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Abstract—Simulink/Stateflow is the de facto tool for develop-
ing software for safety-critical real-time cyber-physical systems
(CPSs). In Simulink, the model of a CPS is captured in a
block diagram based language, the model is simulated using
the associated simulators, and then software code is generated
automatically for the embedded controller. The presence of a
bug in the Simulink model may lead to a catastrophic failure
during the execution of the system developed based on the model.
Unlike in application software, finding bugs in Simulink models
is challenging due to the hybrid nature of the model.

We present an automated debugging methodology of a CPS
model captured in Simulink. Our methodology has two main
components — bug localization and model repair. For bug
localization, we capture the requirements of the system in Signal
Temporal Logic (STL) and employ the run-time monitoring
technique to generate a trace that violates the specification.
The violating trace is used to identify the internal signals that
have the potential to contribute to the violation. For precise bug
localization by narrowing down the offending signals, we employ
a matrix decomposition technique to find the signals contributing
to the bug accurately. Our bug localization technique is precise
enough to enable us to repair the model. If the bug is due to
an inappropriate value for a model parameter, we employ a
parameter tuning method to find a value for the parameter that
repairs the model automatically. We carry out numerous case
studies on Simulink models obtained from different sources and
demonstrate that our automated debugging technology can fix
the bugs in the Simulink models effectively.

Index Terms—Simulink Models, Bug Localization, Model Re-
pair, Automated Debugging, Signal Temporal Logic, Falsification.

I. INTRODUCTION

The development of safety-critical real-time cyber-physical
systems (CPSs) poses a tremendous challenge to engineers
in terms of design, implementation, and verification. The
Simulink tool from Mathworks Inc. [1] is a software package
that provides an environment for model-based development
of cyber-physical systems. In the Simulink environment, a
model of a cyber-physical system can be created in a block-
diagram based visual language, which can be simulated using
various simulators. Of late, there has been significant progress
towards developing software tools for Bug localization in the
Simulink models [2], [3], [4]. However, these tools require
a significant amount of human intervention, which renders
the debugging process tedious and time-consuming. Thus, one
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key challenge in the model-based development of CPSs is to
develop an automated tool that provides precise information
about the source of the bugs in an erroneous model without
much manual effort.

There are various techniques available for automated fault
localization and debugging of application software [5], [6], [7].
However, little research has been carried out in automating
such efforts in case of models of cyber-physical systems. The
correctness of application software is captured using test cases
that provide the correct input-to-output mapping. On the other
hand, the correctness of a cyber-physical system is given in
the form of a set of temporal logic formulae that define a set
of valid traces for the system. The bug in a C code is indicated
by a test-case (inputs) that leads to a wrong output. On the
other hand, a bug in a Simulink model is indicated by a system
trace that violates the temporal logic specification.

In the recent past, falsification-based techniques [8], [9],
[10], [11] have been employed extensively in identifying
whether a model is erroneous with respect to a temporal logic
specification. These techniques focus on checking whether
the simulation traces satisfy the specification given in Signal
Temporal Logic (STL) [12], [13], which is a popular logical
specification language to capture real-time specifications for
CPSs. In case of a falsification, we get the corresponding
sequence of states that lead to the violation of the specification.
Debugging, however, requires precise information about the
internal structure of the model, which is not provided by the
falsification techniques.

In this paper, we propose a bug localization algorithm that
is based on falsification of STL specifications for Simulink
models. The inputs to our algorithm are a Simulink model
and an STL specification where the predicates are defined
based on the signals in the model. If the specification gets
falsified, we employ a matrix analysis technique to identify a
small subset of the signals that contribute to the falsification.
First, we perform slicing of the model based on the signals
within the violated specification. Subsequently, we create a
matrix that captures the value of the sliced signals at all time-
stamps where the specification is falsified. This matrix pro-
vides us with key information associated with the specification
violation. Now, to remove the redundancy from the matrix,
we employ a matrix decomposition technique to identify the
columns (signals) in the matrix corresponding to the largest
singular values, indicating that they have the most impact
on the bug. This analysis helps us in obtaining a small set
of suspected signals which are presented to the user as the
suspected cause of the falsification.

A major class of bugs in Simulink models is related to the
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values of various parameters in the model. For example, in an
automatic transmission model, there is a parameter threshold
in the value of the vehicle speed that determines when the gear
shift should take place. Automotive engineers often decide the
values of such parameters based on their experiences. Though
the value of the parameter chosen by their experience works
most of the time, in corner cases those values may turn out
to be wrong. If our bug localization algorithm detects that the
cause of the failure of the model is the inappropriate value of
a parameter, the parameter value can be tuned automatically
to find its correct value. We provide an algorithm for repairing
the model by tuning the offensive parameter automatically.

Finally, we present an algorithm that debugs a Simulink
model with many independent specifications by employing
the bug localization and model repair mechanism mentioned
above. This algorithm enables us to fix the model even without
falsifying all the specifications independently. We implement
this algorithm to provide a fully automated tool to debug a
Simulink model with many STL specifications. We evaluate
our debugging tool on five different Simulink models with
varying complexity. For each of those models, we consider
a set of 1-7 STL specifications, a subset of which were
falsified on the models. It turns out that all the falsifications
were due to inappropriate values for some parameters. We
have successfully repaired all the models based on the output
generated by our bug localization technique. Our success in
repairing the models demonstrates that our bug localization
algorithm can pinpoint the source of the bug appropriately.

In summary, we make the following contributions in this
paper.
• We present a mechanism for localization of a bug in a

Simulink model. We, for the first time, employ a matrix
decomposition technique to localize bug in a CPS model.

• We provide a mechanism for repairing an erroneous
Simulink model by carefully tuning parameters indicated
by the bug localization process.

• We develop an algorithm to debug a Simulink model with
respect to a set of falsified STL specifications by appro-
priately combining our bug localization and debugging
algorithms.

• We implement our bug localization and repair mech-
anism in a MATLAB based tool that helps us solve
the debugging problem automatically. We apply our tool
to repair five different Simulink models with 1-7 STL
specifications for each of them.

II. PROBLEM

A. Preliminaries
1) Simulink/Stateflow: Simulink/Stateflow [1] tool offers a

library of blocks representing various discrete and continuous
mathematical operations such as gain, addition, transforms,
lookup tables, integration, etc. It also supports hierarchical
structuring of models by grouping the related blocks into sub-
systems. Stateflow charts specify the control in the form of hi-
erarchical finite state machines that interact with the Simulink
model. A Simulink model represents the time-dependent math-
ematical relationship between the inputs, states, and outputs of
the system.

Syntax. A Simulink model M, syntactically, is defined as a
4-tuple 〈V,B,C, S〉 :

• V refers to the variables (input, output or internal state)
of the Simulink model. The input, the output and the state
variables are denoted by VI , VO, and VS respectively.

• B refers to the set of blocks in the Simulink model.
• C refers to the set of connections between the blocks,

defined as the ordered relation C ⊆ B × B.
• S refers to the set of signals in the Simulink model,

defined as the mapping S : C → V .

For a connection c ∈ C in a Simulink model, we denote its
source block by src(c) and its destination block by dst(c).
Some of the Simulink blocks contain parameters (for example,
the Gain block). For a block b ∈ B, its set of parameters is
denoted by param(b). For a parameter p, its value is denoted
by p.val, and the set of possible values for the parameter is
denoted by P.

Semantics. Let us denote an input to the modelM by u. The
input u is a vector capturing the values for all the variables in
VI . A Simulink model M, semantically, is defined by a tuple
〈X,X0, U, T, SIM〉 that consists of:

• a state-space X where x ∈ X is a state vector capturing
the valuation of all the variables in V at a given time
instance.

• a set X0 ⊆ X representing initial states of the model.
• a set of input signals U .
• a time horizon T > 0.
• a simulator SIM: X0 × U× [0,T] → X , SIM(x0,u,t)

denotes the state reached at time t from initial state x0
using input signal u.

The modelM starts at an initial state x0, runs on the input
signal u, and generates a trace. A trace ω is defined as the
sequence of states of the system evolving with discrete time-
steps (from t = 0 to t = T ). We denote the state of the system
at time t by xt ∈ X and the trace ω by 〈x0, x1, . . . xT 〉, where
xt = SIM(x0,u,t). For the Simulink model M, we denote all
the traces generated from some initial state x0 ∈ X0 and for
some input signal u ∈ U by L(M).

2) Signal Temporal Logic: Signal Temporal Logic
(STL) [12], [13] is an extension of Metric Temporal Logic
(MTL) [14] and Linear Temporal Logic [15]. It enables us
to reason about real-time properties of signals (simulation
traces). These specifications consist of real-time predicates
over the signal variables.

The syntax of an STL specification φ is defined by the
grammar

φ := true | π | ¬φ | φ1 ∨ φ2 | φ1UIφ2 (1)

where π ∈ Π, Π is a set of atomic predicates, and I ⊆ R+ is
an arbitrary interval. The logical operators ¬ and ∨ have their
usual meaning. Here, UI is the until operator implying that φ2
becomes true at some time within the interval I and φ1 must
remain true until φ2 becomes true. There are two other useful
temporal operators, namely eventually(♦I ) and always(�I ),
which can be derived from the temporal and logical operators
defined above. We use the temporal operators U , ♦ and � to
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denote the operators UI , ♦I and �I with the time interval I
to be [0,∞).

Robust Semantics of STL: We follow the robust semantics
of STL provided in [16]. We use Euclidean metric as the norm
to measure the distance d between two values v, v′ ∈ R, i.e.,
d(v, v′) = ‖v − v′‖. Let v ∈ R be a value, A ⊆ R be a set.
Then the signed distance from v to A is defined as:

Dist(v,A) =

{
inf {d(v, v′) | v′ /∈ A}, if v ∈ A.

−inf {d(v, v′) | v′ ∈ A}, if v /∈ A.
(2)

Intuitively, Dist(v,A) captures how far a value v is from
the violation of the inclusion in the set A. In both cases, we
search for the minimum distance between v and a point on
the boundary of A. Also, the case v /∈ A refers to a violation
and thus the negative sign is used in the definition.

Let O: Π → 2X represent a mapping of a predicate (π
in (1)) to a set of states. Given a trace ω and O, we define
the robust semantics of ω w.r.t. φ at time t ∈ R, denoted by
[[φ]](ω, t), by induction as follows:

[[true]](ω, t) = +∞ (3a)
[[π]](ω, t) = Dist(xt,O(π)) (3b)
[[¬φ]](ω, t) = −[[φ]](ω, t) (3c)
[[φ ∧ ψ]](ω, t) = min([[φ]](ω, t), [[ψ]](ω, t)) (3d)
[[φUIψ]](ω, t) = sup

t′∈t+I
min([[ψ]](ω, t′), inf

t′′∈[t,t′]
[[φ]](ω, t′′))

(3e)

The robustness metric [[φ]] maps each simulation trace ω
to a real number r. If [[φ]](ω, t) 6= 0, its sign indicates the
satisfaction status. Also, if ω satisfies φ at time t, any other
trace ω′ whose Euclidean distance from ω is smaller than
[[φ]](ω, t) also satisfies φ at time t.

We define the falsification problem as follows: For a given
system M and a specification φ, find ω ∈ L(M) such that
[[φ]](ω, t) < 0. This is generally captured as an optimization
problem:

ω∗ = arg min
ω∈L(M)

[[φ]](ω) (4)

where, we define [[φ]](ω) as the minimum robustness of trace
ω w.r.t. φ.

B. Problem Definition

In this paper, we assume that a Simulink model M along
with its STL specification φ is given as the input. A spec-
ification φ represents an acceptable behaviour of model M,
i.e., any trace ω ∈ L(M) should belong to the language of
φ, i.e., ∀ω ∈ L(M), ω ∈ Lφ. However, if there exists a trace
ω′ ∈ L(M) that does not belong to the language of φ, i.e.,
ω′ /∈ Lφ, then the model M does not satisfy the specification
φ, and we write M 6|= φ. In such a situation, our goal is to
find the root cause of the falsification and repair the model in
such a way that the repaired model satisfies the specification.

Given a Simulink model M and a specification φ, the
problems addressed in this paper are formally presented below.

Problem [Bug Localization] If M 6|= φ, identify the
minimal set of signals sspt ⊆ S that can accurately explain
the violation of φ.

Fig. 1: Simulink model of an Automatic Transmission system
(taken from [17])

Problem [Repair] If M 6|= φ, make minimal change to
model M and generate a model Mr so that Mr |= φ.

In defining the problems above, we do not define the terms
“accurately” and “minimal change to the model” formally.
Thus, we are not looking for a solution that will provide
guarantee on the optimality of the produced outputs. We rather
seek for heuristic solutions the quality of which we evaluate
experimentally. Also, in the above-mentioned problem defi-
nitions, we assume that the specification is correct and the
falsification happens due to a fault in the model.

C. Example

We illustrate the problem with an example Simulink model
shown in Figure 1. It is a model of an Automatic Transmission
[17] that exhibits both continuous and discrete behavior. The
system has two inputs - Throttle and Brake. The system has
continuous state variables (the speed of the engine RPM, the
speed of the vehicle Speed) and discrete state variable (Gear).
The input signals can take any value between [0, 100] and [0,
325] respectively.

Let us consider the following specification - we want to
ensure that the vehicle speed v (corresponds to the signal
Speed in the model) and the engine speed r (RPM in the model)
are always bounded by values vmax and rmax respectively. We
express this as the following STL specification:

φ = �(v < vmax) ∧�(r < rmax). (5)

The specification is falsified, and the timestamps where viola-
tions occur are those where the robustness value is negative.
The cause of violation is that the RPM (r) exceeds its maximum
permissible value 4500 (Figure 2). This event occurs each
time when there is a gear change. In the Simulink model, the
gear change happens automatically when the vehicle reaches a
particular speed. The underlying idea behind fixing this issue
is to reduce the threshold for gear change, such that before
the engine speed exceeds its maximum permissible value, the
gear change takes place.

We can monitor the simulation traces of model M for the
specifications φ using various tools [8], [9], [18]. In case
of violation of a specification φ, the information provided by
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Fig. 2: Falsification in the Automatic Transmission model

Algorithm 1: BUG LOCALIZATION ALGORITHM

1 procedure bug localization (M, φf , ωf )
2 Mf ← flatten model(M)
3 err signal ← extract signals (φf )
4 γ ← slice simulink model (Mf , err signal)
5 M ← [τ ]
6 for i = 1 : length (γ) do
7 y ← plot sig portrait (ωf , γ[i])
8 M ← [M y]

9 ρ ← plot robust sat (ωf , φf )
10 N ← [ ]; j = 1
11 for i = 1 : length (ρ) do
12 if ρ[i] < 0 then
13 N [j]← [τ [i] ρ[i]]; j ← j + 1

14 P ← join(M , N )
15 [Q,R,E]← matrix decomposition(P )
16 diagr ← abs(diag(R))
17 maxindex← find max index(diagr, κ) // κ is a parameter
18 sspt ← γ[E[1 : maxindex]]
19 return sspt

these tools is not sufficient for debugging. So, we need an
automated procedure that can help us localize the bug in model
M. Also, we want to use this information to repair the model
such that the repaired model Mr satisfies specification φ. In
the next two sections, we propose algorithms for precise bug
localization and model repair. We will illustrate our algorithms
using this example.

III. BUG LOCALIZATION

In this section, we present our bug localization algorithm
(Algorithm 1). The algorithm takes as input a Simulink
model M, a falsified STL formula φf , and the falsifying
trace ωf . The algorithm outputs the set of most suspected
signals sspt. As the first step, we flatten the input Simulink
modelM to expand all the subsystems recursively (except the
atomic subsystems) (line 2). Flattening of the input Simulink
model enables us to get precise localization of the bug and
hence precise fixes compared to what we could get from
the base Simulink model M. In line 3, we store all the
signals used in the specification φf in err signal. Next, we
apply model slicing technique [19], [20] to remove the signals
that are not related to the signals in err signal using the
slice simulink model function (line 4). This step gives
us a set of sliced signals γ. Then, in line 5, we create a
matrix M with one column containing all the time-stamps τ .
Mathematically, τ = [0 δ 2δ . . . T δ]T, where δ is the duration
of a simulation step and T is the length of the trace ωf . In
line 6-8, we add values column-wise to Mf with the columns
representing the traces for signals in γ for all time-stamps.

In line 9, we plot the robustness (ρ) of the trace ωf with
respect to the STL formula φf following the robust semantics
of STL introduced in Section II. In line 11-13, we store all
the time-stamps where specification violation occurs in matrix
N . In line 14, we apply the INNER JOIN procedure [21] to
M and N on the field time, remove the columns on time
(τ ) and robustness (ρ) and store it in matrix P . The matrix
P stores those values for all the signals in slice set γ that
correspond to negative robustness (falsification). The INNER
JOIN procedure creates a new result table by combining
column values of two tables based on a join-predicate (in this
case, time τ ). In case there is a match on join-predicate in
both the tables, the column values for each matched pair of
rows of both the tables are combined to give the result table.

In line 15-18, we remove the least significant components
of P using matrix decomposition function (line 15) to find
the set of most suspected signals sspt (line 18) that contribute
to the falsification of φf .

A. Matrix decomposition for locating the bug

The matrix P ∈ Rm×n contains the precise values for the
signals where robustness becomes negative, indicating the time
instances when the violation of the specification occurs. Each
of the n columns represent the values of a signal s ∈ Rm×1
for each time-point where the specification is violated. Hence,
matrix P provides an effective representation for the bug (i.e.
the reason for falsification). Thus, to find the most suspected
signal(s) sspt, we need to analyse P to find a small subset
of those signals that contribute to the bug most significantly.
However, the matrix contains too many signals as mere slicing
of the model based on err signal may provide many signals
which are not directly related to the bug. We attempt to identify
the columns in matrix P that are independent, i.e., the columns
that retain the crucial information about the matrix.

For a square matrix, the rank that is equal to the number
of non-zero eigenvalues of the matrix gives us the number of
linearly independent columns in the matrix. The matrix P ,
however, is not a square matrix. For a rectangular matrix,
we can use singular values of the matrix, which behave
the same way as the eigenvalues of a square matrix. The
singular values of a matrix A is defined as the square-root
of the eigenvalues of their associated square Gram matrix
(ATA) [22]. The number of non-zero singular values provides
the rank of the rectangular matrix. The standard practice for
obtaining the singular values of a rectangular matrix P is
singular value decomposition (SVD) [22]. This decomposition
represents matrix P as P = UΣV T, where U and V are
orthogonal matrices, and Σ is a diagonal matrix containing
the singular values of P in non-increasing order.

Though SVD provides important information about the
singular values and the rank of matrix P , the major defi-
ciency of SVD is that we cannot relate the singular values
to the columns of P . We use the permuted version of the
QR decomposition [23], [24], [22] to get the correspondence
between the columns in the original matrix P and its singular
values. The permuted-QR decomposition of P expresses the
matrix as the product of a real orthogonal matrix Q and
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an upper triangular matrix R. It produces an economy-size
decomposition in which E is a permutation vector, such that

P (:, E) = QR (6)

Here, P (:, E) represents the matrix formed by interchanging
the columns of matrix P using the permutation vector E [22].
The diagonal values of R are sorted in decreasing order.
Though QR decomposition does not provide us the singular
values for P directly, it has been experimentally shown that
the diagonal elements of R provide a close measure of the
singular values of matrix P [25].

The signals (columns in P ) corresponding to the nonzero
diagonal elements of R form the basis of matrix P and
are expected to have the most impact on the bug. However,
as the matrix decomposition is performed using numerical
methods, the diagonal elements that are significantly small in
comparison to the largest diagonal element can be ignored
safely. We define a parameter κ that decides the maximum
number of signals to be returned to the user as the result
of bug localization. Let the number of nonzero elements
in diag(R) be κ′. Our bug localization algorithm returns
min(κ, κ′) signals from the set γ corresponding to the largest
elements in diag(R) (line 16-18). The set of signals sspt has
the most suspected signals because it corresponds to the largest
singular values in decreasing order. If the user is interested in
the most probable location of the bug, we return the first signal
in sspt.

B. Complexity Analysis

The number of blocks (B) and the number of connections
or signals (C) in a Simulink model are generally of the
same order (Table I). Also, the size of an STL formula
|φf | is negligible with respect to the size of the model (can
be taken as |C|). Thus, we compute the complexity with
respect to |C| and the length of the simulation T (= |τ |,
the length of the signal ωf ). The flatten model function
in line 2 requires to scan the Simulink model once. Thus it
incurs a computation cost of O(|C|). The extract signal

function in line 3 needs to scan the STL formula once. We
ignore the complexity of this function as we assume that
|φf | � |C|. The slice simulink model function in line 4
incurs a time complexity of O(|C|2) as there are at most
|C| elements in the set err signal, and for each element in
err signal, we need to perform a depth-first search in the
graph induced by the Simulink model. The complexity of the
computation in line 6-18 is governed by the complexity of the
function matrix decomposition, which is O(T · |C|2), as
the complexity of QR decomposition is O(m · n2), where m
and n are the number of rows and the number of columns of
the matrix respectively [22]. Thus, the overall time complexity
of our bug localization algorithm is O(T · |C|2).

C. Example

In the example in Sec. II-C, the formula �(r < rmax) gets
falsified. In function bug localization, the err_signal
in line 3 is {RPM}. The slice set γ (line 4) consists of
the following set of 28 signals: {Eii, ImpellerTorque,

Nin, OutputTorque, RPM, TRPM, Brake, Down_th,
Drive_ratio, Gear, . . ., Lin_speed, Speed, Throttle,
. . .}. This set contains signals that are in the base model
as well as within the subsystems. For example, the signal
RPM is present in the base model, while the signal Eii

and Lin_speed lie within Engine subsystem and Vehicle
subsystem respectively. The matrix M (line 8) is given below.

τ Eii ImpT .. RPM .. Lin s ..

...
...

...
...

...
...

...
6.11 338.84 271.19 .. 4751.4 .. 6187.9 ..
6.12 338.23 270.95 .. 4754.8 .. 6193.8 ..
6.13 337.63 270.71 .. 4758.2 .. 6199.7 ..
6.14 337.03 270.47 .. 4761.5 .. 6205.6 ..
6.15 336.44 271.23 .. 4764.9 .. 6211.5 ..

...
...

...
...

...
...


.

Here τ is the vector containing the time steps in the
simulation, Eii refers to signal Engine Impeller Inertia, ImpT
is Impeller Torque, Lin_s refers to linear speed signal (within
Vehicle subsystem). The matrix N is given by

τ ρ

...
...

6.11 −251.41
6.12 −254.8
6.13 −258.18
6.14 −261.5
6.15 −264.92

...
...


.

Here, the second column provides the robustness values (ρ)
at different time steps. The matrix obtained after the INNER
JOIN operation is shown below.

τ Eii .. RPM ... Lin s ... ρ

...
...

...
...

...
...

...
...

6.11 338.84 .. 4751.4 ... 6187.9 ... −251.4
6.12 338.23 .. 4754.8 ... 6193.8 ... −254.8
6.13 337.63 .. 4758.2 ... 6199.7 ... −258.2
6.14 337.03 .. 4761.5 ... 6205.6 ... −261.5
6.15 336.44 .. 4764.9 ... 6211.5 ... −264.9

...
...

...
...

...
...

...
...


.

The matrix P in line 14 is obtained by removing the first
and the last column of the above matrix. Now, we perform the
QR decomposition of matrix P (line 15) and obtain an upper
triangular matrix R with abs(diag(R)) (line 16) given by
[343670 126540 96160 47880 24080 6530 2150 .... 0]T. Here,
κ′ = 7; however, several diagonal elements have significantly
smaller values compared to the first element. The matrix E is
given as E = [24 1 22 13 3 5 7 .... 18], which indicates that
column 24 in matrix P corresponds to the largest singular
value. Column 24 in matrix P corresponds to the signal
Lin_speed. Thus, if κ = 1, we return sspt = {Lin_speed}.
Similarly, if κ = 2, sspt = {Lin_speed, Eii}.

In this paper, for all experiments, we have used κ = 1, i.e.,
|sspt| = 1, and we have been able to localize and fix the bugs
successfully.
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Algorithm 2: ParameterTuning
Input: A model M, a signal s ∈ sspt and an STL specification φ
Output: A model Mr that satisfies φ

1 p ← param (src(s))
2 curr rob← min robustness(M, φ)
3 old rob← curr rob
4 default val← p.val
5 α← rand(1− δ, 1 + δ)
6 αold ← v, where 1− δ ≤ v ≤ 1 + δ, v 6= α
7 while |α− αold| > limit do
8 new val← default val
9 for i=1 to H do

10 new val = new val ∗ α
11 new rob← min robustness(M(p.val = new val), φ)
12 if new rob > 0 then
13 Mr ← save system (M = (p.val = new val))
14 return Mr

15 if new rob > curr rob then
16 if accept(new val, λ) then
17 curr rob← new rob

18 αold ← α
19 α← update(α, old rob, curr rob)
20 old rob← curr rob

IV. MODEL REPAIR

The bug localization algorithm provides us the most sus-
pected signal(s). Since the value of a signal depends on its
source block, we focus on the parameters of the source blocks
of the suspected signals and attempt to fix the model by
tuning them. In our repair mechanism, we work with a single-
fault assumption, which ensures that the value of at most one
parameter is erroneous. However, the repair algorithm can be
modified seamlessly to tune multiple parameters in the same
block or different blocks.

The model repair problem is posed as the following non-
linear optimization problem: For a systemM and a specifica-
tion φ, find the value of parameter p ∈ P such that [[φ]](p) > ε,
where ε is the user given threshold for minimum robustness
to repair the model M. This optimization problem can be
mathematically written as

p∗ = arg min
p∈P s.t. [[φ]](p)>ε

[[φ]](p) (7)

We solve the above non-linear optimization problem using
a modified version of Simulated annealing [26]. It is a prob-
abilistic technique to find an optimal value in large search
spaces.

In our algorithm, we start with the default value of param-
eter p (p.val) of model M and a value α from a given range
[1 − δ, 1 + δ]. The algorithm has two loops. The outer loop
determines how exhaustive our search is (i.e., directions). For
instance, α > 1 means exploring parameter values greater
than the default parameter value. The inner loop determines
our computation budget, i.e., how far we want to go in that
direction (denoted as H). For every iteration of the outer loop,
we pick another α according to the improvement in robustness.
We stop the outer loop if there is a convergence between two
consecutive values of α. Our aim is to find an appropriate
parameter value new val for the parameter that enables us
to repair the model. We denote by M(p.val = new val) the

model that is obtained by setting the value of the parameter p
to new val.

In Algorithm 2, we present the model repair procedure
formally. In line 1, we extract the model parameters p from
the source block of signal s. In line 2, we find the minimum
robustness of the model with parameter p with respect to
specification φ. In line 5 and line 6, we assign a random value
to α between [1−δ, 1+δ]. We run the outer while loop (line 7-
20) until the α value converges. In line 11, we compute the
minimum robustness value for the model with the new value
new val for parameter p. If the robustness value is positive,
we have been able to repair the model successfully (line 12-
14). Otherwise, if the robustness value of the model with
respect to property φ is better for the new value (line 15), we
accept it as the current value of parameter p with probability λ
(line 16). The inner loop ensures that the minimum robustness
increases or remains the same with each iteration. In line 19,
we update the value of α based on whether robustness has
improved or not in the inner loop. If the robustness improved,
i.e., curr rob > old rob, then we choose the new α value
close to αold. Otherwise we choose α at a far distance. For
example, if αold > 1 we choose α < 1 and vice-versa. As
we show in Section VI-C, the parameters involved in this
algorithm can be decided experimentally.

In Algorithm 2, we have considered parameter values as
points for the sake of computational efficiency. However, we
could use the technique of sensitivity analysis for parameter
synthesis for sets (of points), as discussed in [27].

A. Complexity Analysis

The complexity of Algorithm is O((range(α)/limit)∗H).
Here range(α) is the difference between the maximum and
the minimum value of α, and H is the number of maximum
possible iterations in the inner loop of the algorithm.

B. Example

In Section III, we found the signal Lin_speed to have the
most impact on the bug. Its source block is a Gain block having
parameter 2*pi*Rw with the default value 6.28 (at Rw = 1).
The final value of p that fixes the model with respect to the
specification �(r < rmax) is 6.90 (robustness = 45.48).

V. AUTOMATED DEBUGGING

In the previous two sections, we have presented how to
localize a fault in a Simulink model with respect to a singleton
STL formula and how to debug the Simulink model with
respect to the localized fault if it is related to a model
parameter. In practice, a Simulink model may have many
independent specifications. When we attempt to debug the
Simulink model, we need to ensure that after debugging the
model satisfies all its specifications. One way to achieve this
is to form a new STL formula by taking conjunction of all
individual STL formulas. However, once the large formula
gets falsified, we need to deal with a large err signal set,
which makes the slicing ineffective, and we need to deal with
a large matrix P , which is computationally expensive.
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Algorithm 3: DebugSimulinkModel
Input: A Simulink model M and a STL property φ
Output: A bug-free Simulink model Mr

1 〈φmin, ω〉 ← find min violating subformula (M, φ)
2 while φmin 6= NULL do
3 sspt ← bug localization(M, φmin, ω)
4 Mr ← model repair(M, φmin, sspt)
5 if Mr = NULL then
6 return ‘failure’

7 M←Mr

8 〈φmin, ω〉 ← find min violating subformula (M, φ)

9 return M
10 procedure find min violating subformula (M, φ)
11 〈res, ω〉 ← falsify(M, φ)
12 Φ← find atomic subformulas(φ)
13 if res then
14 for i = 1 : |φ| do

15 Φi ← {
i∧

j=1
φj | φj ∈ Φ}

16 for j = 1 : |Φi| do
17 res← check spec(Φij , ω)
18 if res then
19 return 〈Φij , ω〉

20 else
21 return NULL

To deal with the inefficiency with the above-mentioned
approach, we propose an incremental algorithm to debug a
Simulink model by looking at the subsets of the individual
specifications systematically. Our algorithm for incremental
debugging of a Simulink model is presented in Algorithm 3.
The inputs to our algorithm are the Simulink model M and
the STL property φ, which is given in the form

∧n
i=1 φi, where

φi is an atomic subformula. An atomic subformula is one that
cannot be represented as a conjunction of other subformulas.
We refer by a subformula or a subspecification a conjunction
of a set of atomic subformulas. We denote by Φ the set of all
atomic subformulas in φ. Our goal is to generate a bug-free
Simulink model Mr, which satisfies φ.

In line 1 of Algorithm 3, we find the minimal violating sub-
formula φmin in the specification φ for modelM by invoking
find min violating subformula. The function returns a
minimal length subformula that gets falsified. In the while
loop (line 2- 8), we first find the most suspected signals in the
Simulink modelM (line 3). In line 4, we repair the modelM
using the signals sspt if possible. If the model repair process
fails, we terminate the algorithm with ‘failure’. Otherwise,
in line 8, we again find the minimal violating sub-formula
in the specification φ for the repaired model Mr. The loop
continues until we find no further falsification of φ.

The function find min violating subformula employs
a crude method to find a minimal unsatisfiable core [28]
responsible for falsification. In line 11, we find the trace
ω responsible for the falsification of φ. In line 14-19, we
iteratively find the minimal violating sub-specification Φij that
is falsified w.r.t. ω. The function check spec(Φij , ω) checks
if the trace ω also falsifies the sub-specification Φij . We can
employ more sophisticated techniques to find the minimal
satisfiable core, for example, the one presented in [29], where

the authors provide a method to find a prime implicant of a
temporal logic formula.

A. Complexity Analysis

In the worst case, the debugging algorithm in Algo-
rithm 3 may not terminate as there may be conflicting sub-
specifications. Fixing the model for one sub-specification may
render the model faulty for another sub-specification for which
we debugged the model before. However, we analyze the
complexity of the algorithm under the assumption that the sub-
specifications are not conflicting, and the bugs can be fixed by
the parameter tuning algorithm presented in Section IV-A. Un-
der these assumptions, we can modify the algorithm slightly to
ensure that once the model is debugged for a sub-specification,
the sub-specification is removed from Φ.

On the basis of the above-mentioned assumptions and the
modification in the algorithm, we can analyze the complexity
of the modified algorithm as follows. In the worst case, the
function find min violating subformula will be invoked
for all the sub-formulas of φ with successful falsification and
functions for bug localization and model repair have to be
invoked for all of them. Thus, the time complexity of the
main algorithm DebugSimulinkModel is O(2|φ| · (T · |C|2 +
(range(α)/limit) ·H)) (Refer to Section III-B and IV-A for
the time complexity of the bug localization and the model
repair functions).

B. Soundness and Completeness

The procedure find min violating subformula relies
on the method falsify which is sound (if an STL formula
is falsified, then there indeed exists a trace that violates the
STL formula) but not complete (the method may not find
a trace that violates the STL formula even if there exists
one). Due to this reason, even if Algorithm 3 terminates
successfully, we cannot conclude with certainty that the model
M satisfies all sub-specifications captured in φ. However, if
we have access to an STL falsifier that is both sound and
complete, our debugging algorithm is also sound despite the
fact that our bug localization algorithm may not always be
able to localize the bug, and our model repair is not complete.
Because, if a localized bug can be repaired successfully, then
the bug is indeed a legitimate bug with respect to the falsified
specification. Moreover, the termination of Algorithm 3 with
a valid Simulink model ensures that we have found and
removed all the bugs that might cause falsification of the STL
specification φ.

The above discussion leads to the following theorem.

Theorem 1 (Soundness). If the STL falsifier used in Al-
gorithm 3 is both sound and complete, and Algorithm 3
terminates for a Simulink model M and STL specification φ
successfully, then the model returned by Algorithm 3 indeed
satisfies φ.

Needless to say, Algorithm 3 is not complete due to the
incompleteness of our model repair procedure.
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VI. EXPERIMENTS

A. Implementation

Our Simulink model debugging algorithm relies on runtime
monitoring of an STL specification. In our implementation, we
use BREACH toolbox [9] for this purpose. However, there are
other tools, such as S-Taliro [8] and AMT [18], that could also
be used in implementing our algorithm. We write a wrapper
MATLAB script on top of the BREACH tool to implement our
algorithm. We have developed an automated mechanism to
flatten a given Simulink model. We implement our own slicing
algorithm in Python instead of using Simulink Design Verifier
(SDV) [30] to achieve full automation since SDV requires
manual intervention. All experiments were run on a machine
with core i7 intel processor, 32 GB RAM, Ubuntu 16.04 OS,
MATLAB version R2017a, and BREACH version 1.5.2. The
implementation of the tool is available at https://github.com/
iitkcpslab/Blars.

B. Benchmarks

We carry out our experiments on five Simulink models (ref.
Table I). The STL specifications for the models, which are
borrowed from [9], [31] are presented in Table II. Though the
models have been taken from standard sources, they turned
out not to be error-free with respect to several useful STL
specifications. Here we provide a brief introduction to the
models.
AT. In the Automatic Transmission (AT) model, a Stateflow
performs the function of gear selection. The inputs to the
model are Throttle and Brake. Based on these inputs, the
speed and the rpm of the vehicle change and the Stateflow
shifts the vehicle into different gears. Here the specifications
captures different requirements based on the speed of the ve-
hicle, gear and rpm signals (refer Section II for more details).
The values of the parameters used in the specifications are as
follows: vmax = 160, rmax = 4500, vo = 0, vmin = 100,
rmin = 4000, t1 = 10 and vlow = 30.
AFC. In the Air-Fuel ratio Control (AFC) model, we describe
a four-cylinder spark ignition engine. It contains an air-fuel
controller and a model of engine dynamics. The input to the
model are Throttle and Speed. Together they determine the
amount of oxygen present in the exhaust gas, which determines
the fuel rate (cyl fuel). The air-mass flow rate (cyl air)
is pumped from the intake manifold. The air-fuel (AF) ratio
is computed by dividing the air-mass flow rate by the fuel
rate. Here the specifications capture various constraints on the
signal air-fuel ratio. The values of the parameters used in the
specifications are as follows: af ref = 14.7, tol = 0.01,
ε = 0.01, dt = 0.1, tstart = 10, t0 = 5, tend = 40.
NNM. In the Neural Network based Magnetic Levitation
(NNM) model, the controller transforms nonlinear system dy-
namics into linear dynamics by cancelling the non-linearities
(feedback linearization control). The input to the model is the
reference signal Ref. We train the neural network to represent
the forward dynamics of the system. Here, the specifications
demand that the plant output Pos is consistent with the
reference signal Ref. The values of the parameters used in

Model Ref. # Blocks # Signals Spec
Automatic Transmission (AT) [17] 70 61 φ1

Abstract Fuel Control (AFC) [32] 253 187 φ2

Neural Network based MagLev (NNM) [33] 103 93 φ3

Anti-Lock Braking (ALB) [34] 41 50 φ4

Helicopter (Heli) [35] 6 5 φ5

TABLE I: Simulink model benchmarks

Spec SubSpec STL formula
φ1 φ11 � ( v < vmax)

φ12 � ( r < rmax)
φ13 � ¬ ((gear == 3) ∧ (v < vlow ))
φ14 �[0,25] (v < vmax)
φ15 �[25,50] (v > vo)

φ16
� ((gear2) ∧ ♦[.01,.02] (gear1)) =⇒ �[0,2.5] ¬ (gear2)
where gear1 ≡ gear == 1, gear2 ≡ gear == 2

φ17 ¬ ( ♦[0,t1] (v > vmin) ∧ � (r < rmin))

φ2 φ21

�[tstart,tend]
AF ok where

AF ok ≡ ¬(AF above ref ∨ AF below ref )
AF above ref ≡ AF > af ref − tol
AF below ref ≡ AF < −af ref + tol

φ22
�[t0,tend]

(AF above ref =⇒ ♦[0,tstab]
AF abs ok)

where AF abs ok ≡ AF < af ref + tol

φ23
�[t0,tend]

(control mode check =⇒ AF ok)
control mode check ≡ (controller mode == 1)

φ24

�[t0,tend]
(AF will be stable), where

AF will be stable ≡ ♦[0,9](AF stable),
AF stable ≡ �[0,1]AF settled,
AF settled ≡ abs(AF [t+ dt]- AF [t]) < ε ∗ dt

φ3 φ31

�[0,tend−τ] ((¬close ref ) =⇒ reach ref in tau),
where reach ref in tau ≡ ♦[0,τ] (�[0,τ0], close ref ),
close ref ≡ (Pos− Ref) ≤ c abs+ c rel ∗ abs(Ref)

φ32
�[0,tend]

(¬ (far ref )) where
far ref ≡ (Pos− Ref) ≥ max over

φ4 φ41 ♦[0,tend]
(�[0,3](abs (V s−Ww) < thold ))

φ42 �[0,τ]((slp < 1) ∧ (Ww > tol))

φ5 φ5 ♦[0,τ] (�[0,3](abs (θ̇ − ψ) < 0.01 ))

TABLE II: Specifications for different Simulink models

the specifications are as follows: c abs = 0.01, c rel = 0.1,
max over = 2, tend = 20, τ0 = 1, τ = 1.
ALB. In the Anti-Lock Braking (ALB) model, the signals Ww
and Vs refer to the wheel speed (angular) and vehicle speed,
respectively. The signal Slp ∈ [0, 1] is zero when wheel speed
and vehicle speed are equal (i.e., no locking) and equals one
when the wheel is locked. The goal here is to prevent skidding
as much as possible when the brakes are applied. The values
of the parameters used in the specifications are as follows:
tend = 15, τ = 10, thold = 1, tol = 0.1.
Helicopter. The helicopter model is one of the simplest
models for feedback control. The input to the model is the
reference angular velocity ψ. Here, we want that the angular
velocity θ̇ (actual behavior) is consistent with the reference
signal ψ (the desired behavior). The value of τ used in the
specification is 5.

C. Results

1) Deciding the parameter values for Algorithm 2: Algo-
rithm 2 involves three parameters: λ, H , and δ. The per-
formance of the algorithm depends on the values used for
these parameters. Here the performance is measured as the
number of iterations required to tune a parameter in a falsified
model. As determining the optimal combination of values for
the parameters in the algorithm is a complex optimization
problem, we instead evaluate the performance of the algorithm
for each parameter independently while keeping the values for
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(a) λ (b) H (c) δ
Fig. 3: Number of Iterations (with error bars) for different
values of λ, H , and δ for specifications φ1 and φ4. The default
values used in our experiments is λ = 1, H = 10 and δ = 0.5
(α ∈ [0.5, 1.5]). Note that absence of data denotes that bug
could not be fixed in 150 iterations.

the other parameters fixed. Figure 3 shows how the number
of iterations to solve the parameter tuning problem for the
specifications φ1 and φ4 vary with the values of λ, H and
δ. Each value is an average of the values obtained from 10
executions. As we can see from the results, the number of
iterations decreases monotonically with the increase in the
value of λ. For H , we find that both too small values and
too large values degrade the performance. For the range of α,
we find that the performance of the algorithm is poor for too
small range of α. It attains the best performance for δ = 0.5
and remains the same (for φ1) or degrades monotonically (for
φ4) when we increase the range. By following the results, we
choose λ = 1, H = 10 and δ = 0.5 for all our experiments
described below.

2) Results of bug localization and repair by Algorithm 3: In
Table III, we present the results of bug localization (column 5-
7) and model repair (column 8-10) for the Simulink models in
Table I. The Iters in the third column refers to the number of
iterations in Algorithm 3, i.e. the number of sub-specifications
that have been falsified until no violation was found for the
entire specification. The final val refers to the value of the
parameter that repairs the model. Also, SA− Iters refers to
the number of iterations of the inner loop in Algorithm 2. For
the reference, we also present the results of debugging the
Simulink models for each sub-specification independently in
Table IV.
AT. In case of AT model, we need three iterations of the
loop in Algorithm 3. The model M is first falsified w.r.t.
φ1 with minimal violating subformula as φmin = φ12. In
the first iteration, the bug localization step (line 3) returns
sspt = {Lin_speed} and the repair step (line 4) tunes the
parameter Rw (Radius of Wheel) to fix the model w.r.t. φ12.
The repaired model Mr is still falsified w.r.t. φ1 (line 8), but
this time the minimal violating sub-formula is φmin = φ15.
In the second iteration, the bug localization step returns us
sspt = {Eii} and in the repair step, we tune the parameter
Iei (Engine & Impeller inertia) to fix the model M w.r.t.
φ15. The repaired model Mr is again falsified w.r.t. φ1, with
the minimal violating subformula φmin = φ16. This time the
bug localization step returns sspt = {Lin_speed} and in the
repair step we tune the parameter Rw starting with the value
set in the first iteration, to fix the model w.r.t. φ16. The model
Mr, hence obtained, satisfies φ1.

Note that we had to increase the value of the parameter Rw
to fix the model for φ12. However, to fix the model for φ16 we

had to decrease the value of Rw to 3.5369, which also worked
for φ12. This is because when we fixed the model for φ12 in
the first step, the parameter related to the signal Eii had a
larger value, which caused a higher value for Rw for fixing
φ12. Once the value of Eii has been set to a lower value of
0.1953 while fixing the model for φ15, φ12 got satisfied for a
lower value of Rw.

Now let us explain a bug in detail to justify the accuracy
of our bug localization algorithm. Consider specification φ12
(Table IV) which is violated as RPM exceeded its permissible
limit. This increase in RPM can be avoided if we can enable the
gear change before the RPM exceeds the value. In Automatic
Transmission, the gear change occurs automatically based on
the vehicle speed, i.e., based on whether it is greater or
less than a threshold value. In this particular case, the repair
algorithm increases the value of radius of wheel (from 6.28
to 6.908). This means that for the same rpm, we get higher
vehicle speed (since v = r ∗ ω). This higher speed causes the
gear change a bit earlier, i.e., at a lower RPM value, causing
the satisfaction of φ12.
AFC. In case of AFC model, the parameter is a Gain constant
that affects the signal sspt = L13 (same as speed). The fault
here is that the Air-Fuel ratio (AF) violates the permissible
limit. We know that at a higher speed, the intake air flow
increases [32] and hence the AF ratio becomes higher. To
reduce this ratio, we need to reduce the speed, which we do
by tuning the parameter of the Gain block that is source of
the signal L13.
NNM. In NNM model, the parameters used for repair are
constants within a Gain block. Due to not having enough
information about the model, we could not explain the physical
interpretation of our model repair step for this model.
ALB. In the ALB model, the first sub-specification that gets
falsified is φ42, which indicates that the wheel speed Ww is
going below a threshold. Here, the obtained suspected signal
is Brake_torque, whose source block is a Gain block with
the parameter Kf , representing the radius of the piston with
respect to the wheel. The wheel speed Ww is given as Ww =∫
Tire torque−Brake torque

l dv. Since, φ42 can be satisfied by
increasing Ww, decreasing the gain of the source block (Kf )
reduces Brake_torque and increases Ww, resulting in the
satisfaction of φ42.

Subsequently, the model now gets falsified for φ41, which
indicates that the value of wheel speed Ww is not sufficient
for the specification to be satisfied. The bug localization
algorithm indicates that signal Filt_rate, which is the output
of a transfer function block representing the hydraulic lag
associated with the brake. The parameter tuning algorithm
tunes the parameter to reduce its value in such a way that
the wheel speed increases sufficiently to satisfy φ41.

It is worth noting that both φ42 and φ41 require the wheel
speed Ww to increase but with a different degree. Once the
model is fixed for φ42 by changing the value of Kf , the model
got fixed for φ41 subsequently for a larger value (32.66, closer
to the default value) of the constant in the transfer function
block in comparison to the value (20.9715) when φ41 was
considered independently (See Table IV). This is because a
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Model Spec Iters φmin
Bug Localization Model Repair

err signal | γ | sspt default val final val SA− Iters

AT
∧17

i=11 φi 3
φ12 RPM 28 Lin_speed 6.28 6.908 12
φ15 Speed 28 Eii 50 0.1953 39
φ16 Gear 28 Lin_speed 6.908 3.5369 4

AFC
∧24

i=21 φi 1 φ21 AF, AFref 48 L13 9.55 1.6022 9

NN
∧32

i=31 φi 1 φ21 Pos, Ref 30 L32 12 2.0133 9

ALB
∧42

i=41 φi 2
φ42 Slp, Ww 16 Brake_torque 1 0.64 3
φ41 Vs, Ww 16 Filt_rate 100 32.76 6

Heli φ5 1 φ5 ψ, θ̇ 4 Ctrl_signal 10 14.641 15

TABLE III: Results of debugging with respect to full specifications

M Spec
Bug Localization Model Repair

err sig sspt
parameter val SA

Iterdefault final

AT

φ11 Not Falsified
φ12 RPM Lin_speed 6.28 6.908 12

φ13
Gear,
Speed

Lin_speed 6.28 2.0578 6

φ14 Not Falsified
φ15 Speed Eii 50 0.19531 39
φ16 Gear Eii 50 0.0052 51
φ17 Not Falsified

AFC

φ21
AF,
AFref

L13 9.55 1.6022 9

φ22
AF,
AFref

L13 9.55 3.9117 5

φ23

AF,
AFref,
ctrl_m

L13 9.55 1.6022 9

φ24 AF L13 9.55 2.5035 7

NN φ31
Pos,
Ref

L32 12 2.0133 9

φ32
Pos,
Ref

L32 12 4.9152 5

ALB φ41 Vs, Ww Filt_rate 100 20.9715 8

φ42
Slp,
Ww

Brake_torque 1 0.64 3

Heli φ5 ψ, θ̇ Ctrl_signal 10 14.641 15

TABLE IV: Results when the sub-specifications have been
treated independently for debugging

lower value of Kf already pushed the value of wheel speed
Ww in the desired direction.
Helicopter. In the Helicopter model, the parameter used for
repair is the controller scaling factor K. Here, the suspected
signal is Ctrl_signal whose source block is a Gain block
with parameter K. The violation of φ5 is attributed to the
deviation of θ̇ from ψ. Since θ̇ = K ∗ a ∗

∫
(ψ − θ̇)dt

(refer [35]), tuning the parameter K fixes the model.

3) Debugging for individual specification vs. for the set
of all specifications: Algorithm 3 enables us to debug a
Simulink model for a specification captured as a conjunction of
sub-specifications without running the debugging method for
all the sub-specifications independently. When we debug the
model for one sub-specification, the model becomes correct
w.r.t. many other sub-specifications, if they are consistent
with each other. For instance, in case of AT model, we
needed three iterations to fix the model (Table III), even
though the specification has four atomic sub-specifications
that cause falsification (φ12, φ13, φ15, φ16) when treated in-
dependently (Table IV). Also, as Table IV shows, in case

Model
Computation T ime (ms)

Flatten Falsif. BugLoc Repair Total

AT 2762
7783 12004 66865

62842812432 8463 457412
3051 10567 47089

AFC 2821 18226 17169 234917 273133
NNM 3021 2038 5614 88284 98957

ALB 2261
1324 6125 21776

89808
1674 7247 49401

Heli 2087 730 2982 28256 34055

TABLE V: Computation Time for the debugging with respect
to full specifications

of AFC and NNM models, we get the same sspt during
the independent debugging for all the sub-specifications and
during the execution of Algorithm 3 with the full specification.
For example, for AFC, when we debug the model for the
four sub-specifications independently, in each case, we find
sspt = {L13}. When we run Algorithm 3 for the conjunction
of the four sub-specifications, it terminates after one iteration
by fixing the model for all sub-specifications based on the
signal sspt = {L13}.

For a model, not all its sub-specifications may get falsified
when they are treated independently. For instance, for the AT
model, the sub-specifications φ11, φ14, and φ17 are not falsified
by the initial model. Nevertheless, we do not exclude them
when we run Algorithm 3 on the model to ensure that fixing
the model for some other sub-specification does not make it
faulty with respect to the already satisfied sub-specifications.
For the AT model, the inclusion of the sub-specifications φ11,
φ14, and φ17 as part of specification φ1 ensures that the final
model also satisfies those specifications.

It is worth noting that if two sub-specifications are conflict-
ing for a model (i.e., there does not exist a common value for a
parameter that fixes the model for both the sub-specifications),
Algorithm 3 will not terminate. Non-termination of Algo-
rithm 3 indicates a problem in the specification, fixing which
is beyond the scope of this paper.

4) Computation Time: In Table V, we present the time
spent on each step in the debugging process - namely,
Flattening (Flatten), Falsification (Falf), Bug Localization
(BugLoc), Model Repair (Repair).

D. Comparison

In this section, we compare our bug localization method
with a recent work on bug localization in Simulink mod-
els [36]. In [36], the authors perform property mining from
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passing traces and use them to analyze the failures in the
model. In a case study presented in [36], the authors introduce
a bug in the AT model by changing an entry in a lookup
table. We apply our bug localization tool to the erroneous
Simulink model and get the most suspected signals to be
sspt = {Nin}. Ideally, sspt should have contained the signal
L6 whose source block is the lookup table. However, the signal
Nin is the product of signals Nout and L6. Thus, though
our bug localization algorithm cannot point out the exact bug
location, it is able to locate a block which is quite close to
the source of the bug and our bug localization output should
enable an engineer to identify the actual bug easily. This case
study shows that our bug localization is also applicable to
other bugs than bugs in model parameters.

Our bug localization algorithm is computationally much su-
perior to the algorithm presented in [36]. Our bug localization
tool requires 15.45s whereas the technique in [36] requires
239.9s to locate the bug, which is approximately 15 times
larger than our computation time.

VII. RELATED WORK

The hybrid systems research community has developed
broadly two approaches to address the reliability issues of
Cyber-Physical Systems. One approach is formal verification,
which is based on set-based reachability analysis techniques.
Some of the popular tools in this domain are SpaceEx [37],
C2E2 [38] and Flow* [39]. The other approach is rigorous
testing, which is often carried out based on the falsification
of a specification. The prominent tools in this domain are S-
TALIRO [8] and BREACH [9]. We have used the latter approach
for bug localization in this paper.

Bug localization [40], [41] has always been one of the
significant challenges faced by the Software Engineering com-
munity. Even when we are able to discover the presence of
bugs (based on falsification or other manifestations of the bug),
finding them precisely and fixing them is a tedious job [42].

Recently, various research work have been carried out to
develop heuristics for fault localization in Simulink models
using statistical debugging techniques iteratively [2], [43].
However, these techniques have been of limited use due to
their unpredictability, due to which they need to generate
additional test cases [3]. In [44], the focus is on identifying the
subset of inputs that are responsible for a counterexample as
a whole. The identification of essential inputs may help us in
generating more test cases producing violations, which may, in
turn, help in fault localization. In [4], the authors use model
slicing and spectrum-based fault-localization technique [45]
to find bugs in Simulink models. However, they presume
the error to be in the Stateflow component of the Simulink
model, thereby reducing the problem space. In this paper,
we do not make any assumptions on the location of the bug.
Though the above-mentioned papers deal with bug localization
of Simulink models, unlike our paper, they do not provide any
mechanism to use the information provided by their technique
to repair the model. This way, it is hard to judge the efficacy
of the proposed bug localization techniques. We apply our
model-repair technique to fix bugs leading to a violation of

complex real-time specifications, which has been lacking in
contemporary papers.

In [46], the authors focus on parameter synthesis using
reachability analysis to find the set of parameters such that
M |= φ, which is exhaustive but computationally expen-
sive. Other computationally complex methods like sensitivity
analysis [27] and abstraction based methodology [47] have
been studied for parameter synthesis in CPS models. Unlike
these papers, we do not treat a model as a black-box, rather
we analyze the model. Also, those computationally expensive
techniques are not required for our purpose as we do not need
the complete set of values for the parameters. We require only
one value that fixes the model. In [48], the authors consider
parameter tuning associated with lookup maps. They rank the
parameters according to their impact on performance. This
approach, however, is agnostic to specifications.

VIII. CONCLUSION

In this paper, we have presented a novel framework for de-
bugging Simulink models. Our debugging framework includes
a fully automated mechanism to localize bugs in the models
precisely. We also provide a fully automated mechanism to
repair the Simulink models using the information generated
from bug localization when the bug is due to an inappropriate
value for a model parameter. Our approach is based on the
rigorous analysis of traces generated by Simulink models,
model slicing, and, most importantly, matrix decomposition.
We demonstrate the efficacy of the proposed technique by
fixing bugs in five Simulink models based on the data gen-
erated by the falsification of their specification. Our success
in repairing the models demonstrates that our bug localization
algorithm can pinpoint the source of the bug precisely.

Despite these positive results, some caveats are worth men-
tioning here. The repair technique is applicable only if the
set of suspected signals contains at least one signal whose
source block contains tunable parameters (e.g., Gain block,
Transfer Function block). Moreover, though our simplistic
model repair technique has been successful in fixing a number
of bugs related to parameters in models, it may not be able
to fix several other bugs that may require addition, omission
or replacement of some blocks and/or connections in the
Simulink model in a non-trivial way. In our future work, we
will explore more general model repair techniques to deal with
this limitation.
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