ 2ℎ . . .𝑇ℎ]T, where ℎ is the duration of a simulation step and𝑇 is

the length of the trace 𝜔 𝑓 , i.e. 𝑇 = |𝜔 𝑓 |. In lines 56-58, we add values to matrix X with the columns

representing the traces for the signals in 𝛾 for all time-stamps. In line 60, we plot the robustness (𝜌)

of 𝜔 𝑓 with respect to Φ. In lines 63-65, we create a matrix Y containing the timestamps and the

robustness values where Φ is violated, i.e., the robustness values are negative. Although an STL

specification is satisfied by the trace only at the beginning, i.e., at 𝑡 = 0, the falsification of an STL

property by a trace is indicated by the negative robustness of the specification on the trace at any

time point. The plot in line 57 differs from the plot in line 60. While the earlier is a simple portrait

of values of a signal, the latter is the robust satisfaction of a signal.

In line 67, we join matrices X and Y with column 𝜏 using the INNER JOIN procedure [48] and

remove the columns 𝜏 and 𝜌 , and store it in matrix W (line 68). The matrix W contains values of the

controller parameter signals 𝛾 that correspond to negative robustness (falsification). In lines 70-71,

we find the most significant component of W using matrix_decomposition function which is

described later. This means that we get the index of controller parameter 𝜅 that has the largest

contribution toward the falsification of Φ.
In lines 74-88, we define the function maximal_sat_spec. In lines 76-79, we check for the

maximum number and corresponding solution set (Φ𝑠𝑜𝑙) of sub-specifications that is satisfied for

the current synthesized controller. If the count is greater than the maximum count found so far, we

make {Φ𝑠𝑜𝑙 } as our maximal set (lines 81-83). If we find another solution set for the same maximal

count, we append it to the maximal set (lines 86-87).

Note that our algorithm can account for noises and disturbances by introducing them as additional

inputs to the system.

3.1.3 Matrix decomposition for selecting the right controller parameter. Here we analyze the matrix

W that contains the values of signals corresponding to the controller parameters, where robustness

10

Specification Guided Synthesis of Feedback Controllers EMSOFT ’21, October 10–15, 2021, Virtual Conference

becomes negative. We need to identify the column in matrix W (corresponding to a controller

parameter) that has the maximum information about the matrix W, as the corresponding parameter

has the potential to have the maximum impact on the generation of the matrix. This column

corresponds to the largest singular value of W. The concept of singular values [19] of the matrix is

applicable for the rectangular matrices, which can be related to the eigenvalues of a square matrix.

The singular values of any matrix A is the square-root of the eigenvalues of their associated square

Gram matrix (ATA) [19]. The rank of a rectangular matrix is given by the number of its non-zero

singular values.

To compute the singular values of the matrix W, we use singular value decomposition (SVD) [19]. In
SVD, a matrix is factored into three matrices, i.e. W = U ·Σ ·VT, where U and V are orthogonal matrices,

and Σ is a diagonal matrix containing the singular values of W in non-increasing order. However,

one issue with SVD is that there does not exist any connection between the singular values and

the columns of W. To address this, we use the permuted QR decomposition [9, 19, 20] to map the

columns of matrix W to its singular values. In case of permuted-QR decomposition, we factor the

matrix W into a real orthogonal matrix Q and an upper triangular matrix R. This is an economy-size

decomposition with permutation vector E, such that W(:, E) = Q · R. The diagonal entries of R are
sorted in non-increasing order. Note that this decomposition does not provide us the singular values

for W directly, but via the diagonal entries of matrix R. It has been experimentally shown that the

diagonal elements of R provide a close measure of the singular values of matrix W [34]. The controller
parameter signal (a column in W) corresponding to the largest singular value is the most significant

one (since ∥W∥2 = 𝜎1). Hence, we tune the controller parameter corresponding to this signal. The

use of matrix decomposition in our algorithm is motivated by a similar recent application of matrix

decomposition to debug Simulink models of closed-loop dynamical systems [49].

3.1.4 Complexity Analysis. The number of parameters in the controller of CCS is |P| and the length
of the simulation is T (= |𝜏 |, the length of the signal 𝜔 𝑓). Note that we denote controller parameters

by P and its corresponding signals by 𝛾 . The complexity of the function matrix_decomposition
in line 70 is O(𝑇 · |P|2). This is because the complexity of QR decomposition is O(𝑚 · 𝑛2), where𝑚
and 𝑛 are the number of rows and the number of columns of the matrix respectively [19]. Thus, the

overall time complexity of our 𝑠𝑒𝑙𝑒𝑐𝑡_𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 procedure is O(𝑇 · |P|2). The complexity of the

𝑚𝑎𝑥𝑖𝑚𝑎𝑙_𝑠𝑎𝑡_𝑠𝑝𝑒𝑐 is O(|Φ|). The time complexity of min_robustness and falsify is linear [15]

w.r.t. 𝑇 , i.e., O(𝑇). The complexity of the loops in lines 24-31 and lines 34-41 is O(𝑇 · 𝐻).
Thus, the complexity of the 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 𝑆𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠 algorithm is O((range(𝜕)/𝑡𝑜𝑙𝜕) ∗ (𝑇 ∗ |P|2 +

𝑇 ∗𝐻 + |Φ|)). Here range(𝜕) is the difference between the maximum and the minimum value of 𝜕,

and 𝐻 refers to our computation budget for the inner While loops in lines 24-31 and lines 34-41.

3.1.5 Soundness and Completeness. The procedure select_parameter depends upon the function

falsify. The function falsify is 𝑠𝑜𝑢𝑛𝑑 because if a specification is falsified, then there indeed

exists a trace that would violate the specification. However, it is not 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 because it may

not be able to find a trace that violates the specification even if there exists such a trace. Thus,

even if Algorithm 1 terminates successfully, we cannot guarantee that the controller C satisfies all

atomic specifications captured in Φ. However, in case there exists a falsifier that is both sound and

complete (hypothetically), our controller synthesis algorithm is sound. This is because, in that case,

we can remove all the root causes of falsification in the synthesized controller that we obtain from

Algorithm 1. We can formalize the above discussion in the following theorem.

Theorem 3.2 (Soundness). Suppose the falsifier employed in Algorithm 1 is both sound and
complete, and Algorithm 1 terminates for specification Φ successfully. In that case, the closed-loop
system with the controller returned by Algorithm 1 indeed satisfies Φ.

11

EMSOFT ’21, October 10–15, 2021, Virtual Conference Nikhil Kumar Singh and Indranil Saha

𝜏 𝑠𝑖𝑔_𝑝 𝑠𝑖𝑔_𝑖 𝑠𝑖𝑔_𝑑©­­­­­­­­­­­­­­­­­«

.

.

.
.
.
.

.

.

.
.
.
.

0.69 19.03 3.06 −17.44

0.70 18.94 3.10 −17.39

0.71 18.86 3.14 −17.34

0.72 18.77 3.18 −17.29

0.73 18.69 3.21 −17.24

0.74 18.60 3.25 −17.19

0.75 18.51 3.29 −17.15

.

.

.
.
.
.

.

.

.
.
.
.

ª®®®®®®®®®®®®®®®®®¬

.
⊗

𝜏 𝜌©­­­­­­­­­­­­­­­­­«

.

.

.
.
.
.

0.69 −0.0017

0.70 −0.0013

0.71 −0.0010

0.72 −0.0006

0.73 −0.0002

0.74 0.0002

0.75 0.0006

.

.

.
.
.
.

ª®®®®®®®®®®®®®®®®®¬

.
=⇒

𝑠𝑖𝑔_𝑝 𝑠𝑖𝑔_𝑖 𝑠𝑖𝑔_𝑑©­­­­­­­­­­­­«

.

.

.
.
.
.

.

.

.

19.03 3.06 −17.44

18.94 3.09 −17.39

18.85 3.13 −17.34

18.77 3.17 −17.29

18.68 3.21 −17.24

.

.

.
.
.
.

.

.

.

ª®®®®®®®®®®®®¬
.

Fig. 5. Matrices X (left), Y (middle) and W (right)

It is worth noting that Algorithm 1 is not complete. This is because there may exist controller

parameters that enable the system to satisfy all the specifications, but still our algorithm may not

be able to find those parameters. This is due to the incompleteness in the search procedure in

lines 9-46 in the controller synthesis algorithm.

3.1.6 Example. In the example in Section 2.3, the formula ♢[0,𝜏]□(|𝑍𝑡 − 𝑍𝑟𝑒 𝑓𝑡 | < 𝜖) gets falsified.
In function select_parameter, the controller parameter set 𝛾 (line 53) consists of the following set

of three signals: {sig_p, sig_i, sig_d}, corresponding to the outputs of the Gain blocks containing
the controller parameters.

In Figure 5, the column 𝜏 is the vector containing the time steps in the simulation and the column

𝜌 provides the robustness values at different time steps. The matrix W is obtained (in line 67) by

joining matrix X (obtained in line 58) and Y (obtained in line 65).

The permuted-QR decomposition of matrix W (line 70) provides a matrix R where 𝑎𝑏𝑠 (𝑑𝑖𝑎𝑔(R)) is
given by [190.0303 43.0850 6.6998]T. These values correspond to the singular values associated

with each column of W, i.e., the controller parameter signals. Here we see that the singular values

associated with the other controller parameters have significantly smaller values compared to

that associated with the first parameter. The matrix E is given as E = [1 3 2], which indicates that

column 1 in matrix W corresponds to the largest singular value, i.e., 𝜅 = 1. Column 1 in matrix W
corresponds to the signal sig_p.
In procedure controller_synthesis, we get 𝜅 = 1 (line 10). The corresponding source block

has parameter (Gain) 𝐾𝑝 whose default value is 5 (robustness = −0.031). The final value of 𝐾𝑝 that

fixes the model with respect to 𝜙 (eq. 10) is 7.5 (robustness = +0.029).

3.2 Specification Synthesis
Generally, it may be the case that an overambitious user gives a set of atomic specifications which

cannot be satisfied together. Controller synthesis w.r.t the set of specifications is not feasible in such

cases, i.e., they cannot be satisfied simultaneously. In such cases, apart from giving the maximal

set of satisfiable specifications and the correct controller C′, we also provide the correct parameter

values for the unsatisfiable specification(s) with which they become satisfiable by the closed-loop

system with the controller C′.
We first convert the unsatisfiable atomic specification 𝜙 into a PSTL formula 𝜙𝑝 , where 𝑝 refers

to the parameter list 𝑝 = (𝑝1, . . . , 𝑝𝑛). Then, we attempt to find the values 𝜈 (𝑝) of parameters of

the PSTL formula such that the STL formula 𝜙𝑝 (𝑝 = 𝜈 (𝑝)) is satisfied w.r.t C′, i.e.,M𝑟 (P ◦ C′) |=
𝜙𝑝 (𝑝 = 𝜈 (𝑝)).

The specifications considered in our experiments are monotonic w.r.t. their parameters due to

their fixed polarity (𝜁), i.e., either + or −. For instance, consider the case of settling time specification

12

Specification Guided Synthesis of Feedback Controllers EMSOFT ’21, October 10–15, 2021, Virtual Conference

Algorithm 2: Specification Synthesis Algorithm

1 procedure specification_synthesis (M𝑟 , 𝜙𝑝)
2 𝑝 ← get_params (𝜙𝑝)

3 /* selecting a specification parameter with index 𝑖 */
4 for 𝑖 = 1 : |𝑝 | do
5 𝑒𝑥𝑣 ← maxmin (𝑝𝑖)
6 𝑑𝑣𝑎𝑙 ← default (𝑝𝑖)
7 𝑠𝑡𝑒𝑝 ← (𝑒𝑥𝑣 − 𝑑𝑣𝑎𝑙) /Δ
8 /* exploration starting from default val */
9 for 𝑣𝑎𝑙 ← 𝑑𝑣𝑎𝑙 : 𝑠𝑡𝑒𝑝 : 𝑒𝑥𝑣 do
10 𝜌 ← check_spec (M𝑟 , 𝜙𝑝 (𝑝𝑖 = 𝑣𝑎𝑙))
11 if 𝜌 > 0 then
12 return ⟨𝜙𝑝 (𝑝𝑖 = 𝑣𝑎𝑙) ⟩

13 return UNSAT

𝜙𝑠 and its parameter 𝜖1. As we relax the error band 𝜖1 (i.e. increase 𝜖1), 𝜙𝑠 becomes easier to satisfy.

Thus, the polarity of 𝜖1 in 𝜙𝑠 is positive (+), i.e., 𝜁 (𝜖1, 𝜙𝑠) = +. For settling time, we have 𝜁 (𝜖1, 𝜙𝑠) = +
and 𝜁 (𝜏𝑠 , 𝜙𝑠) = +. For rise time, we have 𝜁 (𝜏𝑟 , 𝜙𝑟) = + and 𝜁 (𝛽, 𝜙𝑟) = −. For convergence, we have
𝜁 (𝜏𝑐 , 𝜙𝑐) = + and 𝜁 (𝜖2, 𝜙𝑐) = +. For overshoot, we have 𝜁 (𝛼, 𝜙𝑜) = +. For smoothness, we have

𝜁 (𝜏𝑠𝑚, 𝜙𝑠𝑝) = − and 𝜁 (𝜇, 𝜙𝑠𝑝) = +. The monotonicity of the PSTL formulas w.r.t its parameters is

important because finding 𝛿-tight valuations is efficient for monotonic PSTL formulas, which is

hard otherwise. In case the specification is not monotonic, we can use various heuristics. One such

technique would be to use random restart in case our exploration gets trapped in local minima.

Algorithm 2 tunes the specification parameters such that an unsatisfiable specification for the

synthesized controller becomes satisfiable. The input to this algorithm is the PSTL template of the

unsat specification 𝜙𝑝 and the modelM𝑟 , whereM𝑟 = P ◦ C′. In line 2, we get the parameters

𝑝 in the specification 𝜙𝑝 . In lines 4-12, we tune a parameter 𝑝𝑖 such that the new controller C′
satisfies 𝜙𝑝 for some 𝛿-tight value 𝜈 (𝑝𝑖), i.e.,M𝑟 |= 𝜙𝑝 (𝑝𝑖 = 𝜈 (𝑝𝑖)). In line 5, we get the extremal

value (𝑒𝑥𝑣) for a given parameter using domain knowledge. For instance, in case of rise time, the

parameter 𝛽 can only be in [0, 1]. Similarly, the parameter 𝜏 used in different specifications cannot

be more than the total simulation time. In any case, we only need one extremal value (min or max),

since we start our search from the default value of the parameter and move in one direction due

to the monotonicity of the specification. This is provided using maxmin function, which checks

the robustness of specification w.r.t. the two extremal parameter values and return the one with

larger robustness. In line 6, we get the default value of parameter 𝑝𝑖 for which 𝜙𝑝 was unsatisfiable.

In line 7, we get the step size by dividing the range by Δ. Here, Δ is a parameter of the algorithm

that captures the maximum number of values that are examined for a parameter. It controls how

large/small jump we make within this range while going from one value to the other. We have

used Δ = 10 for our experiments. In lines 9-12, we check different values 𝑣𝑎𝑙 for specification

parameter 𝑝𝑖 systematically such that the specification 𝜙𝑝 (𝑝𝑖 = 𝑣𝑎𝑙) is satisfied for the modelM𝑟 ,

i.e.,M𝑟 |= 𝜙𝑝 (𝑝𝑖 = 𝑣𝑎𝑙).

3.2.1 Complexity Analysis. The complexity of Algorithm 2 is O(|𝑝 | ∗ Δ). Here, |𝑝 | is the number

of parameters in the specification 𝜙𝑝 and Δ is the maximum number of values that are examined

for each parameter.

13

EMSOFT ’21, October 10–15, 2021, Virtual Conference Nikhil Kumar Singh and Indranil Saha

Table 1. CPS model benchmarks

System Ref.

Specification Parameters

𝜙𝑠 𝜙𝑟 𝜙𝑐 𝜙𝑜 𝜙𝑠𝑝

𝛿1 𝜖1 𝜏𝑠 𝑇 𝜏𝑟 𝛽 𝜏𝑐 𝜖2 𝛼 𝜏𝑠𝑚 𝛿2 𝜇

QSISO [26] 0.10 0.03 5.00 30.00 7.00 0.80 15.00 0.10 1.10 - - -

CC [3] 0.10 0.01 12.00 60.00 1.00 0.90 15.00 0.10 1.05 - - -

AP [10] 0.10 0.01 5.00 30.00 2.00 0.80 10.00 0.10 1.15 5.00 0.10 0.10

IP [12] 0.10 0.05 1.00 3.00 - - - - 0.50 0.10 0.10 15.00

DCM [11] 0.10 0.04 1.00 10.00 - - - - 1.15 2.00 0.10 0.50

DPC [32] 0.10 0.001 3.00 60.00 0.90 0.85 1.00 0.15 - - - -

AMC [31] 0.10 0.05 2.00 20.00 0.40 0.95 6.00 3.50 - 8.00 0.10 0.30

Heatex [35] 0.10 0.001 70.00 200.00 20.00 0.80 80.00 0.10 2.00 3.00 0.10 0.01

APJ [33] 0.10 0.005 3.00 10.00 0.02 1.00 2.00 0.05 1.20 1.00 0.10 0.05

Robotarm [42] 0.10 0.05 4.00 20.00 - - 4.00 0.10 2.30 2.00 0.10 12.00

QMIMO [46] 0.10 0.10 3.00 100.00 2.30 0.80 10.00 0.10 1.25 - - -

4 EXPERIMENTS
4.1 Implementation
Our controller synthesis algorithm relies on runtimemonitoring with respect to an STL specification.

We use BREACH toolbox [14] for this purpose. Alternatively, other tools such as S-Taliro [1]

and AMT [40] could also be used with our algorithm. We write a wrapper Matlab script on

top of the BREACH tool to implement our algorithm. In the implementation of the procedure

select_parameter, we retrieve the time-series data of the signals usingMATLAB functions. We

used a machine with core 𝑖7 Intel processor, 8 GB RAM, Ubuntu 18.04 OS,MATLAB version 𝑅2020𝑎,

and BREACH version 1.5.2 for our experiments.

All the files related to our experiments can be found at https://github.com/iitkcpslab/SCoSyn.

4.2 Benchmarks
We carry out our experiments on eleven closed-loop control systems. The STL specifications for

these systems, which are borrowed from [25], are presented in Section 2.1.4, and the default values

of the parameters are presented in Table 1. Though the systems have been taken from standard

sources, they turned out not to be correct with respect to several useful STL specifications. We

provide a brief introduction to these systems below, which are available in the above-mentioned

Github link.

4.2.1 Systems with simple Controllers.

Quadcopter-SISO (QSISO). In theQSISO [26] model, the controller generates a control command

to move the quadcopter along the direction of the z-axis. The input to the controller is the

desired z-coordinate. Here the specifications capture various requirements involving the current

z-coordinate (𝑍) and the desired z-coordinate (𝑍𝑟𝑒 𝑓) of the quadcopter.

Cruise Control (CC). In the CC [3] model, we regulate the speed of an automobile. The input

to the controller is the reference speed 𝑣𝑟𝑒 𝑓 . For a given reference speed, the controller acceler-

ates/decelerates the vehicle in order to maintain the desired speed.

Aircraft Pitch (AP). In the AP [10] system, an autopilot model controls the pitch of the aircraft.

The basic requirement for the aircraft is to be in steady-cruise at constant altitude and velocity.

The input to the controller is the reference pitch angle 𝜃𝑟𝑒 𝑓 .

Inverted Pendulum (IP). The IP [12] model consists of an Inverted Pendulum mounted to a

motorized cart. The importance of this model lies in the fact that it is always unstable without

control. Hence, the pendulum cannot be balanced if the cart is not moving. So, we want to balance

the pendulum by applying the required force to move the cart. For this system, the force 𝐹 is the

14

https://github.com/iitkcpslab/SCoSyn

Specification Guided Synthesis of Feedback Controllers EMSOFT ’21, October 10–15, 2021, Virtual Conference

control input that moves the cart horizontally, and the angular position of the pendulum 𝜃 is the

output.

DC Motor (DCM). The DCM [11] provides both rotary motion and translational motion. For

translational motion, it needs to be coupled with wheels. For this system, the voltage (𝑉) applied

to the motor is the input, and the rotational speed of the shaft
¤𝜃 is the output.

4.2.2 Systems with Cascaded/Nested/Multi-Loop Controller.

Digital pitch control of an Aircraft (DPC). The controller used in this model [32] enables us

to operate an aircraft at a high angle of attack with minimal intervention of the pilot. The system

has a Dryden wind gust component which is used to create perturbations in the system, making

the control of this system a complex task. The controller uses the pilot’s stick pitch command as

the setpoint for the aircraft’s pitch attitude. The controller consists of parameters 𝐾𝑎 (alpha), 𝐾𝑞
(pitch) and 𝐾𝑓 (feedforward).

Airframe Model (cascaded feedback) (AMC). The autopilot of an airframe [31] controls its

fin deflection. In this model, two cascaded feedback loops are used to achieve the reference

acceleration. The controller’s feedback loop structure uses the pitch rate (𝐾𝑞) as the inner feedback

loop and the vertical acceleration (𝐾𝑎𝑧) as an outer feedback loop.

Temperature control in Heat Exchanger (Heatex). Heatex [35] uses feedback and feed-

forward controllers to regulate the temperature of a chemical plant via a heat exchanger. Here, a

constant temperature 𝑠𝑒𝑡𝑝 (setpoint) for the tank is maintained by varying the supply of steam to

the heat exchanger. The disturbance 𝑑𝑖𝑠 is caused by the variations in the temperature of the inlet

flow. The temperature of the tank at a given time is denoted by 𝑡𝑒𝑚𝑝 .

Autopilot for Passenger Jet (APJ). The APJ [33] is a nested controller for a supersonic passenger

jet flying at Mach 0.74 and 5000 feets. The autopilot is used to follow commands issued by the

pilot. It consists of an inner loop that controls the pitch rate (𝑄) and an outer loop that controls

the vertical acceleration (using PI). This also contains a feed-forward (𝐹) component and a second-

order roll-off filter (𝑅) to control noise and bandwidth against unmodeled dynamics. The input to

the autopilot is the vertical acceleration commands (𝑁𝑧𝑐) from the pilot, and the output is the

actual acceleration (𝑁𝑧).

Robot-Arm. The CRS Robot Armmodel [42] consists of three motors, each for waist joint, shoulder

joint, and elbow joint. We have assumed that the waist joint is fixed. The motors of the shoulder

and elbow are controlled using two strongly coupled PID controllers. Due to this coupling,

simultaneous tuning of both these controllers is a challenging problem. Here, the input is the

𝜃 2𝑚𝑑
and 𝜃 3𝑚𝑑

which refers to the desired shoulder and elbow angles, respectively.

Quadcopter-MIMO (QMIMO). QMIMO [46] is one of the most complex systems for multi-loop
feedback control. It uses six PID controllers (each for 𝑥 , 𝑦, 𝑧, 𝜙 , 𝜃 ,𝜓). Hence, there are 18 controller

parameters. This is an underactuated system, since we are able to move in 6-DOF with only

four control inputs. The input to the system is the reference positions for 𝑥 , 𝑦, 𝑧, and angle

𝜓 . The output of the model is the translational position 𝑥 , 𝑦, 𝑧 and rotational position 𝜙 , 𝜃 , 𝜓 .

While 𝑥 and 𝑦 are controlled via translational controller, the variables 𝑧, 𝜙 , 𝜃 ,𝜓 are controlled via

attitude/altitude controller. The quadcoptor’s attitude is controlled by a lower-level controller,

which runs at a higher rate than the higher-level controller that controls the translational position

of the quadcopter. An important point to note is that the translational movement depends upon

the attitude adjustments, and hence the output of the translational controller is the input to the

attitude controller.

In the examples above, some specifications were not applicable in certain cases (shown as "-" in

Table 1). For instance, the convergence specification does not apply if no reference input signal (for

15

EMSOFT ’21, October 10–15, 2021, Virtual Conference Nikhil Kumar Singh and Indranil Saha

Table 2. Comparison between different falsifier algorithms in BREACH

Model Metrics Nelder-Mead FMINSEARCH CMAES SIM-ANNEALING FMINCON GA

QSISO

𝑇𝑐𝑠 (s) 238.2 261.29 141.73 244.97 385.07 331.48

#𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 4 4 4 4 7 4

𝐹𝑖𝑛𝑎𝑙_𝑣𝑎𝑙 (P, I, D) 37.96, 1.00, 10.00 37.96, 1.00, 10.00 37.96, 1.00, 10.00 37.96, 1.00, 10.00 56.95, 0.25, 10.00 37.96, 1.00, 10.00

CC

𝑇𝑐𝑠 (s) 147.63 881.3 262.29 175.73 275.14 770.73

#𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 5 18 6 5 4 12

𝐹𝑖𝑛𝑎𝑙_𝑣𝑎𝑙 (P, I, D) 5.6953, 0.10, 1.00 0.9492, 0.0475, 0.125 0.1875, 0.10, 0.125 5.6953, 0.10, 10 3.7969, 0.10, 10 0.4219, 0.025, 0.1406

IP

𝑇𝑐𝑠 (s) 422.12 243.16 360.27 353.34 365.90 358.38

#𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 11 6 8 8 8 8

𝐹𝑖𝑛𝑎𝑙_𝑣𝑎𝑙 (P, I, D) 5.22, 16.395, 66.122 5.22, 65.58, 19.5919 5.22, 16.395, 19.5919 5.22, 16.395, 19.5919 5.22, 16.395, 19.5919 5.22, 16.395, 19.5919

DCM

𝑇𝑐𝑠 (s) 150.87 256.61 123.77 324.11 208.39 286.36

#𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 7 6 4 7 5 6

𝐹𝑖𝑛𝑎𝑙_𝑣𝑎𝑙 (P, I, D) 10.00, 0.7812, 1.65 7.50, 6.25, 1.65 10.00, 6.25, 1.65 10.00, 0.7812, 1.65 5.00, 3.125, 1.65 2.50, 3.125, 1.65

(a) AP (b) Q-MIMO
Fig. 6. Number of iterations for different values of 𝜂 for specification 𝜙𝑠 and 𝜙𝑐 . The models used for this
plot is AP (left) and QMIMO (right). The default value of 𝜂 used in our experiments is 𝜂 = 0.5 (𝜕𝑙 = 0.5 and
𝜕𝑟 = 1.5).

the actual output) exists. Similarly, some systems, by default, have a smoother trajectory. Hence

the smoothness specification is not applicable.

The default controller parameter values AP, IP, DCM and Robot Arm are set using MATLAB
PID tuner by keeping a balance between performance and robustness. In case of QSISO, CC, DPC,
AMC, Heatex, APJ and QMIMO, the default values are taken from their references.

4.3 Results
4.3.1 Comparison between different falsification algorithms. The Breach tool provides different

optimization techniques to solve the falsification problem through finding a trace with minimal

robustness. We carry out an experiment to find the efficacy of these optimization techniques in

solving the controller synthesis problem we address in this paper. A comparison between different

falsification algorithms is presented in Table 2. We ran the experiments on QSISO, CC, IP, and
DCM to find controllers for the conjunct of all specifications. From the experimental results, we find

that even though the falsifier algorithms differ significantly in some cases, our controller synthesis

algorithm was robust enough to find a controller that satisfied the conjunct of specifications with

each falsifier algorithm. Note that some falsifiers use randomization (like FMINCON), and hence

we ran each experiment for 3 times and present the data for the worst case (in terms of the number

of iterations). The number of iterations refers to the main loop of the controller synthesis algorithm,

and hence it is possible that even with fewer iterations, an experiment may take more computation

time due to the inefficiency of the optimization procedure. In all our experiments presented in the

rest of the paper, we use Nelder-Mead algorithm for the falsifier as it is the default optimizer in

Breach.

16

Specification Guided Synthesis of Feedback Controllers EMSOFT ’21, October 10–15, 2021, Virtual Conference

Table 3. Results for individual specifications. Tuned parameters are in bold font.
System Default Value Spec Final Value Iters 𝑇𝑐𝑠 (s)

QSISO 𝑃 = 5, 𝐼 = 1, 𝐷 = 10

𝜙𝑠 P = 7.5, 𝐼 = 1, 𝐷 = 10 1 51.85

𝜙𝑟 P = 25.31, 𝐼 = 1, 𝐷 = 10 2 73.65

𝜙𝑐 P = 7.5, 𝐼 = 1, 𝐷 = 10 1 51.85

𝜙𝑜 𝑃 = 5, I = 0.25, 𝐷 = 10 1 59.90

CC 𝑃 = 0.5, 𝐼 = 0.1, 𝐷 = 1

𝜙𝑠 P = 0.75, 𝐼 = 0.1, 𝐷 = 1 1 45.18

𝜙𝑟 P = 1.125, 𝐼 = 0.1, 𝐷 = 1 1 57.07

𝜙𝑐 P = 5.6953, 𝐼 = 0.1, 𝐷 = 1 5 107.37

𝜙𝑜 P = 0.75, 𝐼 = 0.1, 𝐷 = 1 1 45.80

AP 𝑃 = 0.495, 𝐼 = 0.348, 𝐷 = 0.115

𝜙𝑠 𝑃 = 0.495, I = 0.174, 𝐷 = 0.115 1 27.69

𝜙𝑟 P = 0.7425, 𝐼 = 0.348, 𝐷 = 0.115 1 38.44

𝜙𝑐 P = 1.67, 𝐼 = 0.348, 𝐷 = 0.115 3 59.14

𝜙𝑜 𝑃 = 0.495, I = 0.0217, 𝐷 = 0.115 3 90.17

𝜙𝑠𝑝 𝑃 = 0.495, I = 0.174, 𝐷 = 0.115 1 29.52

IP 𝑃 = 41.76, 𝐼 = 65.58, 𝐷 = 3.87

𝜙𝑠 P = 140.94, 𝐼 = 65.58, 𝐷 = 3.87 2 62.92

𝜙𝑜 P = 93.96, 𝐼 = 65.58, 𝐷 = 3.87 1 55.61

𝜙𝑠𝑝 P = 5.22, I = 16.395, D = 19.591 8 274.66

DCM 𝑃 = 20, 𝐼 = 50, 𝐷 = 1.65

𝜙𝑠 P = 2.5, I = 3.125, 𝐷 = 1.65 6 128.43

𝜙𝑜 𝑃 = 20, I = 25, 𝐷 = 1.65 1 27.76

𝜙𝑠𝑝 𝑃 = 20, I = 25, 𝐷 = 1.65 1 28.65

DPC

𝐾𝑓 = −3.864, 𝜙𝑠 𝐾𝑓 = −3.864, 𝐾𝛼 = 0.677, Kp = 1.2744 2 62.53

𝐾𝛼 = 0.677, 𝜙𝑟 𝐾𝑓 = −3.864, 𝐾𝛼 = 0.677, Kp = 0.6117 1 46.71

𝐾𝑝 = 0.8156 𝜙𝑐 𝐾𝑓 = −3.864, K𝛼 = 1.3223, 𝐾𝑝 = 0.8156 2 84.23

AMC

𝜙𝑠 Kaz = 0.00041260, 𝐾𝑞 = 2.7717622 2 60.95

𝐾𝑎𝑧 = 0.00027507, 𝜙𝑟 Kaz = 0.00061891, 𝐾𝑞 = 2.7717622 3 69.96

𝐾𝑞 = 2.7717622 𝜙𝑐 Kaz = 0.0004126, 𝐾𝑞 = 2.7717622 2 60.95

𝜙𝑠𝑝 Kaz = 0.00029374, 𝐾𝑞 = 2.7717622 11 378.07

Heatex 𝐾𝑓 𝑓 = 1, 𝐾𝑓 𝑏 = 1

𝜙𝑠 𝐾𝑓 𝑓 = 1, Kfb = 0.5625 3 131.61

𝜙𝑟 𝐾𝑓 𝑓 = 1, Kfb = 3.375 2 78.94

𝜙𝑐 Kff = 0.9492,Kfb = 0.6328 14 374.41

𝜙𝑜 Kff = 0.0625, Kfb = 0.5 5 127.49

𝜙𝑠𝑝 𝐾𝑓 𝑓 = 1, Kfb = 0.5 1 64.50

APJ

𝑃 = −0.009821, 𝜙𝑠 𝑃 = −0.009821, I = −0.0093973, 𝐹 = −0.02233,𝑄 = −0.2843, 𝑅 = 4.8100 3 88.95

𝐼 = −0.0297, 𝜙𝑟 𝑃 = −0.009821, 𝐼 = −0.0297, F = −0.0436,𝑄 = −0.2843, 𝑅 = 4.8100 2 64.2

𝐹 = −0.02233, 𝜙𝑐 𝑃 = −0.009821, 𝐼 = −0.0297, F = −0.0022, Q = −0.7295, 𝑅 = 4.8100 15 498.71

𝑄 = −0.2843, 𝜙𝑜 𝑃 = −0.009821, I = −0.0125, F = −0.0171, Q = −0.2843, 𝑅 = 4.8100 5 121.4

𝑅 = 4.81 𝜙𝑠𝑝 𝑃 = −0.009821, 𝐼 = −0.0297, F = −0.0167,𝑄 = −0.2843, 𝑅 = 4.8100 1 47.67

Robot Arm

𝜙𝑠 Kp1 = 25, 𝐾𝑖1 = 2, 𝐾𝑑1 = 0.5, 𝐾𝑝2 = 50, 𝐾𝑖2 = 1, 𝐾𝑑2 = 2 1 44.74

𝐾𝑝1 = 50, 𝐾𝑖1 = 2, 𝐾𝑑1 = 0.5, 𝜙𝑐 Kp1 = 17.7979, 𝐾𝑖1 = 2, 𝐾𝑑1 = 0.5, Kp2 = 37.5, 𝐾𝑖2 = 1, 𝐾𝑑2 = 2 4 109.41

𝐾𝑝2 = 50, 𝐾𝑖2 = 1, 𝐾𝑑2 = 2 𝜙𝑜 Kp1 = 3.125, 𝐾𝑖1 = 2, 𝐾𝑑1 = 0.5, Kp2 = 12.5, 𝐾𝑖2 = 1, 𝐾𝑑2 = 2 6 193.06

𝜙𝑠𝑝 Kp1 = 3.5156, 𝐾𝑖1 = 2, 𝐾𝑑1 = 0.5, Kp2 = 3.5156, 𝐾𝑖2 = 1, 𝐾𝑑2 = 2 14 644.42

QMIMO

𝑋 = 0.1, 0,−0.1, 𝑌 = 0.1, 0,−0.1, 𝜙𝑠 𝑋 = 0.1, 0,−0.1, 𝑌 = 0.1, 0,−0.1, Z = 1.6875, 0,−4, 𝜙 = 4.5, 0, 0, 𝜃 = 4.5, 0, 0,𝜓 = 10, 0, 0 2 233.38

𝑍 = 4, 0,−4, 𝜙𝑟 𝑋 = 0.1, 0,−0.1, 𝑌 = 0.1, 0,−0.1, Z = 3, 0,−4, 𝜙 = 4.5, 0, 0, 𝜃 = 4.5, 0, 0,𝜓 = 10, 0, 0 1 177.31

𝜙 = 4.5, 0, 0, 𝜃 = 4.5, 0, 0, 𝜙𝑐 𝑋 = 0.1, 0,−0.1, 𝑌 = 0.1, 0,−0.1, Z = 1.5625, 0,−4, 𝜙 = 4.5, 0, 0, 𝜃 = 4.5, 0, 0,𝜓 = 10, 0, 0 17 1005.86

𝜓 = 10, 0, 0 𝜙𝑜 𝑋 = 0.1, 0,−0.1, 𝑌 = 0.1, 0,−0.1, Z = 1.6875, 0,−4, 𝜙 = 4.5, 0, 0, 𝜃 = 4.5, 0, 0,𝜓 = 10, 0, 0 2 208.26

4.3.2 Deciding the parameter values for Algorithm 1. Algorithm 1 involves parameter 𝜂 (since

𝜕 = 1 ± 𝜂). The performance of the algorithm depends on the value used for this parameter. Here

the performance is measured as the number of iterations required to tune a parameter in a falsified

model. We carried out experiments on the closed-loop systems introduced in Section 4.2 and the

specifications introduced in Section 2.1.4 to understand how the number of iterations to solve the

parameter tuning problem varies with the value of 𝜂. Figure 6 shows the results for the systems AP
and QMIMO and the specifications 𝜙𝑠 and 𝜙𝑐 . For the range of 𝜕, we find that the performance of

the algorithm is poor for a large range of 𝜕. It attains the best performance for 𝜂 = 0.5 and degrades

as we increase 𝜂. Hence, we choose 𝜂 = 0.5 for all our experiments.

4.3.3 Results for individual specifications. In Table 3, we show the results of our controller synthesis

algorithm for different specifications independently for each system with simple controllers and

complex controllers, respectively. The second column contains the default controller parameter

values. The final value refers to the values of the parameters that fix the controller such that the

specifications are satisfied. The controller parameters whose values changed in the tuning process

17

EMSOFT ’21, October 10–15, 2021, Virtual Conference Nikhil Kumar Singh and Indranil Saha

have been shown in bold font. In the fifth column, Iters refers to the number of iterations of the

main loop in Algorithm 1. The computation times have been provided in the last column.

In what follows, we describe our observations on the execution of our algorithm while synthesiz-

ing the controllers satisfying individual specifications. Our objective is to convince the readers that

our automatic controller parameter tuning procedure works in a way that can be easily explained by

our understanding of how a physical process behaves under the action of its controller. This bolsters

the fact that our algorithm works on the principles that govern the operation of the closed-loop

control systems.

In QSISO, the controller used is a simple PID controller. The falsification of a specification, say

𝜙𝑠 , is due to the plant not being able to get into a steady state within the specified time. This is

achieved by increasing the proportional gain or reduction in the derivative gain (to reduce the

dampening effect). The automatic controller parameter tuner based on our algorithm also takes the

same measure in finding the final value of the controller parameters that satisfy the specification.

The proportional gain is increased from 5 to 7.5. Similarly, while carrying out experiments with

other PID based controllers such as those in CC, IP, AP, and DCM, we observed that our automated

tuner performs the tuning in the way an expert engineer would have done in the process of manual

tuning.

In case of DPC, we know that increase in pitch rate 𝐾𝑝 results in the aircraft attaining the

desired angle quickly, which in turn reduces settling time. Moreover, the increase in pitch angle 𝐾𝛼
provides more room for rotation around the pitch axis, which in turn improves convergence time.

Our algorithm automatically identifies these requirements, which is evident from the fact that it

increases the value of 𝐾𝑝 to satisfy the specifications on settling time (𝜙𝑠), and increases the value

of 𝐾𝛼 to satisfy the specification on convergence (𝜙𝑐).

In case of AMC, the goal of the controller is to control the aircraft’s fin deflection to help the

aircraft move up/down. This can be achieved by finding correct values for the gain parameters

associated with the vertical acceleration or the pitch rate. Our algorithm finds the appropriate values

for the gain parameter associated with vertical acceleration 𝐾𝑎𝑧 to satisfy all the specifications

automatically.

In case of Heatex, the tank liquid has to be maintained at a constant temperature. The feedforward

controller is responsible for the rejection of disturbances, i.e., fluctuations in the tank temperature,

while the feedback controller is responsible for setpoint tracking. We observe that our algorithm is

able to discover this principle automatically while finding the appropriate values for the controller

parameters to satisfy various specifications. For instance, in case of 𝜙𝑠 , the violation is due to the

system being much more responsive or springy. Thus, ideally, we would like to reduce the gain of

the feedback controller. This is exactly what we get from our algorithm, which reduces the feedback

gain 𝐾𝑓 𝑏 from 1 to 0.5625.

In case of APJ, the goal is to follow the vertical acceleration issued by the pilot. Our algorithm

fixes the violation of specification 𝜙𝑐 by increasing the feedforward gain and reducing the pitch

rate (𝐹 = −0.0022, 𝑄 = −0.7295). As we know, increasing feedforward gain reduces the disturbance,

and reduction in pitch rate makes the system less responsive to errors, thereby reducing oscillatory

behavior. Both these factors help in achieving convergence which we also found experimentally.

Similarly, in case of 𝜙𝑠 , the violation is fixed by increasing the integral gain and increasing the

feedforward gain (𝐼 = −0.0167, 𝐹 = −0.0150). We know that increasing the integral gain reduces

the steady-state errors, and feedforward gain reduces the effect of disturbances. Both these factors

reduce the settling time enabling satisfaction of 𝜙𝑠 .

In case of RobotArm, the specification 𝜙𝑐 is violated because both the shoulder and elbow joint

could not converge with the desired configuration and keeps on oscillating around the desired

configuration for a longer time. To fix this, our algorithm reduces the proportional gain of both

18

Specification Guided Synthesis of Feedback Controllers EMSOFT ’21, October 10–15, 2021, Virtual Conference

the controllers of shoulder and elbow joints, which is also intuitive. Our algorithm tunes the

proportional gains also to satisfy the other specifications.

In the QMIMO system, we found the parameter used for repair of the specifications is 𝐾𝑝 and 𝐾𝑑
of the PID-controller corresponding to𝑍 (attitude controller). The important point here is that when

a specification, say 𝜙𝑠 , is falsified (Table 3), we see that the violation is along all 𝑥 , 𝑦 (translational)

and 𝑧 (attitude) directions. But, the controller synthesis involves tuning the parameters of the

attitude controller only. Similar fixes we witness for the other specifications as well. It is well

known that the translational movement (along x, y) of quadcopter depends upon the attitude

movements (along z, 𝜙 , 𝜃 ,𝜓). Hence, tuning attitude controller is the most appropriate measure for

our controller synthesis.

It may appear counter-intuitive that none of the desired specifications were satisfied by the

standard controller. The reason is that the constraints involved in the specifications in all the cases

were intentionally made strict about making the controller synthesis problem challenging. That

is why the standard controller fails to satisfy any specification. Note that the constraints in the

specifications may depend on the application and may vary from application to application. For

instance, in some cases, we may want that our rise time for 90% of reference signal should be 1s. In

some other case, we may want it to be 0.9s or 1.1s. A similar argument holds for other specifications.

4.3.4 Results for the set of specifications. In Table 4, we present the results of the controller synthesis
algorithm for the conjunction of all specifications. Note that this is a much harder problem than the

one presented in the previous subsection. Here we want to find the controller parameter values such

that all the specifications are satisfied simultaneously. However, in certain cases, our algorithm is

not able to find the desired controller parameter values which satisfy all the specifications. In these

cases, we first fix the controller with the best parameter values found by our algorithm (denoted by

C𝑟). Then, for the specifications which could not be satisfied along with the satisfied specifications,

we synthesize the parameters of those specifications independently, so that those specifications are

satisfied by the CCS with the controller C𝑟 .
In case of QSISO, CC, IP and DCM systems, Algorithm 1 could find the suitable controller param-

eter values (37.96, 1, 10), (5.6953, 0.1, 1), (41.76, 65.58, 66.1226), and (10, 0.7812, 1.65), respectively,
for which all the specifications were satisfied. In case of AP, DPC, AMC, Heatex, Robot Arm, and

QMIMOmodels, the algorithm could not find the suitable controller parameter values that satisfied

all the specifications. Hence, in these cases, we provide the maximal set of atomic specifications

that are satisfied and also the correct parameter values for the unsatisfiable atomic specification(s)

(See Table 4).

Let us explain the results in Table 4 with the example of the system DPC. The other examples

can be interpreted similarly. In case of DPC model, the maximum number of specifications that

could be satisfied was one (Table 4). We found two different sets of maximal satisfied specifications.

In the first case, we found the best controller parameter values for which 𝜙𝑟 was satisfied, while in

the second case, the best controller parameter values were the ones for which 𝜙𝑐 was satisfied. This

might seem counter-intuitive that individually all specifications were satisfied for DPC (Table 3),

but in case of the conjunction of these specifications, only 𝜙𝑟 and 𝜙𝑐 are satisfied. This is because

when the specification Φ = 𝜙𝑠 ∧ 𝜙𝑟 ∧ 𝜙𝑐 is falsified for the first time, the algorithm searches for

parameter values that are satisfiable w.r.t Φ instead of 𝜙𝑠 , 𝜙𝑟 or 𝜙𝑐 individually. Once it moves in

the direction that satisfies 𝜙𝑟 , it cannot satisfy 𝜙𝑠 . The exploration strategy of our algorithm is not

static but is dynamic in the sense that it is always guided by the improvement in robustness.

In Table 4, we also present the computation time spent on the procedures controller_synthesis
and specification_synthesis in Algorithm 1 and Algorithm 2 in the column𝑇𝑐𝑠 and𝑇𝑠𝑠 , respec-

tively.

19

EMSOFT ’21, October 10–15, 2021, Virtual Conference Nikhil Kumar Singh and Indranil Saha

Table 4. Results for the set of specifications: Φ𝑚𝑥𝑙 = Φ1 means that the final controller satisfies all the atomic
sub-specifications. For the system AP, Φ𝑚𝑥𝑙 = {𝜙𝑠 , 𝜙𝑟 , 𝜙𝑐 , 𝜙𝑜 } indicates that the final controller satisfies the
atomic propositions 𝜙𝑠 , 𝜙𝑟 , 𝜙𝑐 , 𝜙𝑜 directly, and 𝜙𝑠𝑝 SAT @ 𝜇 = 0.59 indicates that the atomic specification 𝜙𝑠𝑝
gets satisfied by the final controller once the value of its parameter 𝜇 is updated to 0.59. The tuned parameters
have been shown in bold font.

System Specification Default Value Final Value Iters Result

Computation Time (s)
𝑇𝑐𝑠 𝑇𝑠𝑠

QSISO Φ1 = 𝜙𝑠 ∧ 𝜙𝑟 ∧ 𝜙𝑐 ∧ 𝜙𝑜 𝑃 = 5, 𝐼 = 1, 𝐷 = 10 P = 37.96, 𝐼 = 1, 𝐷 = 10 4 Φ𝑚𝑥𝑙 = Φ1 238.20 -

CC Φ2 = 𝜙𝑠 ∧ 𝜙𝑟 ∧ 𝜙𝑐 ∧ 𝜙𝑜 𝑃 = 0.5, 𝐼 = 0.1, 𝐷 = 1 P = 5.6953, 𝐼 = 0.1, 𝐷 = 1 5 Φ𝑚𝑥𝑙 = Φ2 147.63 -

AP Φ3 = 𝜙𝑠 ∧ 𝜙𝑟 ∧ 𝜙𝑐 𝑃 = 0.49, 𝐼 = 0.348, 𝐷 = 0.115 P = 1.0622, I = 0.23627, D = 0.35095 54 Φ𝑚𝑥𝑙 = { 𝜙𝑠 , 𝜙𝑟 , 𝜙𝑐 , 𝜙𝑜 }

102.32

29.18

∧𝜙𝑜 ∧ 𝜙𝑠𝑝 𝜙𝑠𝑝 SAT @ 𝜇 = 0.59

P = 0.93358, I = 0.2367, D = 0.35095 58 SAT= { 𝜙𝑠 , 𝜙𝑟 , 𝜙𝑜 , 𝜙𝑠𝑝 } 55.06

𝜙𝑐 SAT @ 𝜏2 = 16

IP Φ4 = 𝜙𝑠 ∧ 𝜙𝑜 ∧ 𝜙𝑠𝑝 𝑃 = 41.76, 𝐼 = 65.58, 𝐷 = 3.87 P = 5.22, I = 16.395, D = 19.5919 8 Φ𝑚𝑥𝑙 = Φ4 436.83 -

DCM Φ5 = 𝜙𝑠 ∧ 𝜙𝑜 ∧ 𝜙𝑠𝑝 𝑃 = 20, 𝐼 = 50, 𝐷 = 1.65 P = 10, I = 0.7812, 𝐷 = 1.65 7 Φ𝑚𝑥𝑙 = Φ5 150.87 -

DPC Φ6 = 𝜙𝑠 ∧ 𝜙𝑟 ∧ 𝜙𝑐 𝐾𝑓 = −3.864, 𝐾𝛼 = 0.677, 𝐾𝑓 = −3.864, 𝐾𝛼 = 0.677, 3 Φ𝑚𝑥𝑙 = {𝜙𝑟 }

345.39

88.39

𝐾𝑝 = 0.8156 Kp = 0.4588 𝜙𝑠 SAT @ 𝜖1 = 0.0082,

𝜙𝑐 SAT @ 𝜖2 = 0.42

Kf = −5.5017, 𝐾𝛼 = 0.677, 8 Φ𝑚𝑥𝑙 = {𝜙𝑐 } 40.19

𝐾𝑝 = 0.8156 𝜙𝑠 SAT @ 𝜖1 = 0.0028,

𝜙𝑟 SAT @ 𝛽 = 0.79

AMC Φ7 = 𝜙𝑠 ∧ 𝜙𝑟 ∧ 𝜙𝑐 𝐾𝑎𝑧 = 0.00027507, Kaz = 0.00052221, 6 Φ𝑚𝑥𝑙 = {𝜙𝑠 , 𝜙𝑟 , 𝜙𝑐 } 697.28 55.82

∧𝜙𝑠𝑝 𝐾𝑞 = 2.7717622 𝐾𝑞 = 2.7717622 𝜙𝑠𝑝 SAT @ 𝜇 = 100

Heatex Φ8 = 𝜙𝑠 ∧ 𝜙𝑟 ∧ 𝜙𝑐 𝐾𝑓 𝑓 = 1, 𝐾𝑓 𝑏 = 1 Kff = 0.4746, Kfb = 0.5625 12 Φ𝑚𝑥𝑙 = {𝜙𝑠 , 𝜙𝑜 }

1802.33

275.75

∧𝜙𝑜 ∧ 𝜙𝑠𝑝 𝜙𝑟 SAT @ 𝑏𝑡 = 0.16

𝜙𝑐 SAT @𝜖2 = 0.37

𝜙𝑠𝑝 SAT @ 𝜇 = 1

Kff = 0.9010, Kfb = 0.5625 17 Φ𝑚𝑥𝑙= {𝜙𝑠 , 𝜙𝑐 } 60.00

𝜙𝑟 SAT @ 𝑏𝑡 = 0.16

𝜙𝑜 UNSAT ∀𝛼
𝜙𝑠𝑝 SAT @ 𝜇 = 1

Kff = 0.2253, Kfb = 0.4746 29 Φ𝑚𝑥𝑙 = {𝜙𝑜 , 𝜙𝑠𝑝 } 89.42

𝜙𝑠 SAT @ 𝜖 = 0.0019

𝜙𝑟 SAT @ 𝛽 = 0.14

𝜙𝑐 SAT @ 𝜖 = 0.64

APJ Φ9 = 𝜙𝑠 ∧ 𝜙𝑟 ∧ 𝜙𝑐 𝑃 = −0.009821, 𝐼 = −0.0297, 𝑃 = −0.009821, I = −0.0167, 3 Φ𝑚𝑥𝑙 = { 𝜙𝑠 , 𝜙𝑜 , 𝜙𝑠𝑝 } 278.22 83.64

∧𝜙𝑜 ∧ 𝜙𝑠𝑝 𝐹 = −0.02233, 𝑄 = −0.2843, F = −0.0051, 𝑄 = −0.2843, 𝜙𝑟 SAT @ 𝛽 = 0.5

𝑅 = 4.81 𝑅 = 4.81 𝜙𝑐 SAT @ 𝜏2 = 8, 𝜖2 = 0.1

Robot Arm Φ10 = 𝜙𝑠 ∧ 𝜙𝑐 𝐾𝑝1 = 50, 𝐾𝑖1 = 2, Kp1 = 75, 𝐾𝑖1 = 2, 2 Φ𝑚𝑥𝑙 =𝜙𝑠 , 𝜙𝑐 698.02 51.45

∧𝜙𝑜 ∧ 𝜙𝑠𝑝 𝐾𝑑1 = 0.5, 𝐾𝑝2 = 50, 𝐾𝑑1 = 0.5, 𝐾𝑝2 = 50, 𝜙𝑜 SAT @ 𝛼 = 2.53

𝐾𝑖2 = 1, 𝐾𝑑2 = 2 𝐾𝑖2 = 1, 𝐾𝑑2 = 2 𝜙𝑠𝑝 SAT @ 𝜇 = 12.88

QMIMO Φ11 = 𝜙𝑠 ∧ 𝜙𝑟 ∧ 𝜙𝑐 ∧ 𝜙𝑜 𝑋 = (0.1, 0,−0.1), 𝑌 = (0.1, 0,−0.1), 𝑋 = (0.1, 0,−0.1), 𝑌 = (0.1, 0,−0.1), 30 Φ𝑚𝑥𝑙 = {𝜙𝑠 , 𝜙𝑐 , 𝜙𝑜 } 1018.33 148.31

𝑍 = (4, 0,−4), Z = (1.5625, 0,−6.4072), 𝜙𝑟 SAT @ 𝜏1 = 6.44

𝜙 = (4.5, 0, 0), 𝜃 = (4.5, 0, 0), 𝜙 = (4.5, 0, 0), 𝜃 = (4.5, 0, 0),
𝜓 = (10, 0, 0) 𝜓 = (10, 0, 0)

4.3.5 Other Specifications. The specifications considered in the paper are standard specifications

for capturing the correctness and performance of feedback controllers. We carried out exhaustive

experiments with these specifications as described before. However, our technique can handle any

monotonic STL specifications. Below we present results with a few such specifications.

• Nested-Bounded Operators:
– Eventually-Always: For the AP model, we modify the convergence property to make

always operator as bounded, i.e., 𝜙𝑐 = ♢[0,3]□[0,10] (|𝜃𝑡 − ¯𝜃𝑡 | < 𝜖). This means that within 3s,

𝜃 should reach and remain converged to
¯𝜃 for 10s. Our tool synthesizes the new controller

(1.67, 0.348, 0.115) within 3 iterations. This is expected since □ without bounded interval is

a stricter operator than □ with bounded interval.

– Infinitely-Often: Consider the AP model with the following specification:

□[0,10]♢[0,3] (|𝜃𝑡 − ¯𝜃𝑡 | < 𝜖), where 𝜖 = 0.1. This specification means that 𝜃 should con-

verge to
¯𝜃 within every 3s and this behavior should continue for 10s. In this case , we get

a falsification for the default controller. Using our tool we are able to synthesize the new

controller (0.495, 0.522, 0.115) within 2 iterations so that it satisfies the specification.

20

Specification Guided Synthesis of Feedback Controllers EMSOFT ’21, October 10–15, 2021, Virtual Conference

Table 5. Experimental Results with Random Search and Simulated Annealing for the set of specifications.
Timeout = 3600s

System Spec

Random Search (RS) Simulated Annealing (SA)

Iters 𝑇 (s) Final Value Φ𝑚𝑥𝑙 Iters 𝑇 (s) Final Value Φ𝑚𝑥𝑙

QSISO Φ1 36 558.01 𝑃 = 7.81, 𝐼 = 1.56, 𝐷 = 4.21 Φ1 42 805.91 𝑃 = 213.8, 𝐼 = 4.187, 𝐷 = 130.79 Φ1

CC Φ2 26 947.183 𝑃 = 0.75, 𝐼 = 0.24, 𝐷 = 0.17 Φ2 94 Timeout 𝑃 = 46.49, 𝐼 = 3.59, 𝐷 = 35.15 {𝜙𝑠 ,𝜙𝑟 ,𝜙𝑜 }

AP Φ3 99 Timeout 𝑃 = 0.495, 𝐼 = 0.5022, 𝐷 = 0.8733 {𝜙𝑠 ,𝜙𝑐 ,𝜙𝑠𝑝 } 11 301.13 𝑃 = 31.669, 𝐼 = 0.025, 𝐷 = 10.749 Φ3

IP Φ4 91 Timeout 𝑃 = 41.76, 𝐼 = 17.50, 𝐷 = 29.38 {𝜙𝑠 , 𝜙𝑜 } 18 457.43 𝑃 = 1.77, 𝐼 = 39.18, 𝐷 = 24.72 Φ4

DCM Φ5 84 Timeout 𝑃 = 20, 𝐼 = 0.78, 𝐷 = 1.65 {𝜙𝑜 , 𝜙𝑠𝑝 } 96 Timeout 𝑃 = 10.72, 𝐼 = 17.36, 𝐷 = 6.31 { 𝜙𝑜 ,𝜙𝑠𝑝 }

DPC Φ6 71 Timeout - { } 82 Timeout 𝐾𝑓 = −0.37, 𝐾𝛼 = 57.28, 𝐾𝑝 = 0.078 { 𝜙𝑟 }

AMC Φ7 80 Timeout 𝐾𝑎𝑧 = 0.0005, 𝐾𝑞 = 2.7718 {𝜙𝑠 , 𝜙𝑟 , 𝜙𝑐 } 94 Timeout 𝐾𝑎𝑧 = 0.0037, 𝐾𝑞 = 5.93 { 𝜙𝑟 }

Heatex Φ8 80 Timeout 𝐾𝑓 𝑓 = 0.3379, 𝐾𝑓 𝑏 = 0.4746 {𝜙𝑜 , 𝜙𝑠𝑝 } 97 Timeout 𝐾𝑓 𝑓 = 62.19, 𝐾𝑓 𝑏 = 0.01 { 𝜙𝑠𝑝 }

APJ Φ9 78 Timeout - { } 95 Timeout 𝑃 = −1.77, 𝐼 = −1.02, 𝐹 = −0.58, { 𝜙𝑟 , 𝜙𝑐 , 𝜙𝑠𝑝 }

𝑄 = −0.38, 𝑅 = 22.32

RobotArm Φ10 77 Timeout 𝐾𝑝1 = 144.5, 𝐾𝑖1 = 66.35,𝐾𝑑1 = 0.39, {𝜙𝑠 } 89 Timeout 𝐾𝑝1 = 95.73, 𝐾𝑖1 = 6.64, 𝐾𝑑1 = 3.02, { 𝜙𝑠 }

𝐾𝑝2 = 50, 𝐾𝑖2 = 1, 𝐾𝑑2 = 2 {𝜙𝑠 } 𝐾𝑝2 = 102.49, 𝐾𝑖2 = 7.994, 𝐾𝑑2 = 3.88 { 𝜙𝑠 }

QMIMO Φ11 67 Timeout - { } 75 Timeout - { }

• Reach-Avoid: Consider the RobotArm model with the following spec-

ification: 𝜙1𝑈 [0,𝜏]𝜙2, where 𝜙1 = ((𝜃 2𝑚
𝑡 < 𝛼 · 𝜃 2𝑚𝑑

𝑡) ∧ (𝜃 3𝑚
𝑡 < 𝛼 · 𝜃 3𝑚𝑑

𝑡)),
𝜙2 = □((| 𝜃 2𝑚

𝑡 − 𝜃 2𝑚𝑑
𝑡 | < 𝜖) ∧ (|𝜃 3𝑚

𝑡 − 𝜃 3𝑚𝑑
𝑡 | < 𝜖)), where 𝜏 = 4, 𝛼 = 2.4 and 𝜖 = 0.1.

Here, 𝜃 2𝑚
and 𝜃 2𝑚𝑑

refers to the actual and the desired shoulder angles respectively. Similarly,

𝜃 3𝑚
and 𝜃 3𝑚𝑑

refer to the actual and the desired elbow angles respectively. The specification

𝜙1𝑈 [0,𝜏]𝜙2 means that the arm should not exceed a given bound until, within 𝜏 second, it

converges with the desired value. For this specification, we get a falsification for the default

controller. Using our tool we are able to synthesize the new controller (75, 2, 0.5, 50, 1, 2)
within 3 iterations such that it satisfies the specification.

4.4 Numerical Comparison with Alternative Techniques
4.4.1 Comparison w.r.t Random Search and Simulated annealing. In Table 5, we provide detailed

results for Random Search (RS) and Simulated Annealing (SA) for all the benchmarks on the

combined specifications for the sake of comparison with the results of our algorithm presented in

Table 4. The comparison with RS is to show the significance of using the matrix decomposition

technique in implementing the select_parameter function at line 10 in the controller synthesis

algorithm (Algo 1). To implement RS, we implement the select_parameter function to generate

a random sequence of parameter indexes without changing any other part of Algorithm 1. Thus,

the superior performance of our algorithm to that of RS establishes the efficacy of the matrix

decomposition based parameter tuning. For SA, we use the MATLAB function simulannealbnd
and pass the default value and bounds as used in our controller synthesis algorithm as the initial

values and the lower and upper bounds of the parameters, respectively. For this comparison, we

consider only Algorithm 1, and implement a wrapper function to generate a controller (provided

in the Final Value columns) with the maximal satisfiable subset (provided in columns Φ𝑚𝑥𝑙) for
both RS and SA algorithms. As the maximum time taken by our algorithm is 1802s (for Heatex, see
Table 4), we set a timeout of 3600s for these experiments.

As we see from Table 5, RS can find controllers satisfying all the atomic sub-specifications only for

QSISO and CC. However, the computation time is significantly more than our algorithm. For DPC,
APJ, and QMIMO, RS could not find a controller satisfying any of the atomic sub-specifications. For

AP, IP, DCM, and RobotArm, the maximal set of sub-specifications Φ𝑚𝑥𝑙 obtained within timeout

is smaller than the one found by our algorithm, and for AMC and Heatex, RS finds the same Φ𝑚𝑥𝑙
as our algorithm. In summary, our algorithm outperforms RS conclusively on all the benchmarks.

Coming to the comparison with Simulated Annealing (SA), it can find controllers satisfying all

the atomic sub-specifications for QSISO and AP and IP. Note that our method did not succeed in

finding a controller satisfying all the sub-specifications for AP. On the other hand, for QMIMO, SA

21

EMSOFT ’21, October 10–15, 2021, Virtual Conference Nikhil Kumar Singh and Indranil Saha

(a) 2-layer actor and critic (b) 3-layer actor and critic
Fig. 7. Training an RL-based controller for QSISO model

could not find a controller satisfying any of the atomic sub-specifications. For CC, DCM, AMC,
Heatex, and RobotArm, the maximal set of sub-specifications Φ𝑚𝑥𝑙 obtained within timeout is

smaller than the ones found by our algorithm, and for DPC and APJ, SA finds the same Φ𝑚𝑥𝑙 as our
algorithm.

To understand the search strategy and computation effort required by the three methods under

consideration, consider the results for QSISO in Table 4 and Table 5. For QSISO, we got a solution

with all three algorithms - CS, RS, and SA. However, note that our algorithm needed to tune only a

single parameter as compared to the tuning of multiple parameters in RS and SA. In every iteration

of our algorithm, we tune that parameter which leads to the maximum improvement in robustness.

This enables us to reach the solution faster in fewer iterations. However, as our algorithm is based

on local search, it may not find a controller satisfying all the atomic sub-specifications even though

there exists one. This fact is observed in case of AP, where SA, due to the global search strategy,

could find a controller satisfying all the atomic sub-specifications, but our algorithm could not.

4.4.2 Comparison with ML/RL based controllers. Motivated by the work by Lillicrap et al. on

synthesizing continuous controllers using Deep Reinforcement Learning (DRL) [28], we attempt to

synthesize a DRL based controller to satisfy a set of STL specifications. For our experiments, we

train a DDPG (Deep Deterministic Policy Gradient) agent [28] to generate the desired control for

the QSISO model. In this context, the DDPG agent is the RL-based controller. In this approach, we

need to generate the rewards online (at each time-step) and hence we compute the robustness of

satisfaction of the conjunct of STL specifications online using BREACH. We use the specification

Φ′
1
= 𝜙𝑟 ∧ 𝜙𝑐 ∧ 𝜙𝑜 (specifications like 𝜙𝑠 are not supported by BREACH (Online)).

We run the experiment for 3000 episodes. Each episode consists of 30 time-steps. For our

experiments, we use the following parameter values: learning rate (actor) = 0.01, learning rate

(critic) = 0.1, discount factor = 1, and minibatch size = 64. We use two different DDPG agent

configurations - in the first one, both actor and critic DNNs have two hidden layers, and in the

second one, both actor and critic have three layers. The training finished for the two scenarios in

4391.17s and 5541.40s respectively, without getting a convergence (refer Figure 7). We represent

the Episode reward with blue points and the average reward (of the last 20 episodes) with red

points. A desirable RL-based controller would have generated controls which would have led to the

satisfaction of the specification 𝜙1 (and hence positive reward) at convergence. This experimental

result demonstrates that Deep RL is not an alternative to our controller synthesis technique.

5 RELATEDWORK
Controller synthesis for complex nonlinear systems has been one of the key challenges faced by

the CPS community. The goal of controller synthesis is to design a mechanism for generating the

desired inputs for the plant such that it satisfies a given set of specifications. Of late, this area has

22

Specification Guided Synthesis of Feedback Controllers EMSOFT ’21, October 10–15, 2021, Virtual Conference

received a lot of interest among the CPS research community. Many powerful tools have been

developed for the same recently, such as Pessoa [36, 45], CoSyMA [39], LTLMop [17], Tulip [51], etc.
Recently, various research work have been carried out to synthesize controllers from specifi-

cations. In [29], the authors have addressed the problem of synthesizing controllers that satisfy

multiple specifications. In this work, the choice of controller depends upon the type of plant (dis-

crete or continuous). The work in [47] is on SMT-based PID controller synthesis technique for

stochastic hybrid systems providing safety guarantees. In [13], the goal is to design a controller that

satisfies a set of hard LTL formulas and minimally violates a set of soft LTL formulas. An automatic

correct-by-construction synthesis technique for stochastic linear dynamical systems satisfying STL

specifications is presented in [22]. As evident from the above discussion, the previous work deal

with either the stability or the safety properties for controller synthesis or address the problem of

controller synthesis for a special class of systems. On the other hand, our technique can deal with

general nonlinear systems with arbitrary STL specifications.

Many techniques involving Machine Learning (ML)/ Reinforcement Learning (RL) have recently

been applied to controller synthesis. In [50], a DNN controller is generated for a quadrotor model

through supervised learning. Supervised learning is not applicable to our problem as we attempt

to synthesize a superior controller to the default controller. Thus, training data generated from a

default controller would not lead to a controller that could satisfy a quantitative STL specification,

as the default controller itself does not satisfy the specification. Reinforcement learning is an

attractive technique for synthesizing continuous control for dynamical systems [28]. In [21], RL is

used to synthesize controllers for nonlinear systems like quadrotors. Another RL-based approach

is presented in [8] for MDPs that satisfy an LTL specification. These techniques are similar to ours

in the sense that they need to tune parameters involved in a deep neural network (weights and

biases). However, as our experimental results in Section 4.4.2 demonstrates, synthesizing RL-based

controllers is computationally too expensive.

In [18], the authors demonstrate how to synthesize model-predictive controllers to satisfy STL

specifications. On the other hand, our focus is on synthesizing parameterized static controllers for

a group of STL specifications, which do not need to solve complex optimization problems online.

The authors in [18] also address the specification repair problem. For a given STL specification,

the authors first check if the constraints in the specification are satisfiable by converting them

into MILP constraints and solving them. In case the constraints are not satisfiable, a set of atomic

predicates in the specification are identified and then repaired using slack variables. Synthesizing

the parameters involved in the template STL specifications for closed-loop control systems has also

been addressed in [23] and [24].

6 CONCLUSION
In this paper, we have presented a novel framework for controller synthesis for closed-loop control

systems. The proposed controller synthesis framework is implemented as fully automated software.

Our synthesis approach is guided by a set of complex STL specifications, which has not been

considered in contemporary work. For such specifications, our tool is capable of dealing with a rich

set of controllers having multiple independent and nested control loops. However, a significant

limitation of our techniques is that it is applicable only if the controller contains tunable parameters

(e.g., Gains, Transfer Function, etc.). Unlike the work by Raman et al. [43, 44], our tool is not readily

applicable to synthesizing model predictive controllers for STL specifications.

In the future, we plan to explore the applicability of our technique to other types of controllers,

such as Neural-Network based controller, which contains a large number of parameters. We will

attempt to keep the size of the neural network smaller without compromising its correctness

23

EMSOFT ’21, October 10–15, 2021, Virtual Conference Nikhil Kumar Singh and Indranil Saha

with respect to the formal specifications. Reducing the size of neural networks will be useful in

implementing them as embedded software.

ACKNOWLEDGEMENT
The authors would like to thank the anonymous reviewers for their detailed review and insightful

comments on the originally submitted manuscript. The authors also thank Alexandre Donzé for his

support in working with the BREACH Toolbox. The first author acknowledges the Prime Minister’s

Research Fellowship from the Government of India for supporting this research. This research

work was carried out as part of the FMSAFE project supported by MHRD IMPRINT.

REFERENCES
[1] Y. Annpureddy, C. Liu, G. E. Fainekos, and S. Sankaranarayanan. 2011. S-TaLiRo: A Tool for Temporal Logic Falsification

for Hybrid Systems. In TACAS. 254–257.
[2] E. Asarin, A. Donzé, O. Maler, and D. Nickovic. 2011. Parametric Identification of Temporal Properties. In RV. 147–160.
[3] K. J. Astrom and R. M. Murray. 2008. Feedback Systems: An Introduction for Scientists and Engineers. Princeton University

Press, USA.

[4] D. P. Atherton. 2000. Autotuning of PID Controllers: Relay Feedback Approach. Int. J. Adapt. Control Signal Process. 14,
5 (2000), 559–562.

[5] E. Bartocci, T. Ferrère, N. Manjunath, and D. Ničković. 2018. Localizing Faults in Simulink/Stateflow Models with STL.

In HSCC. ACM, 197–206.

[6] V. Blondel and J. N. Tsitsiklis. 1997. NP-Hardness of Some Linear Control Design Problems. SIAM J. Control Optim. 35,
6 (1997), 2118–2127.

[7] S. Bogomolov, C. Mitrohin, and A. Podelski. 2010. Composing Reachability Analyses of Hybrid Systems for Safety and

Stability. In ATVA. 67–81.
[8] A. K. Bozkurt, Y.Wang, M. M. Zavlanos, andM. Pajic. 2020. Control Synthesis from Linear Temporal Logic Specifications

using Model-Free Reinforcement Learning. In ICRA. IEEE, 10349–10355.
[9] T. F. Chan. 1987. Rank revealing QR factorizations. Linear Algebra Appl. 88-89 (1987), 67 – 82.

[10] CTMS. [n.d.]. Aircraft Pitch. http://ctms.engin.umich.edu/CTMS/index.php?example=AircraftPitch§ion=

SimulinkModeling

[11] CTMS. [n.d.]. DC Motor. http://ctms.engin.umich.edu/CTMS/index.php?example=MotorSpeed§ion=

SimulinkModeling

[12] CTMS. [n.d.]. Inverted Pendulum. http://ctms.engin.umich.edu/CTMS/index.php?example=InvertedPendulum&

section=SimulinkModeling

[13] R. Dimitrova, M. Ghasemi, and U. Topcu. 2020. Reactive synthesis with maximum realizability of linear temporal logic

specifications. Acta Informatica 57, 1-2 (2020), 107–135.
[14] A. Donzé. 2010. Breach: A Toolbox for Verification and Parameter Synthesis of Hybrid Systems. In CAV. 167–170.
[15] A. Donzé, T. Ferrère, and O. Maler. 2013. Efficient Robust Monitoring for STL. In CAV. 264–279.
[16] E.A.Lee and S.A.Seshia. 2017. Introduction to Embedded Systems - A Cyber-Physical Systems Approach, Second Edition.

MIT Press.

[17] C. Finucane, G. Jing, and H. Kress-Gazit. 2010. LTLMoP: Experimenting with language, Temporal Logic and robot

control. In IROS. 1988–1993.
[18] S. Ghosh, D. Sadigh, P. Nuzzo, V. Raman, A. Donzé, A. L. Sangiovanni-Vincentelli, S. S. Sastry, and S. A. Seshia. 2016.

Diagnosis and Repair for Synthesis from Signal Temporal Logic Specifications. In HSCC. 31–40.
[19] G. H. Golub and Charles F. V. Loan. 1996. Matrix Computations (3 ed.). Johns Hopkins.
[20] Y. P. Hong and C. T. Pan. 1992. Rank-revealing QR factorizations and the singular value decomposition. Math. Comp.

58, 197 (1992), 213–232.

[21] J. Hwangbo, I. Sa, R. Siegwart, and M. Hutter. 2017. Control of a Quadrotor With Reinforcement Learning. IEEE
Robotics and Automation Letters 2, 4 (2017), 2096–2103.

[22] S. Jha, S. Raj, S. K. Jha, and N. Shankar. 2018. Duality-Based Nested Controller Synthesis from STL Specifications for

Stochastic Linear Systems. In FORMATS. 235–251.
[23] X. Jin, A. Donzé, J. V. Deshmukh, and S. A. Seshia. 2015. Mining Requirements From Closed-Loop Control Models.

IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34, 11 (2015), 1704–1717.
[24] G. Juniwal, A. Donzé, J. C. Jensen, and S. A. Seshia. 2014. CPSGrader: Synthesizing temporal logic testers for auto-

grading an embedded systems laboratory. In EMSOFT. 24:1–24:10.

24

http://ctms.engin.umich.edu/CTMS/index.php?example=AircraftPitch§ion=SimulinkModeling
http://ctms.engin.umich.edu/CTMS/index.php?example=AircraftPitch§ion=SimulinkModeling
http://ctms.engin.umich.edu/CTMS/index.php?example=MotorSpeed§ion=SimulinkModeling
http://ctms.engin.umich.edu/CTMS/index.php?example=MotorSpeed§ion=SimulinkModeling
http://ctms.engin.umich.edu/CTMS/index.php?example=InvertedPendulum§ion=SimulinkModeling
http://ctms.engin.umich.edu/CTMS/index.php?example=InvertedPendulum§ion=SimulinkModeling

Specification Guided Synthesis of Feedback Controllers EMSOFT ’21, October 10–15, 2021, Virtual Conference

[25] J. Kapinski, X. Jin, J. Deshmukh, A. Donze, T. Yamaguchi, H. Ito, T. Kaga, S. Kobuna, and S. Seshia. 2016. ST-Lib: A

Library for Specifying and Classifying Model Behaviors. In SAE Technical Paper. SAE International.

[26] I. M. Khairuddin, A. Majeed, A. Lim, J. A. Jizat, and A. A. Jaafar. 2014. Modelling and PID Control of a Quadrotor Aerial

Robot. In Manufacturing Engineering (Advanced Materials Research, Vol. 903). 327–331.
[27] R. Koymans. 1990. Specifying Real-time Properties with Metric Temporal Logic. Real-Time Systems 2, 4 (1990), 255–299.
[28] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and Daan

Wierstra. 2016. Continuous control with deep reinforcement learning. In ICLR.
[29] J. Lygeros, C. Tomlin, and S. Sastry. 1997. Multiobjective hybrid controller synthesis. In Hybrid and Real-Time Systems,

O. Maler (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 109–123.

[30] O. Maler and D. Nickovic. 2013. Monitoring properties of analog and mixed-signal circuits. STTT 15, 3 (2013), 247–268.

[31] MathWorks. [n.d.]. Cascaded Multiloop Feedback Design. https://www.mathworks.com/help/control/ug/cascaded-

multi-loopmulti-compensator-feedback-design.html.

[32] MathWorks. [n.d.]. Designing a High Angle of Attack Pitch Mode Control. https://www.mathworks.com/help/simulink/

slref/designing-a-high-angle-of-attack-pitch-mode-control.html

[33] MathWorks. [n.d.]. Fixed-Structure Autopilot for a Passenger Jet. https://www.mathworks.com/help/control/ug/fixed-

structure-autopilot-for-a-passenger-jet.html

[34] MathWorks. [n.d.]. QR decomposition. https://in.mathworks.com/help/matlab/ref/qr.html.

[35] MathWorks. [n.d.]. Temperature Control in a Heat Exchanger. https://www.mathworks.com/help/control/ug/

temperature-control-in-a-heat-exchanger.html

[36] M. Mazo, A. Davitian, and P. Tabuada. 2010. PESSOA: A Tool for Embedded Controller Synthesis. In CAV. 566–569.
[37] L. Meier, D. Honegger, and M. Pollefeys. 2015. PX4: A node-based multithreaded open source robotics framework for

deeply embedded platforms. ICRA, 6235–6240.
[38] P. M. Meshram and R. G. Kanojiya. 2012. Tuning of PID controller using Ziegler-Nichols method for speed control of

DC motor. In ICAESM. 117–122.

[39] S. Mouelhi, A. Girard, and G. Gössler. 2013. CoSyMA: A Tool for Controller Synthesis Using Multi-Scale Abstractions.

In HSCC. 83–88.
[40] D. Nickovic and O. Maler. 2007. AMT: A Property-based Monitoring Tool for Analog Systems. In FORMATS. 304–319.
[41] A. Pnueli. 1977. The Temporal Logic of Programs. In SFCS. 46–57.
[42] Quanser Real-Time Control (QUARC. [n.d.]. CRS Robot Arm. http://quanser-update.azurewebsites.net/quarc/

documentation/quarc_using_devices_robots.html#catalyst

[43] V. Raman, A. Donzé, D. Sadigh, R. M. Murray, and S. A. Seshia. 2015. Reactive Synthesis from Signal Temporal Logic

Specifications. In HSCC. 239–248.
[44] V. Raman, A. Donzé, M. Maasoumy, R. M. Murray, A. Sangiovanni-Vincentelli, and S. A. Seshia. 2014. Model predictive

control with signal temporal logic specifications. In CDC. 81–87.
[45] P. Roy, P. Tabuada, and R. Majumdar. 2011. Pessoa 2.0: A Controller Synthesis Tool for Cyber-Physical Systems. In

HSCC. 315–316.
[46] W. Selby. [n.d.]. Simulating a 3DRobotics ArduPilot based quadrotor. https://www.wilselby.com/research/arducopter/

controller-design/

[47] F. Shmarov, N. Paoletti, E. Bartocci, S. Lin, S. A. Smolka, and P. Zuliani. 2017. SMT-based Synthesis of Safe and Robust

PID Controllers for Stochastic Hybrid Systems. In Hardware and Software: Verification and Testing. 131–146.
[48] A. Silberschatz, H. Korth, and S. Sudarshan. 2005. Database Systems Concepts (5 ed.). McGraw-Hill, Inc., USA.

[49] N. K. Singh and I. Saha. 2020. Specification-Guided Automated Debugging of CPS Models. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 39, 11 (2020), 4142–4153.

[50] P. Varshney, G. Nagar, and I. Saha. 2019. DeepControl: Energy-Efficient Control of a Quadrotor using a Deep Neural

Network. In IROS. 43–50.
[51] T. Wongpiromsarn, U. Topcu, N. Ozay, Huan Xu, and R. M. Murray. 2011. TuLiP: A Software Toolbox for Receding

Horizon Temporal Logic Planning. In HSCC. 313–314.
[52] M. Zhuang and D. P. Atherton. 1993. Automatic tuning of optimum PID controllers. IEE Proceedings D - Control Theory

and Applications 140, 3 (1993), 216–224.

25

https://www.mathworks.com/help/control/ug/cascaded-multi-loopmulti-compensator-feedback-design.html.
https://www.mathworks.com/help/control/ug/cascaded-multi-loopmulti-compensator-feedback-design.html.
https://www.mathworks.com/help/simulink/slref/designing-a-high-angle-of-attack-pitch-mode-control.html
https://www.mathworks.com/help/simulink/slref/designing-a-high-angle-of-attack-pitch-mode-control.html
https://www.mathworks.com/help/control/ug/fixed-structure-autopilot-for-a-passenger-jet.html
https://www.mathworks.com/help/control/ug/fixed-structure-autopilot-for-a-passenger-jet.html
https://in.mathworks.com/help/matlab/ref/qr.html.
https://www.mathworks.com/help/control/ug/temperature-control-in-a-heat-exchanger.html
https://www.mathworks.com/help/control/ug/temperature-control-in-a-heat-exchanger.html
http://quanser-update.azurewebsites.net/quarc/documentation/quarc_using_devices_robots.html#catalyst
http://quanser-update.azurewebsites.net/quarc/documentation/quarc_using_devices_robots.html#catalyst
https://www.wilselby.com/research/arducopter/controller-design/
https://www.wilselby.com/research/arducopter/controller-design/

	Abstract
	1 Introduction
	2 Problem
	2.1 Preliminaries
	2.2 Problem Definition
	2.3 Example

	3 Algorithm
	3.1 Controller Synthesis
	3.2 Specification Synthesis

	4 Experiments
	4.1 Implementation
	4.2 Benchmarks
	4.3 Results
	4.4 Numerical Comparison with Alternative Techniques

	5 RELATED WORK
	6 CONCLUSION
	References

