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We present Antlab, an end-to-end system that takes streams of user task requests and executes them using

collections of robots. In Antlab, each request is speci�ed declaratively in linear temporal logic extended

with quanti�ers over robots. �e user does not program robots individually, nor know how many robots are

available at any time or the precise state of the robots. �e Antlab runtime system manages the set of robots,

schedules robots to perform tasks, automatically synthesizes robot motion plans from the task speci�cation,

and manages the co-ordinated execution of the plan.

We provide a constraint-based formulation for simultaneous task assignment and plan generation for

multiple robots working together to satisfy a task speci�cation. In order to scalably handle multiple concurrent

tasks, we take a separation of concerns view to plan generation. First, we solve each planning problem in

isolation, with an “ideal world” hypothesis that says there are no unspeci�ed dynamic obstacles or adversarial

environment actions. Second, to deal with imprecisions of the real world, we implement the plans in receding

horizon fashion on top of a standard robot navigation stack. �e motion planner dynamically detects environ-

ment actions or dynamic obstacles from the environment or from other robots and locally corrects the ideal

planned path. It triggers a re-planning step dynamically if the current path deviates from the planned path or

if planner assumptions are violated.

We have implemented Antlab as a C++ and Python library on top of robots running on ROS, using SMT-

based and AI planning-based implementations for task and path planning. We evaluated Antlab both in

simulation as well as on a set of TurtleBot robots. We demonstrate that it can provide a scalable and robust

infrastructure for declarative multi-robot programming.

1 INTRODUCTION
Autonomous cyber-physical systems are an emerging class of systems with tremendous potential to

transform our lives. �ese are distributed systems which incorporate, in addition to computation

and storage, large collections of sensors and actuators, which can be used to interact with and

control the physical world autonomously. For example, cyber-physical systems in warehouse

management consist of collections of autonomous robots, each of which implements a sophisticated

so�ware stack to sense and actuate the physical world and to communicate with other robots or

backend servers. �e co-ordinated activity of all the robots and the servers together accomplish a

higher-level goal, such as large scale logistic management or automated manufacuring pipelines.

Such systems are already in production, and trends suggest that many more complex systems are

to come [3, 21, 37, 44].

While these systems hold enormous promise, there is li�le systematic support to develop robotic

systems with multiple robots. �e current state of the art provides some systems support for

programming individual robots communicating with a central server, for example, through in-

frastructure projects such as ROS [32]. �e application-speci�c code for the robot is wri�en in a
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traditional programming language such as C++ or Python, but it can use packages that abstract

individual sensors or actuators, and can use the messaging infrastructure provided by ROS to

manage concurrent, message-passing components. However, ROS was built having in mind a single

robot and does not provide support for multi-robot systems or infrastructure to support serving

tasks continuously. As such, developing a multi-robot application requires an enormous amount

of e�ort in understanding and managing the complexities of robotics (dynamics, uncertainties,

unstructured environments) and concurrent distributed systems (provisioning robots, messaging,

fault tolerance).

In this paper, we describe Antlab, a programming model and a runtime system to program

multiple mobile robots in a declarative way. Antlab aims to close the semantic gap between the

declarative speci�cation of tasks at the programmer level and the low-level details of managing

individual distributed mobile robots, scheduling and planning, etc.

We provide an abstract programming model and a declarative task speci�cation language based

on linear-time temporal logic (LTL). Our abstract model represents the underlying world as an

occupancy map and provides an abstraction for the set of available robots. �e occupancy map is a

standard data structure in robotics, and represents a discrete abstraction of a physical space using a

set of predicates. In the programming abstraction, the user does not program individual robots or

even know how many robots there are; instead, the user knows a set of action primitives the robots

can perform, and declaratively speci�es a desired temporal sequence of actions. �e propositions

in a task can range over spatial locations (“reach location `”) as well as action primitives (“pick up,”

“drop”) and the temporal connectives allow expressing application-level behaviors over time. �e

quanti�cation over robots allows us to specify a task without referring to individual robots (just as

query languages allow expressing the intent without specifying speci�c servers), but also helps

express co-ordinated behaviors (“two robots follow each other”). Speci�cally, the user does not

need to know about current states of the underlying robots; it is the responsibility of our run-time

system to �gure out which robots to assign to a task, how to schedule and plan the task, and how

to ensure the system has high throughput.

In order to implement Antlab, we have to solve some core algorithmic and systems challenges.

First, we describe a constraint-based combined task and path planner which produces optimal

paths for a group of robots and a collection of temporal logic speci�cations over the occupancy

grid. �e planning algorithm can be implemented using an SMT solver (e.g. Z3 [30] as in our

implementation) or an AI planner supporting LTL constraints.

In practice, one must consider the dynamic and uncertain nature of the robotic environment; for

example, there can be dynamic obstacles from other robots ful�lling other tasks in the system, or

sensor noise and actuator imprecision. Unfortunately, most synthesis algorithms from speci�cations

do not take into account the dynamic nature of the environment [13, 22, 35, 36, 39–41] or require

a complex and a priori speci�cation of all environment events as assumptions to the synthesis

procedure [8, 26, 43]. In our experience, the “ideal world” assumption leads to unexpected crashes

at run-time as the abstract view does not match the real world, and the “model everything” view

does not scale.

�us, in Antlab, we implement a separation of concerns. We synthesize a path plan for the robots

based on the ideal world assumption ignoring all dynamic obstacles and represent the strategy

as waypoints. �en, we implement the strategy on a real robot by using a ROS-based navigation

stack [12] that considers dynamic obstacles and a dynamic communication protocol that robots use

to resolve possible collisions between them. We track the compatibility between the ideal and the

actual path, potentially re-synthesizing a strategy if possible or triggering an error to the higher

layers.
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Finally, we implement a distributed systems layer between the task management and the robots.

�is layer provides standard systems primitives such as monitoring the status of robots, provisioning

robots for task execution, and tracking failures (which get increasingly frequent with growing

numbers of robots).

We have implemented Antlab and we have evaluated it on a group of TurtleBots implementing a

warehouse scenario where the system has to respond to a stream of “collection” requests which

require the robots to visit certain positions, gather objects, and deposit them at other positions while

remaining safe and collision-free. �rough our experiments, both on real robots and simulations,

we show the potential of an end-to-end system like Antlab to scalably implement distributed robotic

systems with many robots without individual reference to robots by the user.

In summary, we describe a programming model and runtime system for programming multi-robot

applications by integrating the following components.

(1) We provide a declarative programming model based on linear-time temporal logic for

multiple mobile robots serving requests in a workspace.

(2) We provide an algorithm for combined task and path planning for multiple robots on top

of dynamic robot motion planners.

(3) We provide a run-time system to support planning, robot management, and task execution.

Speci�cally, the run-time system considers real-world deployment issues such as resource

management and provisioning as well as dynamic task failures or robot failures.

(4) We demonstrate, using experiments on a group of TurtleBots, the scalability and per-

formance of our runtime, taking into account deployment issues such as task failures,

robot failures, and dynamic con�ict detection. In particular, we compare the end-to-end

performance of robots for di�erent task categories.

2 THE PROGRAMMING MODEL
While Antlab provides a framework for any robotics application, we illustrate it using an example

inspired by a multi-robot warehouse management system scenario [21] that we use as a running

example. We consider robots moving in a warehouse �oor. Parts of the workspace contain objects

of interest. Other parts may be blocked by obstacles such as boxes or walls.

A task in this se�ing consists of a user requesting a set of objects; the task is ful�lled when a set

of robots traverses the workspace to collect the requested set of objects and brings all the objects

to a special part of the workspace called the workstation. �e speci�c formalism for describing

tasks is discussed below; informally, each task requires one or more robots to traverse a path in the

workspace and carry out certain actions such that (a) the robots ful�ll the request (liveness), (b) the

robots remain safe, i.e., do not collide with obstacles such as walls, shelves, or other robots.

�e task assignment and planning problem is to assign each task to one or more robots, and

to synthesize and execute trajectories for each of these robots, such that together the safety and

liveness goals are met.

2.1 The System State
We now provide a formal description of the problem.

Occupancy Grids. Robots move in a 2-dimensional or 3-dimensional physical space. However, the

con�guration of the robot may require specifying more dimensions, for example, to provide their

velocity and orientation in the space. �us, in general, we assume that the con�guration of a robot

is given as a point in some compact subset of the n-dimensional Euclidean space. We represent this

con�guration space in a discrete way, using an n-dimensional occupancy grid [11]. An occupancy

grid partitions the continuous space into discrete blocks using a uniform grid along each dimension,
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and annotates each block with valuations for a set of predicates. We assume there is a predicate

that tells, for each block b, whether it is occupied or free. Each block is assigned a unique identi�er

by providing the co-ordinates of its center in any �xed co-ordinate system on Rn . By suitably

scaling the distance, we can assume that the unit of distance is one block of the workspace. �us,

the identi�er for the neighbors of a block can be obtained by adding or subtracting one unit to some

co-ordinate. Since we are always interested in compact spaces, we can assume that the identi�ers

range over a �nite set of elements. In what follows, we �x an occupancy grid X , and a set of

predicates ΠX which annotate the blocks of the grid.

Robots and System Con�gurations. We assume a system of N mobile robots, where each robot has a

unique identi�er r from a �xed set Rid of identi�ers. Each robot moves in an occupancy grid in

discrete time. �at is, we �x a discrete time unit τ , and model an individual robot as a dynamical

system evolving in discrete steps of τ time units. �e state σ of an individual robot consists of (1)

its position in the space, σ .x (which determines a unique block in the occupancy grid) and (2) its

velocity con�guration, σ .v , which represents current magnitude and direction of the velocity of

the robot. We denote the set of all velocity con�gurations by V and assume it contains a value

0 denoting that the robot is stationary.
1

A system with N robots consists of the occupancy grid

together with the state of all N robots, such that a consistency condition holds: for each robot state

(x, v), we have that the corresponding block of the occupancy grid is marked occupied, and no two

robot states have the same positions (i.e., each block of the occupancy grid is occupied by at most

one robot).

Example 2.1. In the warehouse example, a predicate occupied (b) is true for a block b if the block

is currently occupied by an obstacle, the predicate obj(b) (o) is true if object o is currently in block b,

the predicate at (b) (r ) is true if a robot with identi�er r is currently occupying block b. �ere may be

induced constraints on predicates: for example, at (b) (r ) ⇒ occupied (b) and at (b) (r ) ⇒ ¬at (b) (r ′)
if r , r ′.

Motion Primitives. Robots traversing a workspace de�ne a dynamic system whose behaviors are

represented as a sequence of con�gurations and transitions from one con�guration to the next.

Following the AI planning literature [16, 20, 28], we describe motions using a set of of motion
primitives Γ(r ) available to the robot r , which denote simple actions that a robot can perform at

any time step. A motion primitive is an abstraction of a low-level dynamical controller. For our

purposes, the speci�c details of the control algorithm are not important.

Associated with each motion primitive γ (r ) ∈ Γ(r ) is a pre-condition pre(γ (r )), which is a formula

over the states specifying under which conditions a motion can be executed and a cost cost (γ (r ))
(e.g., energy expenditure) to execute the motion primitive. We write post (c,γ (r )) for the state of a

robot a�er the motion primitive γ (r ) is applied to a state c satisfying pre(γ (r )).
We use intermediate(c,γ (r )) to denote the set of grid blocks through which the robot may traverse

when γ (r ) is applied at state c , including the beginning and end blocks. A trajectory is a sequence

of states c0c1 . . . such that for each i ≥ 0, there is a motion primitive γ (r ) (i ) taking the robot from

ci to ci+1.

Example 2.2. Consider a ground robot with �ve action primitives: {H, L, R, U, D}, where the

primitive H keeps the robot in the same block in the occupancy grid and the primitives L, R, U and D
move the robot to the adjacent le�, right, upper, and lower blocks respectively. �e availability of a

motion primitive may depend on the current state of the robot. For example, if the velocity of the

1
In a lower-level dynamical model of a robot, one would need to specify the exact co-ordinates of the velocity con�guration.

We will work at the level of more abstract actions and, hence, we do not need to specify the exact representation of the

velocity con�guration space.
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robot in a certain direction is high, the motion primitive to go in the opposite direction may not be

available. �is is speci�ed by the pre-condition. For example, pre(L) may be v (r ) = 0, i.e., the robot

is at rest. �e post-condition, similarly, states the e�ect of the action. For example, post (L) speci�es

the robot is at the block to the le� and its velocity is again zero. Assuming L moves exactly one

step, we have intermediate(b, L) = {b,L(b)}, where L(b) is the block immediately to the le� of b.

�e runtime behavior of the robots in Rid is described by a discrete-time transition system T . A

state of the system is a map from each r ∈ Rid to a state of r . Let σ1 and σ2 be two state vectors and

γ be a vector containing as elements the motion primitives applied to the robots in Rid in state σ1.

Let γ (r ) ∈ Γ(r ) be the motion primitive applied to robot r ∈ Rid in state σ1. We de�ne a transition

σ1

γ
−→ σ2 i�

• σ1 (r ) |= pre(γ (r )) and σ2 (r ) = post (σ1 (r ),γ (r )) for all r ∈ Rid.

• the trajectory of r between the states σ1 and σ2 does not pass through an occupied block,

that is

∀r ∈ Rid, intermediate(σ1 (r ),γ (r )) ∩ {b | occupied (b)} = ∅.
• �e robots do not collide with each other while doing an (atomic) move from state σ1 to

state σ2, that is

∀r1 ∈ Rid,∀r2 ∈ Rid \ r1 : intermediate(σ1 (r1),γ (r1)) ∩ intermediate(σ1 (r2),γ (r2)) = ∅.

(Note that the complexity of collision avoidance grows quadratically with the number of robots.

We discuss in section 3 how this constraint is handled dynamically.) A (multi-robot) trajectory for

Rid is a sequence σ0σ1 . . ., where for each i ≥ 0 and r ∈ Rid, the projection σi (r )σi+1 (r ) . . . is a

trajectory of robot r . �at is, a trajectory for the system is the collection of trajectories of all the

robots.

We make the simplifying assumption that for all robots in the system, each motion primitive

requires the same unit of time for execution. �is assumption may not hold for robots with

heterogeneous capabilities. We can extend our approach to systems where motion primitives take

di�erent units of time at the cost of making the planning algorithms more complex [33].

2.2 Specifying Tasks: Linear Temporal Logic
LTL. We provide task speci�cations using linear temporal logic (LTL). Let Rid be a �nite set of

indices ranging over identi�ers for robots and let Π be a set of predicates.
Following the AI planning literature, we consider the robot speci�c predicates to describe �uents,

which specify predicates about the current state of the robot such as at (b) (r ), or action primitives,
which specify a capability of the robot. For example, an action primitive such as pick(o) (r ) speci�es

an action by which the robot picks up an object o in one step. In the planning literature, action

primitives consist of a name as well as a pre-condition (when an action is available) and an e�ect

(how taking the action changes the �uent state).

We now introduce the logic to specify tasks. �e formulas of LTL are de�ned by the grammar:

φ ::= p | ¬φ | φ1 ∨ φ2 | ©φ | φ1Uφ2

where p ranges over predicates in Π and action primitives (two-state predicates). We de�ne the

derived logical operators ∧, ^, and � as usual: φ1 ∧ φ2 ≡ ¬(¬φ1 ∨ ¬φ2), ^φ ≡ trueUφ, and

�φ ≡ ¬^¬φ. Intuitively, ©φ states that φ holds at the next time point, ^φ states that φ will hold at

some point in the future, �φ states that φ will continue to hold from the current instant, and φ1Uφ2

states that φ2 will eventually hold at some future point and, until that point, φ1 will continue to

hold.
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Robot �anti�ers. We extend the basic logic by allowing outermost quanti�ers over the set of

identi�ers. Formally, formulas of quanti�ed LTL are built by existentially or universally quantifying

identi�er variables in the unary predicates in the formula:

ψ ::= φ | ∃r .ψ | ∀r .ψ

Notice that in a model with a �xed set of robots, the quanti�ers can be desugared into disjunctions

or conjunctions over the set of robots.

Similarly, in our formulas, we allow syntactic sugar that quanti�es over blocks in the occupancy

grid. For example, we write ∀b .at (b) (r ) ⇒ free(b) to state that the robot r is in a free block.

We de�ne free identi�ers and closed formulas in the usual way, by recursion on the structure

of the formulas. A formula is closed if it does not have any free variables. A task is a �nite set of

closed formulas.

Semantics. Formally, the semantics of LTL is de�ned over an occupancy grid, an in�nite sequence

π of truth assignments to the predicates in Π, and an in�nite trajectory σ for Rid. For an in�nite

sequence π , and i ≥ 0, we write π (i ) for the ith element in the sequence, and π [i] for the su�x of

π starting from the ith element. �e semantic rules are standard:

• π ,σ |= p for a predicate p i� π (0) |= p.

• π ,σ |= p for an action primitive p i� (π (0),π (1)) |= p.

• π ,σ |= φ1 ∨ φ2 i� π ,σ |= φ1 or π ,σ |= φ2.

• π ,σ |= ¬φ i� π ,σ 6 |= φ.

• π ,σ |= ©φ i� π [1],σ [1] |= φ.

• π ,σ |= φ1Uφ2 i� there is some k ≥ 0 such that π [k],σ [k] |= φ2 and for each 0 ≤ j < k , we

have π [j],σ [j] |= φ1.

• π ,σ |= ∀r .φ i� π ,σ |=
∧

r φ and π ,σ |= ∃r .φ i� π ,σ |=
∨

r φ.

Example 2.3. An example task in our se�ing consists of transporting a set of objects {oi | i ∈ I }
to the workstation. We specify the requirement of collecting the object oi as the “nested diamond”

temporal logic constraint:

∃r .
(

^(obj(b) (oi ) ∧ pick(oi ) (r ))∧
^(workstation ∧ drop(oi ) (r ))

)
(1)

for each i ∈ I , where workstation is a predicate that describes the location of the workstation. �e

existential quanti�cation over r speci�es that some robot has to ful�ll the property (go to a location,

pick up an object, and, subsequently, deposit it at the workstation).

System and Environment Assumptions. Tasks are always ful�lled under certain assumptions on

the system and on the environment. Safety assumptions specify invariants that must always hold,

and are of the form �φ, where φ is a Boolean combination of predicates. Liveness assumptions
specify conditions that are satis�ed in�nitely o�en, and are of the form �^φ, where φ is a Boolean

combination of predicates.

An example of an environment safety assumption is the presence of a static obstacle:

�(¬free(b))

An example of a system safety assumption is obstacle freedom:

�(at (b) (r ) ⇒ free(b))

which states that the robot always avoids the static obstacles given by the predicates ¬free(b). An

example of an environment liveness assumption is that a location becomes free in�nitely o�en:

�^free(b)
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For example, the liveness assumption can encode that a door is in�nitely o�en open, or that a

blocked cell is eventually free.

�e planning problem for a robot asks to compute a trajectory that satis�es the LTL speci�cation∧
j

�ψ s
j ∧

∧
j

�^ψ l
j ⇒

∧
j

φsj ∧ φ

where the antecedent encodes environment safety and liveness assumptions and the consequent

encodes the conjunction of system safety speci�cations and the task speci�cation.

Dynamic Obstacles. A further safety assumption on the system could be collision freedom, that is,

no two robots are in the same location at the same time:

∀r .∀r ′.r , r ′ ⇒ �(
∧
b

at (b) (r ) ⇒ ¬at (b) (r ′))

or more generally, freedom from colliding with dynamic obstacles. While in principle, all dynamic

obstacles can be modeled as part of the workspace and environment assumptions, doing this

either makes conservative approximations on the moving obstacles, making the planning problem

infeasible for most cases, or makes the planning problem computationally intractable. For example,

in the multi-robot scenario, collision avoidance would require global knowledge of the objectives

and strategies of all other robots in the workspace.

Instead, Antlab makes a design decision: planning is performed under the assumption that

there are no dynamic obstacles, but local motion planning and collision avoidance protocols are

implemented to “patch” the global plan locally based on local sensing and communication by the

robot. In particular, instead of generating reactive strategies for the LTL objectives, we implement

a plan in two phases. At the high level, we plan under an optimistic assumption (no dynamic

obstacles), and generate a sequence of waypoints. At the low level, we implement a local motion

planner to �nd paths between waypoints. �e local motion planner avoids obstacles locally and

triggers a re-planning step at the high level if the assumptions made at the high level are invalidated

and cannot be locally patched (e.g., by a local collision avoidance protocol).

3 ANTLAB IMPLEMENTATION
We now describe our implementation of Antlab. �e lowest layer of Antlab, at the level of robots,

uses ROS [32]. On top of ROS, we build an actor framework in Python for distributed messaging,

based on the XUDD actor framework.
2

�e system state is maintained in a database and the robot

manager provides an interface to the database.

Figure 1 is presenting the overall architecture of the system. A front-end application server

accepts a stream of LTL tasks, possibly initiated concurrently by di�erent users of the system. �e

back-end consists of two main components: the System State and the Runtime System. �e system

state component is a database which maintains the current state of the world (using an occupancy
grid data structure to represent a map of the world) as well as the current state of all robots.

�e Service manager component constitutes the algorithmic core of the runtime system and has

two main components - Robot Manager and Task & Path planner.
�e robot manager keeps track of the current position, availability, and state of all the robots.

�e runtime system bu�ers all incoming task requests and periodically invokes the task and path

planner. �e task and path planner assigns the bu�ered tasks to some of the available robots (not

currently executing any other task) and provides a high-level mission plan (a trajectory for each of

the assigned robots such that all tasks are satis�ed, if possible). We describe the algorithmic core of

the planner in Section 4.

2
h�ps://github.com/xudd/xudd
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Fig. 1. Antlab system architecture

Once the planning is performed, the runtime system instantiates a task organizer, which monitors

the assigned robots and ensures that the tasks are executed as planned. A robot gets the “ideal” plan

from the task organizer as a sequence of waypoints (co-ordinates to go to). �e robots themselves

run a ROS navigation stack to implement the low-level sensing, actuation, and motion planning to

move from waypoint to waypoint. �is is necessary because the strategy implemented by the task

planner may not take into account dynamic obstacles, which can be realized only through dynamic

sensing.

�e task organizer also communicates with the robots and tracks that the current plan has not

failed. A plan can fail if a robot has deviated from the original ideal plan, for example, due to

dynamic obstacles, due to sensing or actuation imprecision, or due to violations of the environment

assumptions. Finally, a robot itself can fail (e.g., by running out of power) and hence the tasks

assigned to it fail as well. �e task organizer bu�ers any failed and un�nished tasks for a future

assignment by the task and path planner.

Note that the runtime system is highly concurrent: the server, the system state database, the

task organizer, and each individual robot are concurrent components (implemented as actors

communicating via message passing). In Figure 1, we denote concurrent messages in the system

using do�ed arrows.

4 TASK ASSIGNMENT AND PATH PLANNING
Task assignment and execution in Antlab happens at two levels. At the static level, the task and

path planner solves a planning problem. It takes an occupancy grid, a set of robots, and a set of

task speci�cations, and generates a trajectory for each robot in the occupancy grid such that the

combination of trajectories satisfy all the task speci�cation under the assumption that there are no

dynamic obstacles (including those induced by other robots in the system).
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For example, for a task speci�ed by (1), the output of a successful synthesis problem would

consist of robot motion plans which together gather all the objects oi and bring them to the

workstation. �e output of the planning problem provides a trajectory per robot as a sequence of

motion primitives. Note that we assume the world is determined by the occupancy grid and the

environment assumptions and there are no extraneous disturbances.

At the dynamic level, each robot runs a navigation stack to execute its trajectory stepwise. Each

robot computes a local trajectory that executes the steps of the trajectory but takes into account

dynamic obstacles.

4.1 Problem Definition
We now de�ne the multi-robot task planning problem formally. A planning problem instance is

given by a �ve tuple P = 〈Rid, I , Γ,Ω,φ〉, where Rid is the set of robots, I : Rid → X maps each

robot to a block of the occupancy grid marking its initial location, Γ maps each r ∈ Rid to a set of

motion primitives available to robot r , Ω is a set of environment assumptions, and φ is the LTL

speci�cation of the tasks (including all system assumptions).

A multi-robot trajectory is said to be valid if it satis�es

∧
Ω ⇒

∧
φ. For example, if φ is

{∃r .^ϕ1 (r ), . . . ,∃r .^ϕm (r )}, a trajectory σ0σ1 . . . σL will be valid if for all ϕ ∈ {ϕ1, . . . ,ϕm } there

exists a σl , 0 ≤ l ≤ L, and a robot r ∈ Rid, such that σl (r ) is in a block satisfying ϕ. In general, tra-

jectories are in�nite objects. However, we shall only consider �nite “lasso-shaped” representations

of in�nite trajectories given by a pre�x and a loop [2]. For each robot r ∈ Rid, for each time instant

t ∈ {0, . . . L}, a variable γ (r ) (t ) denotes the motion primitive applied to robot r at step t . A valid

trajectory σ is cost optimal if cost (σ ) ≤ cost (σ ′) for every valid trajectory σ ′.
We de�ne the cost of a trajectory σ as

cost (σ0 . . . ,σL ) =
L∑
t=1

∑
r∈Rid

cost (γ (r ) (t ))

(it can be viewed as the energy consumption by the robots in action). In case the trajectory is

in�nite, the cost is de�ned as the weighted sum of the costs of the pre�x part and the loop part

(with a weight for the loop part signi�cantly higher). Note that the preceding de�nition does not

require the robots to move in sync. Using the “rest” primitive, a robot can wait in its initial state or

remain in its �nal state for an arbitrary amount of time to stretch its length to match with that of

the multi-robot system.

We say that an algorithm to solve the planning problem is sound if its output, on any problem

instance, is a valid trajectory of that instance. We say that the algorithm is complete if, for any

problem instance, whenever a valid trajectory exists, the algorithm outputs one such valid trajectory.

4.2 Constraint-based Planning
We describe a constraint-based symbolic encoding for cost optimal trajectories using bounded
synthesis [10]. As mentioned before, we omit adding constraints for collision avoidance and make

the optimistic assumption that trajectories of di�erent robots do not collide. We handle collision

avoidance dynamically.

Given P = 〈Rid, I , Γ,Ω,φ〉 and a �xed length L of the trajectory, we model behaviors of the

robots as a boolean combination of linear arithmetic constraints. In the system of constraints, the

motion primitives of each robot at each state are considered to be the decision variables. For each

robot r ∈ Rid, for each time instant t ∈ {0, . . . L}, we consider a variable σr (t ) to track the state of

the rth robot and, for each time instant t ∈ {0, . . . L − 1}, we consider a variable γ (r ) (t ) encoding

the motion primitive applied to robot r at step t . �e objective function is to minimize cost (σ ) over
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valid trajectories σ . We add constraints, de�ned next, to ensure that a valuation to all variables

σr (t ) de�nes a valid trajectory.

Initial state of the trajectory. At the initial state of the trajectory, the robots will be in their

initial location and stationary.

∀r ∈ Rid : σr (0).x = I (r ) ∧ σr (0).v = 0 (2)

Conformance between states and motion primitives. For each robot r ∈ Rid, at each time

instant t , the state σr (t ) should satisfy the precondition of the motion primitive applied to the robot

at time instant t . Moreover, the state σr (t ) should satisfy the postcondition of the motion primitive

applied to the robot at time instant t − 1.

∀r ∈ Rid, ∀t ∈ {0, . . . ,L − 1} : σr (t ) |= pre(γ (r ) (t + 1))
∀r ∈ Rid, ∀t ∈ {1, . . . ,L} : σr (t ) = post (σr (t − 1),γ (r ) (t )) (3)

Safety constraints. �e following set of constraints ensures that robots maintain safety constraints

when they move from one point to another point.

∀r ∈ Rid, ∀t ∈ {0, . . . ,L − 1} :

∀b ∈ intermediate(σr (t ),γ (r ) (t + 1)) : free(b) (4)

We encode environment liveness assumptions �^free(b) conservatively by specifying the cost of

moving to the location b as a cost T incurred by waiting while ¬free(b) holds, before moving from

the neighbouring location to b when it becomes free. By se�ingT much higher in comparison with

the costs of all motion primitives, we ensure that a cost optimal trajectory uses the assumption

only when no other options are available.

Encoding the LTL speci�cation. Finally, we provide constraints that ensure the trajectory

satis�es the formula. We start with an example for an important special case: reaching a set of

goal blocks from a set G. �e following constraints ensure that the trajectory satis�es such a

speci�cation:

∀д ∈ G,∃r ∈ Rid,∃t ∈ {0, . . . ,L − 1}.σr (t ).x ∈ д ∧ σr (t ).v = 0. (5)

For general LTL speci�cations, we �rst replace the quanti�ers by disjunctions or conjunctions to

generate a pure LTL formula, and generate the constraints capturing the �a�ened LTL formula

using the eventuality encoding of [2]. �ough a trace that satis�es an LTL formula is given as an

in�nite execution path of the system, such a trace can be represented by a �nite path in two ways:

(i) the �nite path is a valid pre�x of all its in�nite extensions (in case the speci�cation is co-safe),

(ii) a portion of the �nite path can loop to generate a valid in�nite path.

Note that we do not plan non-colliding paths for the robots; the rationale is that the planning

cost is high, but the gains are poor as the uncertainty of the real-world o�en causes imperfect

executions of plans anyway. Potential collisions are handled locally.

�e planning procedure searches over an interval [Lmin,Lmax] of lengths and generates and solves

the constraints for the current choice of L ∈ [Lmin,Lmax]. If a solution to the set of constraints exists,

the trajectories for the robots can be extracted from the solution. If no solution exists, we repeat

with a larger value of L. It is important to emphasize that in case of primitives having di�erent cost,

an additional optimization process is needed in order to get an optimal solution. (�e optimality is

otherwise guaranteed by the fact that the solution is found using minimal number of steps and by

elimination of unnecessary moves of robots that don’t participate in ful�lling the speci�cation).

�e optimization adds additional constraint on �nal cost to the formula and iterates until it �nds

the minimal cost for which the formula is still satis�able.

While a trajectory generated by the algorithm may not be collision free, we do get the following

completeness guarantee [35].
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Theorem 4.1. Completeness of Multi-Robot Motion Planning. Given an input motion plan-
ning problem P with motion primitives Γ and a trajectory length L, if the system of constraints is
not satis�able, there does not exist a valid trajectory of length L that can be synthesized using the
primitives in Γ.

Solving Constraints. We have implemented two solvers: a symbolic approach based on the SMT

solver Z3 [30] and an enumerative search approach based on PDDL planners. We provide an

evaluation of these two methods in Section 5. �e choice of the solver is transparent to the rest of

the implementation.

4.3 Dynamic Implementation of Trajectories
�e trajectories of the robots found by the planner are implemented on the individual robots using

a motion planner using ROS’s navigation stack. �e motion planner handles dynamic obstacles as

well as potential collisions with other robots. Upon sensing an obstacle, the navigation stack adds

it to the local cost map and tries to �nd a local motion plan to avoid the obstacle and continue with

the planned trajectory. In cases where local motion planning and obstacle avoidance cannot �nd a

feasible plan, the navigaton stack starts recovery behaviors and restarts a global planning for the

current robot.

We handle potential inter-robot collisions with a local collision avoidance protocol. As noted

in [23], robots are active agents and treating them as pure dynamic obstacles leads to ine�cient

trajectories and —in rare cases— collisions. Furthermore, treating robots as passive obstacles o�en

causes robots to approach too close to each other, which leads to long-lasting recoveries of their

local planners and oscillations in the trajectories. �us, in our implementation, we additionally add

local communication capability to robots and implement local collision avoidance strategies. By

broadcasting its position and velocity to robots in their neighborhood, and by listening to their

messages, a robot can determine its local strategy to avoid collisions.

�e approach in [23] uses Optimal Reciprocal Collision Avoidance for non-holonomic robots

and takes into account the uncertainties in each robot’s localization. Its ROS implementation is

provided as well [5]. Unfortunately, we were not able to include it in Antlab as, even though it

solves the collision avoidance problem nicely, it introduced problems to ROS navigation stack when

going around static obstacles .

Instead, we used a naive priority-based collision avoidance procedure. Each robot has a �xed

priority, obtains the con�guration of nearby robots and stops as soon as it is close to another robot

of a higher priority. If the highest priority robot is blocked due to obstacles presented by other

robots (a deadlock), it triggers a re-planning. Collision avoidance is thus not symmetric: some

robots have to wait for the others until they are allowed to pass.

5 EVALUATION
We evaluate Antlab’s behavior on maps of di�erent size and shape and with di�erent number of

robots in the system. We test how well Antlab can handle robot (hardware) failure and dynamic

collision situations between the agents. Furthermore, we try to identify situations for which

multi-robot planning and assignment is meaningful (where the advantage over simple heuristic is

signi�cant). Finally, we examine how the increase in the number of concurrent requests in�uences

the overall performance.

In order to examine di�erent properties, we use di�erent arenas (shown in Figure 3). �e arena:
two o�ces was obtained by mapping two o�ces in our building with TurtleBots using the ROS

SLAM (Simultaneous Localization and Mapping) gmapping package [19]. All the other arenas

are arti�cially created for simulation. We also tested Antlab in the empty arena: a rectangular
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Small-Size Map Medium-Size Map Large-Size Map

# Robots average average cost # Robots average average cost # Robots average average cost

planning optimization planning optimization planning optimization

time time time time time time

2 4.10 1.92 40.14 2 9.12 171.29 47.72 2 19.89 218.00 85.65

4 0.92 1.75 15.78 4 2.89 164.73 39.16 4 6.90 111.18 44.94

6 0.87 0.87 12.93 6 1.64 6.64 20.72 6 5.57 110.91 42.01

8 0.70 0.86 11.28 8 1.21 1.74 14.55 8 5.56 54.96 34.85

Table 1. Planning and optimization time and trajectory cost for Φ2 with increasing number of robots and
increasing map size

Property

Small-Size Map Medium-Size Map Large-Size Map

average average cost average average cost average average cost

planning optimization planning optimization planning optimization

time time time time time time

Repetitive Pick and Drop 0.20 0.50 4.50 1.08 1.92 8.44 2.84 71.47 11.35

Selective Action 0.37 0.62 11.05 1.66 7.57 19.38 6.87 165.92 28.15

Pick and Drop Ordered 0.70 0.86 11.29 1.21 1.74 14.55 5.56 54.96 34.85

Regions Coverage 0.42 0.48 4.44 1.03 1.46 5.44 2.60 0.91 13.75

Sensor measurement 0.58 0.62 13.61 2.40 56.48 22.4 6.97 105.95 35.35

Table 2. Planning and optimization time and trajectory cost for LTL properties for 8 robots and increasing
map size

space with no obstacles in it (this is justi�ed by a scenario in which robots can go under all the

obstacles, as it is the case for warehouse pods). �e proof of concept is done with 3 TurtleBots in the

environment mapped in arena: two o�ces. �e testing is done in the Stage simulation environment

[14], which enabled us to test on di�erent arenas and vary the number of robots in the arena, hence

varying the coverage of the area by robots.

5.1 LTL Planning Time and Execution Cost
First, we evaluate Antlab’s task assignment and planning on a number of LTL speci�cations on

maps of di�erent sizes and with di�erent number of robots in the system. We consider the following

LTL speci�cations in our experiments:

(Φ1) Pick and drop repetitively: Repeatedly pick an object from the location ` and drop it to

the location `′ (provided that the object would be in�nitely o�en placed at `): �^put (`) ⇒
∃r .�^(pick(`) (r ) ∧ ^drop(`′) (r ))
(Φ2) Picking and dropping with enforced order: Pick p1 and p2, but once picked, drop the object at

d1 or d2 respectively, before picking anything else: ∃r1, r2 : (^p1(r1) ∧ �(p1(r1) → ((¬p2(r2) ∧
¬d2(r2))Ud1(r1)))) ∧ (^p2(r2) ∧ �(p2(r2) → ((¬p1(r1) ∧ ¬d1(r1))Ud2(r2))))
(Φ3) Selective action and measurement with safety restrictions: �e propositions a1 and a2 denote

the operation of acting on the certain place; m1, m2 denote the subsequent measurement at a

di�erent place; s1 and s2 denote locations that should be occupied at each moment, for safety

reasons: ∃r1, r2, r3, r4 : ^(((a1(r1) ∧ ^m1(r1)) ∨ (a2(r2) ∧ ^m2(r2)) ∧ �(s1(r3) ∧ s2(r4)))
(Φ4) Regions coverage: From some point onwards, ensure that one of the regions denoted by s1, s2,

s3, and s4 is always covered by a robot and then eventually point l1 is visited: ∃r1, r2, r3, r4, r5 :

^(^l1(r1) ∧ �(s1(r2) ∨ s2(r3) ∨ s3(r4) ∨ s4(r5)))
(Φ5) Simultaneous sensor measurement: Measure sensor values at locations m1, m2, and m3

simultaneously, and report the result at one of the report locations д1,д2,д3: ∃r1, r2, r3 :

^((m1(r1) ∧m2(r2) ∧m3(r3)) ∧ (^д1(r1) ∨ ^д2(r2) ∨ ^д3(r3))
We created 10 di�erent instances of each of those formulas by picking locations randomly. We used

the map arti�cial �oor with grid sizes 550 (small, 22 × 25), 864 (medium, 27 × 32), and 2250 (large,

45 × 50). Planning times depend on the map size in grid units. Depending on the motion primitives

available, these can be of di�erent size. We used a grid unit of 0.4m.
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SMT-based Planning. Table 1 shows times for the SMT-based planner on the di�erent maps as

the number of robots increase. Planning (resp., optimization) time is the average time (over 10

instances) to get the �rst plan (resp. optimal plan). Cost is the optimal value to execute the plan.

Increasing the coverage of the arena with robots reduces the cost and makes the planning time

shorter (�rst satisfying instance is reached sooner), as each robot’s plan is short. Table 2 shows the

same data for Φ1-Φ5 for 8 robots.

Anytime Optimization. Time to �nd a feasible plan is o�en sigini�cantly shorter than �nding the

optimal plan for large maps. Once the �rst satisfying assignment is found, the optimization process

iteratively improves the cost, keeping the number of steps �xed, by invoking the planner with

the current upper bound on the cost. Figure 2 shows how the plans approach the optimal (one

with 3 robots, and the other with 6 robots on the map). As expected, the biggest improvements are

achieved at the very beginning of the process. �us, the planning can be run in “anytime” mode

and stopped once a cost budget is met or a time budget is exceeded.

AI Planning. To compare with an AI planner, we used Temporal Fast Downward (TFD) [15], a

classical PDDL planner with temporal logic support. Unfortunately, TFD did not �nish on any of

these examples. Even on a small empty map (17 × 19), and a simple reachability objective, TFD was

two orders of magnitude slower (103s vs 0.8s); the time was mostly spent in constructing the state

space in memory.

Most classical AI planners optimize for reachability. �us, we compare performance of the SMT

planner with Metric-FF [24], a state-of-the-art planner, on reachability objectives

n∧
i=1

^pi , where

predicates pi are locations. Each experiment �xed one of three di�erent arenas and averaged over

10 di�erent speci�cations constructed by picking locations randomly. In order to get faster planning

for SMT, we relax the optimality requirement and stop the optimization process once it is within

15 step-units ( 6 meters) of the optimal plan and set a timeout of 240s for a request. Metric-FF does

not provide any optimality guarantees. Table 3 shows that Metric-FF outperforms SMT-planner

both in planning time and in cost (due to suboptimality tolerance). Both planners time out on two

planning tasks.

Our conclusion is that classical AI planners are still be�er for simple reachability goals but the

SMT planner is the best option for complex LTL goals. A combination of SMT with Metric-FF as an

underlying “reachability theory” will be interesting future work.

Is Joint Task and Path Planning Necessary? Finally, we evaluate costs and bene�ts of using the joint

task assignment and planning presented in Section 4 in comparison to a naive heuristic which

picks the “closest” robot. For general LTL objectives, we do not know how to de�ne closeness, so

we �x reachability objectives and pick the robot closest to the goal in Euclidean metric, ignoring

obstacles. �e heuristic task assignment is “zero cost,” but clearly suboptimal as it does not account

for obstacles. �e task-to-robot assignment of the algorithms presented in Section 4.2 comes at a

cost of the time required for path planning. We use the setup to compare against Metric-FF: three

arenas, ten reachability speci�cations. Table 4 shows the summary. For maps for which Euclidean

distance is far from the actual travelling distance (such as shoreline or maze), joint planning and

task assignment can yield signi�cantly be�er plans. If Euclidean distance is a good approximation

(as in the arena arti�cial �oor) then the costs are approximately the same (in this experiment

heuristic assignment has a smaller cost due to premature ending of the optimization process in the

planner).
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Arena Avg Planning Time (sec) Avg Plan Cost

name shoreline �oor maze shoreline �oor maze

SMT-based 11.56 44.63 20 37 31.37 58

Metric-FF 5.44 6.3 15 22 24.25 54

Table 3. Comparing SMT and AI planning for reachability

Arena Planning Time (sec) Plan Cost

name shoreline �oor maze shoreline �oor maze

Heuristic assignment 0 0 0 92 25 91

SMT-based assignment and planning 11.56 44.63 20 37 31.37 58

Table 4. E�ect of joint task assignment and planning
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Fig. 2. Cost improvement over time
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arena: shoreline

Fig. 3. Workspaces used in the experiments

5.2 Response Time with Concurrency
Next, we measure the e�ect of concurrent scheduling of tasks –what are the bene�ts of paral-

lelization and what is the cost of synchronization of robots executing their task at the same time.

�e experiment is set so that n requests are scheduled concurrently, where each request is a set
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Fig. 4. Execution time vs number of concurrent batches

of tasks, and as soon as a request �nishes, the next one is scheduled (thus, there are always n
requests executing concurrently). We run 10 requests, each with 3 to 6 tasks, on arti�cial �oor with

8 robots and let n grow up to 5. As the results (Figure 4) suggest, response time improves until we

reach 4 simultaneous requests. �e delays come from two sources: robot synchronization (which is

especially signi�cant if two robots get stuck in the deadlock situation) and sub-optimality due to

robots being busy with a di�erent batch. �at is, if the robots in one part of the arena are busy,

and a new request to that part arrives, the planner assigns this request to robots which may be

far away. A possible future improvement is to plan based on a partitioning of the arena and only

assign close robots even if there is a delay, or to interrupt an active robot to give it a new local task.

5.3 Failure Resilience
In this experiment, we measure the e�ect of Antlab’s fault tolerance and task re-assignment on

performance. When a robot crashes, it becomes a static obstacle and the system has to reassign

its task. Crashed robots can prevent others from �nishing the task, e.g., by blocking a path. We

explore how o�en that might happen.

We model crashes probabilistically: a crash can occur in each second with probability p. �e

probability of a robot not crashing in k seconds is (1 − p)k . We �x the number of tasks to 10, and

randomly generate the number of locations per task (the locations are generated so that they are,

considering static obstacles, achievable). We run experiments for the coverage of 28 square meters

(175 square grid units) per robot and vary the probability p. We measure average time of task

completion, as well as the number of locations that Antlab did not manage to reach.

We run 60 trials of each experiment. �e parameter p is tested for values

{0, 0.003, 0.005, 0.006, 0.01} which is equivalent to the following probabilities of staying

crash-free for a minute: {1, 0.83, 0.74, 0.69, 0.55}. �e initial se�ing consists of an obstacle-free

arena with 9 robots, and robots are given altogether 24 locations to visit in 10 tasks. For higher

values of p, we could not obtain meaningful results because o�en all the robots would crash before

completing the tasks.

Table 5 summarizes the results. �e baseline is the execution without crashes, which takes about

two and half minutes to complete. �e execution time increases with the probability of failure.

For p = 0.01 the average number of locations which the system was unable to visit is 2.23 but the

execution time almost doubles compared to the baseline.
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p Average execution time (sec) Average number of locations not visited

0 156.36 0

0.003 220.84 0.42

0.005 241.28 1.13

0.006 244.72 1.12

0.01 290 2.23

Table 5. Failure resilience test results

Number of

patrolling robots

Execution time with

collision avoidance

turned on (sec)

Execution time with

collision avoidance

turned o� (sec)

0 365

1 498 563

2 493 551

3 459 667

4 479 596

Table 6. Navigation in crammed environments

5.4 Tight Space Manoeuvring
Finally, we explore the e�ect of the dynamic collision avoidance mechanism on performance. Due

to its assignment mechanisms, Antlab avoids having more robots then necessary at one place (by

assigning multiple tasks to a single robot, minimizing the energy spent). �us, we construct a

speci�c con�guration where many robots are located in the same area and therefore collisions are

common. We use arena: tight space (Figure 3). Four robots are set to patrolling from side to side

(A↔ B and C ↔ D). An additional robot that starts in the middle (task robot) gets 10 tasks chosen

from A, B, C , and D, in a round-robin fashion. It is also forced to visit the central location between

each task, causing congestion in the middle. We run this experiment with 0 to 4 other patrolling

robots, and set the priority of the task robot as the highest. We run with both collision avoidance

turned on and turned o�. Note that even with collision avoidance turned o� robots will not collide

all the time as the lower level navigation stack implements dynamic obstacle avoidance. However,

turning collision avoidance on allows robots to communicate their position and goals.

Table 6 shows execution times. We note that without the collision avoidance mechanism turned

on, robots run into deadlock situations, where none of their recovery behaviors manages to �nd

the way out and the navigation stack gets stuck. Collision avoidance manages to lower the number

of deadlocks, though not to eliminate them completely. �e results also show that the execution

time does not increase with increasing number of patrolling robots. A possible explanation would

be that more robots approaching each other might cause earlier stopping and therefore prevent

deadlock-like con�gurations from happening.

6 RELATEDWORK
ROS [32] is a standard so�ware framework for individual robots. Antlab uses ROS at the individual

robot level. A continuation project, ROS2 [6], currently in alpha, would handle some of the aspects

of Antlab, but does not provide synthesis from higher level declarative speci�cations. �e recently

proposed StarL [29] framework uni�es programming, speci�cation and veri�cation of distributed

robotic systems. None of these systems, however, addresses the speci�c challenges for managing a

robot service, such as managing of robots, dealing with incoming task requests, dynamic obstacle

avoidance, and fault-tolerance.

Planning is a classical problem in AI and robotics [4, 16, 20, 27, 34]. As the primary focus of our

work is on multiple robots, we focus our discussion on this se�ing. We compare the performance

of AI planners vs SMT for LTL tasks. SMT-based synthesis of motion plans were applied to a single
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robot moving in a workspace containing rectangular obstacles [25] and in synthesizing integrated

task and motion plans from partially speci�ed tasks [31, 42]. In multi-robot motion planning, an

SMT solver was employed to synthesize a plan for a group of robots from a safe-LTL formula [35]

and from a speci�cation that requires a group of robots to reach their preassigned goals while

avoiding obstacles and collision with other robots [36]. None of these papers deal with a stream of

incoming tasks and the problem of joint task assignment and planning.

Several prior papers address the problem of generating trajectories for multi-robot systems

where the robots are preassigned a set of tasks, whereas Antlab simultaneously assigns robots to

tasks and generates trajectories. A subset of these works (e.g. [13, 35, 36, 39]) adopts a centralized

approach where a central server is used to synthesize trajectories for a set of robots to reach a set of

pre-speci�ed goal locations. �e others employ a decentralized prioritized planning (e.g. [22, 40, 41])

where, given a �xed set of tasks, the robots in the system coordinate with each other asynchronously

to compute the trajectories. Similarly to our work, in [38] goal assignment and trajectory planning

is done simultaneously, but only for simple reachability tasks and requiring that no robot is le�

idle, rather than optimizing total cost. Drona [9], a framework for distributed mobile robotics,

introduces a multi-robot decentralized motion planner, but–unlike Antlab–assumes that robots

are preassigned their tasks and that there are no uncertainties in the environment. Antlab can be

viewed as a Cyber-Physical Cloud Computing system, as proposed in [7].

Recently, there is an increased interest towards using temporal logic for synthesizing reactive

motion plans automatically [8, 26, 43]. However, automated synthesis algorithms scale poorly both

with the number of robots and the size of the workspace, and have not proven suitable for multi-

robot applications. In order to tackle the scalability issue, several papers synthesize motion plans

compositionally (observing a conjunctive LTL formula and synthesizing each conjunct separately)

[1, 17], but even though the compositional approach sometimes outperforms centralized ones, the

largest examples so synthesized are still far from real world test cases. LTLMoP [18] is a modular

toolkit that covers di�erent aspects of creating controllers synthesized from LTL or structured

English speci�cations. �e main di�erence from our work is that LTLMoP still resides in a “clean”

world, not taking into account robot crashes, imperfect executions of plans, etc.

7 CONCLUSION AND LIMITATIONS
We have described the design, implementation, and preliminary evaluation of Antlab, an infras-

tructure for “robots as a service.” We consider Antlab as a step towards end-to-end systems for

managing and using robot teams, but there are many open directions. �e task language of Antlab

does not support some typical “swarm” actions, such as coordinated work by many robots (“follow

the leader”). It would be interesting to extend the declarative task language to tasks of this nature.

Further, LTL is still too low-level to describe complex work�ows such as industrial processing.

Scalability in Antlab can be reached only by performing careful tradeo�s when choosing which

assignment or planning algorithm to use and how many robots to have in the workspace: the

planning procedure is worst case exponential in the size of the workspace and the number of

robots. We do not currently support task priorities or plans that pre-empt active robots. As Antlab

is built on top of existing infrastructure for single robots (ROS), it is vulnerable to all potential

problems at that layer (such as noise and imprecision in sensing and actuation, limited collision-

avoidance protocols, etc.). �us, we cannot give strong end-to-end real-time guarantees about

request execution. Providing end-to-end predictable multi-robot performance is a di�cult problem

beyond the scope of this paper.
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