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ABSTRACT
Software implementations of controllers for physical systems are
at the core of many embedded systems. The design of controllers
uses the theory of dynamical systems to construct a mathematical
control law that ensures that the controlled system has certain prop-
erties, such as asymptotic convergence to an equilibrium point, and
optimizes some performance criteria such as LQR-LQG. However,
owing to quantization errors arising from the use of fixed-point
arithmetic, the implementation of this control law can only guar-
antee practical stability: under the actions of the implementation,
the trajectories of the controlled system converge to a bounded set
around the equilibrium point, and the size of the bounded set is
proportional to the error in the implementation. The problem of
verifying whether a controller implementation achieves practical
stability for a given bounded set has been studied before. In this pa-
per, we change the emphasis from verification to automatic synthe-
sis. We give a technique to synthesize embedded control software
that is Pareto optimal w.r.t. both performance criteria and practi-
cal stability regions. Our technique uses static analysis to estimate
quantization-related errors for specific controller implementations,
and performs stochastic local search over the space of possible con-
trollers using particle swarm optimization. The effectiveness of our
technique is illustrated using several standard control system exam-
ples: in most examples, we find controllers with close-to-optimal
LQR-LQG performance but with implementation errors, hence re-
gions of practical stability, several times as small.

Categories and Subject Descriptors
D.2.10 [Software]: Software Engineering—Design-
Methodologies

Keywords
Embedded control software, synthesis, stochastic optimization,
fixed-point arithmetic

1. INTRODUCTION
Software implementations of controllers for physical systems are

the core of many critical cyber-physical systems. The design of
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these systems usually proceeds in two steps. First, starting with
a mathematical model of the system, one designs a mathematical
control law that ensures that the physical system, equipped with
this control law, has certain desirable properties such as asymptotic
stability (convergence to an ideal behavior) and performance. Sec-
ond, the control law is implemented as a software task on a specific
hardware architecture. Since the implementation has quantization
errors due to the use of fixed-precision representation of real num-
bers, the quantization of a stabilizing controller may lead to limit
cycles and chaotic behavior [12]. Hence, the implemented system
usually guarantees the weaker property of practical stability, where
the system is guaranteed to converge to a bounded set around the
ideal behavior and the size of the bounded set is proportional to the
quantization error.

Much recent research has focused on verifying that a given im-
plementation of a control law guarantees that the practical stability
region lies within a given set [21, 22, 6, 1, 4]. In this paper, we
change the emphasis from verification to synthesis. We provide
a design methodology to synthesize a control implementation for
which the effect of implementation errors on system performance
is minimized.

We focus on linear systems in this paper. For linear sys-
tems, a standard optimal control design approach uses the linear
quadratic regulator (LQR) and linear quadratic Gaussian (LQG)
algorithms [8], which find a feedback controller stabilizing the
plant while minimizing quadratic cost functions. The LQR cost
function takes into account the deviations of the state and con-
trol inputs from ideal values and the LQG cost function takes into
account the deviation of the state from its estimation. However,
they usually do not take implementation errors arising from fixed-
precision arithmetic into account. Thus, a controller optimizing
only the LQR-LQG cost may have a large implementation error
because its implementation on a fixed-precision platform has large
numerical errors, but a controller “close” to the optimal perfor-
mance may have much lower numerical errors when implemented
on the same platform.

In our methodology, we modify the performance criterion of
LQR-LQG to additionally minimize the error due to quantization
in the implementation. Technically, we answer the following two
challenges. First, how can we estimate the error due to quantiza-
tion in a given implementation? Second, how can we find Pareto-
optimal points for the two objectives given by the LQR-LQG and
quantization error cost functions? We proceed as follows.

For the first step, for a given linear feedback controller and the
operating intervals of the states of the plant and the controller, we
first perform a precise range analysis of the controller variables, and
use the computed ranges to allocate bitwidths to each controller
variable. We implement our range analysis based on linear pro-



gramming. Using the allocated bitwidths, we generate code for a
fixed-precision program implementing the control law. Finally, we
use an algorithm based on mixed-integer linear programming to
find a bound on the maximum difference between the ideal control
law and the output of the fixed-precision program.

For the second step, we optimize a weighted linear combina-
tion of the two cost functions using a stochastic local search tech-
nique. LQR-LQG is attractive because it gives rise to a convex
optimization problem, for which efficient solutions are known. Un-
fortunately, additionally tracking the quantization error results in a
non-convex optimization problem. We solve the non-convex op-
timization problem using particle swarm optimization (PSO), a
population-based stochastic optimization approach [13, 17, 10].
PSO iteratively solves an optimization problem by maintaining a
population (or swarm) of candidate controllers, called particles,
and moving them around in the search-space of possible con-
trollers, trying to minimize the objective function. In our setting, a
particle represents gain parameters for a controller.

In more detail, our algorithm proceeds as follows. Given a lin-
ear control design problem, we set up a non-convex optimization
problem to minimize a weighted combination of the LQR-LQG
cost function and the implementation error. We minimize this cost
function using PSO. In each step of PSO, given a new controller, we
perform the following checks. First, we check if the controller is
stabilizing (by examining the eigenvalues of the controlled system).
If not, we assign the controller an infinite cost. If it is stabilizing,
we generate the best possible fixed-point code for this controller
under a hardware budget and perform static analysis to estimate a
bound on the implementation error. We compute the value of the
objective function by taking the weighted sum of the LQR-LQG
cost and this bound. We continue PSO until convergence or until
some iteration bound is met. At this point, we output the controller
that minimized the objective function.

We have implemented this methodology on top of Matlab’s Con-
trol Theory Toolbox, using an implementation of PSO proposed
in [5], and a custom static analysis using the lp_solve linear pro-
gramming tool. In our experiments, we compare the LQR-LQG
cost and implementation errors of controllers generated by conven-
tional LQR-LQG optimization (implemented in Matlab) with con-
trollers generated by PSO using our methodology. In most cases,
our controllers have LQR-LQG costs close to the optimal LQR-
LQG controllers, but have implementation errors that are reduced
by a factor of 4 or more. Thus, we generate controllers with guaran-
teed bounds on practical stability regions that are 4 times or more
smaller than the pure LQR-LQG optimal controllers. Our work
provides an integrated analysis to take quantization errors into ac-
count in model-based design and implementation of controllers.
While we have instantiated the methodology using the LQR and
LQG costs and quantization errors, our algorithm is more gener-
ally applicable to other performance criteria and other sources of
modeling or implementation error.

Other Related Work Besides the related work mentioned above,
we mention the results in [24, 25, 18] which provide controller
synthesis approaches minimizing some performance criteria where
controllers are implemented using fixed-point arithmetic. The re-
sults in [24, 25, 18] assume some excitation conditions under which
the quantization error can be modeled as a zero mean uniform white
noise. Furthermore, they do not provide any bounds on regions of
practical stability. Our results do not make any assumptions on the
quantization error and provide an explicit bound on the region of
practical stability.

Static analysis for range analysis has been studied extensively
in the context of optimum bitwidth allocation to intermediate vari-

ables in a fixed-point program, mostly in the DSP domain [15, 14,
20]. These approaches employ abstractions based on interval arith-
metic [19] or affine arithmetic [23]. Jha [9] gives an algorithm for
optimal fixed-point program synthesis based on inductive systhe-
sis. Jha’s algorithm is general, but takes several minutes for each
synthesis step. We found our mixed-integer linear programming
approach to be both precise and reasonably fast for our application.

2. PRELIMINARIES

2.1 Controllers and Observers
We use N0, R, and R+

0 for the set of nonnegative integers, real,
and nonnegative real numbers, respectively. For a vector x ∈ Rn,
we denote by xi the i-th element of x, and by ‖x‖ the Euclidean
norm of x. Recall that ‖x‖ =

√
x21 + x22 + · · ·+ x2n. We write In

and 0n×m for the identity and zero matrices in Rn×n and Rn×m,
respectively.

A continuous function γ : R+
0 → R+

0 , is said to belong to class
K if it is strictly increasing and γ(0) = 0; γ is said to belong to
class K∞ if γ ∈ K and γ(r)→∞ as r →∞. A continuous func-
tion β : R+

0 × R+
0 → R+

0 is said to belong to class KL if, for each
fixed s, the map β(r, s) belongs to class K∞ with respect to r and,
for each fixed nonzero r, the map β(r, s) is decreasing with respect
to s and β(r, s)→ 0 as s→∞.

In this paper, we focus on linear control systems given by the
differential equation:{

ξ̇ = Aξ +Bυ +Bω,
η = Cξ + ν,

(2.1)

where, for any t ∈ R, ξ(t) ∈ Rn, υ(t) ∈ Rm, ω(t) ∈ Rq ,
η(t) ∈ Rp, and A, B, B, and C are matrices of appropriate di-
mensions. The curve ξ : R → Rn is a trajectory of (2.1) if there
exist curves υ : R → Rm and ω : R → Rq such that the time
derivative of ξ satisfies (2.1). In the rest of the paper, we assume
that all curves υ and ω have some regularity assumptions, guaran-
teeing existence and uniqueness of the solutions of (2.1). Note that
υ, ω, η, and ν denote control input, disturbance, output of the sys-
tem and measurement noise, respectively. We assume that ω(t) and
ν(t), for any t ∈ R, are zero-mean Gaussian noise processes (un-
correlated from each other). For all curves ω, we also write ξxυ(t)
to denote the points reached at time t under the input υ from initial
condition x = ξxυ(0).

To describe the mismatch between the controller specifications
and its software implementations such as digital sampling and finite
precision arithmetic, which is the focus of this paper, we consider
the discrete-time version of (2.1), as follows:{

x[r + 1] = Aτx[r] +Bτu[r] +Bτd[r] + es,
y[r] = Cx[r] + v[r],

(2.2)

where the matrices Aτ , Bτ , and Bτ are given by:

Aτ =eAτ , Bτ =

∫ (r+1)τ

rτ

eA(τ−t)Bdt,

Bτ =

∫ (r+1)τ

rτ

eA(τ−t)Bdt,

and τ is the sampling time. The function eAt, for any t ∈ R,
denotes the matrix function defined by the convergent series:

eAt = In +At+
1

2!
A2t2 +

1

3!
A3t3 + · · · ,

where e is Euler’s constant. The signals x, u, d, y, and v describe
the exact value of the signals ξ, υ, ω, η, and ν, respectively, at the



sampling instants 0, τ, 2τ, 3τ, . . .. Mathematically, we have:

x[r] =ξ(rτ), u[r] = υ(rτ), d[r] = ω(rτ),

y[r] =η(rτ), v[r] = ν(rτ), ∀r ∈ N0.

The term es in (2.2) is the sampling error. It can be shown that
by sampling sufficiently fast, the error es can be made arbitrar-
ily small [3]. Since typical embedded controller implementations
use sampling time in the range of milliseconds to microseconds,
we will make the assumption that quantization errors dominate the
sampling errors, and assume that es = 0.

We assume that only output y of the system is measurable and
not the full state x. Hence, a (proportional) feedback K : Rn →
Rm defines the input u[r] = −Kx̂[r] based on an estimation x̂ of
the state x. As explained in [8], the estimation x̂ can be constructed
using the observer dynamic:{

x̂[r + 1] = Aτ x̂[r] +Bτu[r] + L (y[r]− ŷ[r]) ,
ŷ[r] = Cx̂[r],

(2.3)

where ŷ should be viewed as an estimate of y and the linear map
L : Rp → Rn is called an observer gain. By applying the feedback
u[r] = −Kx̂[r] and combining the dynamics of control system in
(2.2) and observer in (2.3), one obtains:{

x[r + 1] = Aτx[r]−BτKx̂[r] +Bτd[r],
x̂[r + 1] = (Aτ −BτK − LC)x̂[r] + LCx[r] + Lv[r].

(2.4)

As shown in [1], using a fixed-point implementation of the feed-
back gain as well as the observer dynamic, one gets the following
overall dynamics:{
x[r + 1] = Aτx[r]−BτKx̂[r] +Bτd[r] +Bτeq2,
x̂[r + 1] = (Aτ −BτK − LC)x̂[r] + LCx[r] + Lv[r] + eq1,

(2.5)

where eq1 and eq2 are quantization errors in observer dynamic and
feedback gain codes, respectively. Now, one can rewrite the control
system in (2.5) as follows:

w[r + 1] = Gw[r] +H1e1[r] +H2e2[r], (2.6)

with:

w =

[
x
x̂

]
, e1 =

[
d
v

]
, e2 =

[
eq1
eq2

]
,

and:

G =

[
Aτ −BτK
LC Aτ −BτK − LC

]
, H1 =

[
Bτ 0n×p

0n×q L

]
,

H2 =

[
0n×n Bτ
In 0n×m

]
.

Since states of the control system (2.1) are bounded physical quan-
tities, such as temperature, pressure, and so on, their estimations
and the output of the control system are bounded quantities as well.
Hence, in the rest of the paper, we assume that y ∈ Y , and x̂ ∈ X̂
for compact sets Y ⊂ Rp and X̂ ⊂ Rn.

2.2 Stability of Perturbed Systems
We recall the notion of uniform global asymptotic stability with

respect to a set [16].

DEFINITION 2.1 ([16]). A control system of the form (2.1) is
uniformly globally asymptotically stable (UGAS) with respect to a
set A if there exists a KL function β such that for any t ∈ R+

0 ,
any x ∈ Rn, any control input υ : R+

0 → D1 ⊆ Rm, and for any

possible disturbance ω : R+
0 → D2 ⊆ Rq , where D1, and D2 are

compact sets, the following condition is satisfied:

‖ξxυ(t)‖A ≤ β(‖x‖A, t), (2.7)

where the point-to-set distance ‖x‖A is defined by
‖x‖A = infy∈A ‖x− y‖.

When A is a singleton {x0}, we speak of an asymptotically sta-
ble equilibrium point x0 rather than a UGAS set. The notion of
UGAS for discrete-time control systems is obtained from Defini-
tion 2.1 by replacing t ∈ R+

0 with r ∈ N0.
We recall the following result describing how stability properties

are affected by additive disturbances.

PROPOSITION 2.2 ([1]). Consider the discrete-time linear
system:

x[r + 1] = Ax[r]

and assume that the origin is an asymptotically stable equilibrium
point. Then, for any signal d : N0 → Rm satisfying ‖d[r]‖ ≤ b(d)
for any r ∈ N0 and some constant b(d) ∈ R+

0 , the system:

x[r + 1] = Ax[r] +Bd[r] (2.8)

is UGAS with respect to the set:

A = {x ∈ Rn | ‖x‖ ≤ γb(d)} ,

where γ is given by:

γ = max
θ∈[0, 2π[

∥∥∥∥(eiθIn −A)−1

B

∥∥∥∥ , (2.9)

with i =
√
−1. Moreover, the output y = Cx is guaranteed to

converge to the set:

Ay = {y ∈ Rp | ‖y‖ ≤ γyb(d)} , (2.10)

with:

γy = max
θ∈[0, 2π[

∥∥∥∥C (eiθIn −A)−1

B

∥∥∥∥ .
In control theory, γy is known as the L2 gain of the control sys-

tem in (2.8) with the output y = Cx. The following proposition
follows from Proposition 2.2 and describes the stability properties
of linear control systems in (2.6) with respect to disturbance, mea-
surement noise, and implementation errors in the feedback gain and
observer dynamic.

PROPOSITION 2.3. Consider the discrete-time linear system in
(2.6). For any input e1 and e2 satisfying ‖e1[r]‖ ≤ b(e1) and
‖e2[r]‖ ≤ b(e2) for any r ∈ N0 and some constants b(e1), b(e2) ∈
R+

0 , the system is UGAS with respect to the set:

A = {x ∈ Rn | ‖x‖ ≤ γ1b(e1) + γ2b(e2)} ,

where γ1 and γ2 are given by:

γj = max
θ∈[0, 2π[

∥∥∥∥(eiθI2n −G)−1

Hj

∥∥∥∥ , for j = 1, 2,

with i =
√
−1. Moreover, the output y = [C 0p×n]w ∈ Rp is

guaranteed to converge to the set:

Ay = {y ∈ Rp | ‖y‖ ≤ γ1yb(e1) + γ2yb(e2)} , (2.11)

where γ1y and γ2y are given by:

γjy = max
θ∈[0, 2π[

∥∥∥∥[C 0p×n]
(
eiθI2n −G

)−1

Hj

∥∥∥∥ , for j = 1, 2.

(2.12)



The error vector e1 includes disturbance and measurement noise,
depending for example on the environment and the quality of the
sensors collecting measurements. Hence, the controller designer
does not have any control on the value of b(e1). However, one can
reduce the amount of γ1y by appropriately choosing gains K and
L. On the other hand, one can reduce the amount of not only γ2y
but also b(e2) by appropriately choosing gains K and L. We use
Proposition 2.3 in the following way. Given a feedback gainK and
an observer gain L, we computeL2 gains γ1y and γ2y and an upper
bound b(e2) on the implementation error e2. Then the output of the
controlled system (with implementation error) must converge to set
Ay in (2.11). We show later that appropriate choices of gains K
and L can shrink the size of the setAy and hence, provide a tighter
bound on the set to which the output of the system converges.

2.3 LQR-LQG Performance
In addition to asymptotic stability, controller designers also con-

sider the performance of the controller, that is, of the controllers en-
suring asymptotic stability of the origin, one desires the controller
that minimizes a given cost function. A common approach for op-
timal output feedback controller are the linear quadratic regulator
(LQR) and linear quadratic Gaussian (LQG). The LQR cost func-
tion to be minimized is given by:

JLQR =

+∞∑
r=0

{
x[r]TQx[r] + u[r]TRu[r]

}
, (2.13)

for some chosen weight matrices Q and R that are positive definite
and of appropriate dimensions.

The LQG cost function to be minimized is given by:

JLQG = lim
r→+∞

E
[
‖e[r]‖2

]
, (2.14)

where E stands for expected value and e is the estimation error for
the control system in (2.4) whose dynamic is given by:

e[r+1] = x[r+1]− x̂[r+1] = (Aτ−LC)e[r]+Bτd[r]−Lv[r].
(2.15)

As mentioned before, d and v are assumed to be zero-mean Gaus-
sian noise process (uncorrelated from each other) with covariance
matrices:

E
(
d[r]d[r]T

)
= Q̂, E

(
v[r]v[r]T

)
= R̂, ∀r ∈ N0, (2.16)

where Q̂ and R̂ are some positive semi-definite matrices of appro-
priate dimensions.

A standard control-theoretic construction rewrites the cost func-
tion (2.13) as JLQR = x[0]TS(K)x[0], where u = −Kx, and
S(K) ∈ Rn×n is a positive definite matrix that is the unique solu-
tion for S to the Lyapunov equation:

(Aτ −BτK)T S (Aτ −BτK)−S+Q+KTRK = 0, (2.17)

where K is a controller making Aτ − BτK Hurwitz.1 See [8] for
detailed information. Additionally, we have

λmin(S(K))‖x[0]‖2 ≤ JLQR ≤ λmax(S(K))‖x[0]‖2, (2.18)

where λmin(S(K)) ∈ R+ and λmax(S(K)) ∈ R+ are mini-
mum and maximum eigenvalues of S(K), respectively. Therefore,
JLQR can be minimized for all possible choices of initial condi-
tions by just minimizing the maximum eigenvalue of S(K). Note

1We call the matrixAτ−BτK Hurwitz if its eigenvalues are inside
the unit circle, centered at the origin.

that since S is a positive definite and symmetric matrix, its maxi-
mum eigenvalue is equal to its induced 2 norm2 ‖S‖.

Similarly, the cost function (2.14) can be rewritten as JLQG =
‖P (L)‖, where P (L) ∈ Rn×n is a positive definite matrix that is
the unique solution for P to the Lyapunov equation:

(Aτ − LC)P (Aτ − LC)T − P +Bτ Q̂B
T
τ + LR̂LT = 0,

(2.19)
where L is an observer gain makingAτ −LC Hurwitz. See [8] for
more detailed information. Therefore, JLQG can be minimized by
just minimizing ‖P (L)‖.

Note that the optimal feedback u = −Kx minimizing the LQR
cost in (2.13) is computed using the deterministic dynamic:

x[r + 1] = Aτx[r] +Bτu[r].

On the other hand, the optimal gain L minimizing the LQG cost in
(2.14) is computed using the stochastic dynamic in (2.15). Thanks
to the separation principle for linear control systems [8], one con-
cludes that the overall closed loop system in (2.4) is UGAS even
though the gains K and L are designed separately.

2.4 The Effect of Errors
Example We now present a simple motivating example showing
how different choices of controllers may result in different steady
state errors due to their fixed-point implementations, yet provid-
ing approximately the same LQR-LQG performance. Consider the
following simple physical model of a bicycle, borrowed from [2]:

[
ξ̇1
ξ̇2

]
=

[
0 g

h
1 0

] [
ξ1
ξ2

]
+

[
1
0

]
(υ + ω) ,

η =
[
av0
bh

v20
bh

] [
ξ1
ξ2

]
+ ν,

(2.20)

where ξ1 is the steering angular velocity, ξ2 is the steering angle,
η is the role angle, υ is the torque applied to the handle bars, g =
9.8m/s2 is the acceleration due to gravity, h = 1.5m is the height
of the center of mass, v0 = 2m/s is the velocity of the bicycle
at the rear wheel, a = 0.5m is the distance of the center of mass
from a vertical line through the contact point of the rear wheel and
b = 1m is the wheel base.

The control objective is to design a feedback gain K ∈ R1×2

and an observer gain L ∈ R2×1 such that the feedback con-
trol law u = −Kx̂, where x̂ = [x̂1, x̂2]T is the state of the ob-
server in (2.3), makes the closed loop system UGAS. By choos-
ing the matrices Q = I2 and R = 1 inside the LQR cost func-
tion and Q̂ = 1 and R̂ = 1 in (2.16), the feedback and ob-
server gains minimizing the LQR and LQG costs are given by
K1 = [5.1538, 12.9724], and L1 = [0.0317, 0.0118]T , respec-
tively. Consider a second pair of feedback and observer gains given
by K2 = [3.0253, 12.6089] and L2 = [0.0132, 0.1021]T . For
the initial condition x = (0.2, 0.2)T , the value of the LQR cost
function is 264.1908 for feedback gain K1 and 284.1578 for K2.
Moreover, the value of the LQG cost function is 0.0229 for ob-
server gain L1 and 0.0246 for L2. So, the gains K2 and L2 give
cost functions about 7% greater than the optimal gains K1 and L1.

We now show how different choice of feedback and observer
gains result in different fixed-point implementation errors. For now,
let us assume that ω(t) = 0 and ν(t) = 0, for any t ∈ R+

0 . In Fig-
ure 1, we show the output of the closed-loop system starting from
the initial condition x = (0.2, 0.2)T , when the feedback gain and

2We recall that induced 2 norm of a matrixA ∈ Rn×m is given by:
‖A‖ =

√
λmax (ATA).
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Figure 1: Evolution of the output y with initial state (0.2, 0.2)T

for the pair of gains K1, L1 and K2, L2 using 16-bit implemen-
tation. Upper panel: evolution of y from 0 to 15 seconds. Lower
panel: evolution of y from 5 to 15 seconds (magnified version).

observer dynamic are implemented using 16-bit fixed-point repre-
sentation. As can be observed from Figure 1, the output of the
controlled system does not converge to the equilibrium point at the
origin because of the fixed-point implementation error in the con-
trollers. Furthermore, the practical stability region using gains K2

and L2 is much smaller than the one using gains K1 and L1.
Using bounds on implementation errors for the two controllers

(described in Section 3) and Proposition 2.3, we can prove that the
output of the system with feedback and observer gains K1 and L1

(resp. K2 and L2) converges to a ball centered at the origin with
radius 0.5486 (resp. 0.0513), whenever the output of the system
and the state of the observer take values in the interval [−1, 1]
and the feedback gain and observer dynamic are implemented us-
ing 16-bit fixed-point implementation. As can be seen, given a
16-bit implementation, feedback and observer gains K2 and L2

may be preferred to gains K1 and L1 because they have guaran-
teed bounds on practical stability region that is 10 times smaller
than gains K1 and L1 and provide approximately similar perfor-
mance. If one considers the effect of disturbance and measurement
noise, it can be proved that the output of the system with feedback
and observer gains K1 and L1 (resp. K2 and L2) converges to a
ball centered at the origin with radius 5.0489b(e1) + 0.5486 (resp.
2.5341b(e1) + 0.0513), where b(e1) is an upper bound on the size
of the vector e1 introduced in (2.6).

Optimization objectives The above example suggests that the con-
trol design should optimize for the following objectives: the LQR
and the LQG costs for performance, error caused by disturbance
and measurement noise, and the implementation error given by a
fixed-precision encoding. Accordingly, we define a cost function
that is weighted sum of the four factors:

J (K,L) = w1
‖S(K)‖
‖S∗‖ +w2

‖P (L)‖
‖P ∗‖ +w3

γ1y
γ∗1y

+w4
γ2yb(e2)

γ∗2yb
∗(e2)

,

(2.21)
where w1, . . . , w4 are weighting factors, S∗ and P ∗ are matrices,
computed from Lyapunov equations in (2.17) and (2.19) using stan-
dard LQR and LQG gains (KLQR and LLQG), γ1y and γ2y (resp.
γ∗1y and γ∗2y) are theL2 gains in (2.12) using feedback and observer
gains K and L (resp. KLQR and LLQG) and b(e2) (resp. b∗(e2))
is the bound on the implementation error of given feedback and ob-
server gains K and L (resp. KLQR and LLQG). Minimizing the
terms γ1y and γ2yb(e2) inside (2.21) results in a tighter bound on
the set Ay in Proposition 2.3. Since the four factors in (2.21) have
different scales, we normalized them by their values using the stan-

dard gainsKLQR andLLQG. The designer can choosew1, . . . , w4

based on the priorities on LQR and LQG performances and steady
state error. Our objective is to find feedback and observer gains that
minimize the cost function J .

We focus on implementation errors arising out of fixed-precision
arithmetic. The bound b(e2) is computed using the strategy ex-
plained in Section 3. Since the cost function J is not necessar-
ily convex with respect to the feedback and observer gains K and
L, we cannot reduce the design problem to a convex optimization
problem. We use a heuristic stochastic optimization approach to
find feedback and observer gains K and L minimizing J .

In our exposition, we consider the plant model to be precise,
and only consider quantization effects as the source of error. Our
methodology can consider both additive and multiplicative uncer-
tainties in the plant model as well [7]. We can take those uncer-
tainties into account by adding appropriate extra terms to the cost
function in (2.21), using the results provided in [29, 27]. We omit
the details for simplicity.

3. COMPUTING QUANTIZATION ERROR
In this section we show how to compute a bound on the fixed-

point implementation error for given feedback and observer gains
K and L. We assume that the outputs of the controlled system and
the state of the observer are restricted to compact subsets Y ⊂ Rp

and X̂ ⊂ Rn, respectively.

3.1 Best Fixed-point Implementation
A fixed-point representation of a real number is a triple 〈s, n,m〉

consisting of a sign bit indicator s ∈ {1, 0} (for signed and un-
signed), a length n ∈ N, and a length of the fractional part m ∈ N.
The length of the integer part is n−m− 1. Intuitively, a real num-
ber is represented using n bits, of which m bits are used to store
the fractional part. Clearly, the largest integer portion has to fit in
n−m− 1 bits.

A variable with a fixed-point type is represented as an integer.
We associate an integer variable x̂ with the fixed-point represen-
tation of a real variable x. An integer variable x̂ that represents a
fixed-point variable with type 〈0, n,m〉 can be interpreted as the ra-
tional number 2−mx̂. We deal with a signed number by separately
tracking the sign and the magnitude, performing the operations on
the magnitudes using unsigned arithmetic, and finally putting the
appropriate sign bits back.

An operation using real arithmetic may have different fixed-point
implementations depending on how many bits are allocated to hold
the integer part and the fraction part of the variables. Allocating
fewer number of bits than required to hold the integer part may
lead to overflow. On the other hand, if more than the required num-
ber of bits are allocated to the integer part, the quantization error
can increase because fewer bits are assigned to the fractional part.
When we compare fixed-point implementations of different con-
trollers, we first synthesize the best possible implementation of a
controller, relative to an analysis.

Let us fix the total number of bits to be n for the implementation
of a controller. Let us fix a program analysis that computes an upper
bound on the quantization error for a fixed-point implementation.
Given a controller, let b be the upper bound on the quantization
error computed by the analysis in a fixed-point implementation I of
a controller using n bits in all for a given range of the inputs. The
fixed-point implementation I is the best implementation if there
does not exist another implementation I ′ using n bits, for which
the bound on the quantization error computed by the analysis is b′

and b′ < b.
If the ranges of the variables in the real arithmetic computation



can be computed exactly, it is possible to synthesize the best fixed-
point implementation. In the best fixed-point implementation, the
number of bits allocated to the integer part is just enough to hold
the integer part of any value in that range. For example, if the range
of a variable is [-35.55, 48.72], the datatype for the variable in the
best 16-bit fixed-point representation is 〈1, 16, 9〉.

The range computation problem of variable y in an operation
y = f(x1, . . . , xn) involves solving a maximization and a mini-
mization problem, where f is the objective function and the ranges
on x1, . . . , xn form the set of constraints. If the function f is con-
vex, the range of y can be computed exactly, and it is also straight-
forward to find the best fixed-point implementation for the opera-
tion.

3.2 Error Bound Computation
We apply a mixed-integer linear-programming-based optimiza-

tion technique to find out the error bound between a computation
in real arithmetic and its best fixed-point implementation. Sup-
pose we have an arithmetic operation s : a = b op c, where
op ∈ {+,−, ∗}, where we assume that if op = ∗, then either b
or c is a constant. If op = + or op = −, then b and c can both be
variables. We associate an integer variable x̂ with the fixed-point
representation of a real variable x. Let the range of the values for
a and b and c are [la, ua], [lb, ub], and [lc, uc], respectively. Let the
fixed-point representation of a, b and c be 〈1, na,ma〉, 〈1, nb,mb〉,
and 〈1, nc,mc〉, respectively. Let b(eb) and b(ec) be bounds on the
quantization errors of b and c, respectively. The optimization prob-
lem to find the bound on the error is given by:

maximize
∣∣a− 2−ma â

∣∣
subject to la ≤ a ≤ ua, lb ≤ b ≤ ub∣∣∣b− 2−mb ∗ b̂

∣∣∣ ≤ b(eb)∣∣c− 2−mc ∗ ĉ
∣∣ ≤ b(ec)

a = b op c
Φ(fp(s))

(3.1)

where fp(s) is the fixed-point representation of the statement s and
Φ(s) denotes a logical formula that relates the inputs and outputs
of the fixed-point representation s. Technically, Φ is the strongest
postcondition [26] of s with respect to true . We compute Φ using
an arithmetic encoding of a fixed-point computation [1]. Here we
illustrate the computation of the strongest postcondition Φ using an
example.

Example. Suppose we have the following arithmetic operation

s : y = −7.2479 ∗ x .

Assume the compact set for x is [-1, 1]. The fixed-point expression
corresponding to s in the best fixed-point implementation is

fp(s) : −ŷ = (−115 ∗ x̂)� 6 .

The strongest postcondition Φ(fp(s)) of fp(s) is given by:
Φ(fp(s)) := tmp = −115 ∗ x̂ ∧

tmp ≥ 0→ tmp1 = tmp ∧
tmp < 0→ tmp1 = −tmp ∧
tmp1 = 26 ∗ divisor + remainder ∧
remainder ≥ 0 ∧ remainder < 26 ∧
tmp ≥ 0→ ŷ = divisor ∧
tmp < 0→ ŷ = −divisor ,

where tmp, tmp1, divisor, and remainder are integer variables.
Depending on the arithmetic operation, we need to solve at most

four instances of mixed integer linear programming problems to
solve the optimization problem in (3.1), and the maximum among

all of these instances gives the bound on the error in the fixed-point
implementation.

We use the above technique to compute the bound on the error
in one operation in the fixed-point implementation of a gain. The
implementation of a gain involves a series of arithmetic operations.
We compute the error bound for the output of one arithmetic oper-
ation at a time. Let s : a = b op c is an arithmetic operation in the
implementation of a gain. In the arithmetic operation, b and c may
either be a constant, a state variable or a temporary variable which
captures the result of some previous operation. If b (or c) repre-
sents a constant, and the fixed-point representation contains m bits
for the fraction part, then the error in the fixed point representation
is bounded by 1

2m
. If b (or c) represents a state variable, then the

fixed-point datatype can be determined from the given compact set
for the state, and the fixed-point datatype can be determined accord-
ingly. Then the error in the fixed-point representation is bounded
by 1

2m
, where m is the number of bits to represent the fraction part

in the fixed-point datatype of the variable. If b (or c) is a temporary
variable used to hold the result of an earlier computation, then the
range and error bound for the variable are already known.

4. OPTIMAL CONTROLLER SYNTHESIS
We now describe our controller synthesis algorithm that mini-

mizes the cost function (2.21) combining LQR and LQG perfor-
mance, disturbance, measurement noise, and implementation er-
rors. Since the cost function is non-convex, we use a stochastic
local search technique.

4.1 Particle Swarm Optimization
We use a stochastic local search approach called particle swarm

optimization (PSO). It maintains a set of potential solutions
(called “particles”) in a compact d-dimensional search space D =∏d
j=1[yjmin, y

j
max] ⊂ Rd, minimizing a given cost function. The

particles move in this space according to their velocity. Each parti-
cle, indexed by i ∈ N, has a position yi ∈ Rd, changing between
ymin and ymax, and a velocity vector vi ∈ Rd, changing between
some vectors vmin and vmax. The terms vmin and vmax are often set
to the maximum dynamic range of the variables on each dimension
[28]: −vjmin = vjmax = |yjmax − yjmin|. Every particle remem-
bers its own best position (i.e., the lowest value of the cost function
achieved so far by this particle) in a vector Pi ∈ Rd. The best po-
sition with respect to the cost function among all of the particles so
far is stored in a vector Pg ∈ Rd.

PSO updates the positions and velocities of all particles itera-
tively. The new velocity and position for particle i are determined
as:

vl+1
i =wlvli + c1r1

(
P li − yli

)
+ c2r2

(
P lg − yli

)
, (4.1)

yl+1
i =yli + vl+1

i , (4.2)

where the superscript l denotes the iteration number, the subscript
i = 1, . . . , N denotes the index of the particle, andN is the number
of particles. The constant wl in (4.1) is updated using the inertia
weight approach [5] as the following:

wl = wmax −
wmax − wmin

lmax
(l − 1), (4.3)

where wmax and wmin are adjusted to 1 and c1+c2
2
− 1 and lmax is

the maximum number of iterations. The constants c1 and c2 in (4.1)
are the acceleration constants, influencing the convergence speed of
particles toward its own and global best positions and set to 0.5 and
1, respectively [5]. The constants r1 and r2 in (4.1) are uniformly
distributed random numbers on the interval [0, 1].



4.2 Overall Algorithm
The PSO algorithm is used to search for feedback and observer

gains K ∈ Rm×n and L ∈ Rn×p for the control system (2.5),
minimizing (2.21). Note that a particle in PSO represents a feed-
back and an observer gain K and L, respectively, moving in an
m×n+n×p dimensional search space. To discard those gains that
make the controlled system unstable, we penalize unstable gains by
including a penalty term P̃ in the cost function such that P̃ = 0 if
Aτ−BτK andAτ−LC are Hurwitz and P̃ = +∞ otherwise. The
cost function for PSO is then F (K,L) = J (K,L) + P̃ (K,L).

The design steps are as follows:

(1) Initialize positions of N feedback gains Ki and observer
gains Li by KLQR and LLQG, respectively, and uniformly
randomly initialize their velocities, for i = 1, . . . , N .

(2) Given any feedback gain Ki and observer gain Li, compute
the cost function F (Ki, Li). To compute P̃ , check if Aτ −
BτK and Aτ − LC are Hurwitz. There are some steps to
compute J . First, compute S(Ki) and P (Li) by solving the
Lyapunov equations (2.17) and (2.19), respectively, and find
their induced 2-norm. Second, compute the L2 gains γ1y
and γ2y . Third, compute b(e2) by solving the optimization
problems from Section 3.

(3) Compare F (Ki, Li) to its own best position Pi so far and
the global best position Pg so far. If F (Ki, Li) is less than
the previous personal best (resp. the global best), update the
best position (resp. the global best) to Ki and Li.

(4) Modify the velocity and position of each pair Ki and Li ac-
cording to (4.1) and (4.2).

(5) If the number of iterations, denoted by l, reaches the maxi-
mum, denoted by lmax, or the value of F does not change for
the global best position Pg for 50 consecutive iterations up
to error 10−6 then go to Step (6), otherwise go to Step (2);

(6) The latest Pg is an estimate for the optimal controller.

5. EXTENSION: PID CONTROLLERS
PID controllers are a common class of controllers in many in-

dustries, such as automotive, power systems, servomotors, and so
on. We now extend the analysis of Section 2 to PID controllers. A
PID controller generalizes a proportional feedback controller, and
includes three terms: a proportional term, an integrator, and a dif-
ferentiator. For an input υ, the output η of the PID controller is
computed as follows:

η(t) = KPυ(t) +KI

∫ t

0

υ(s)ds+KD
dυ(t)

dt
, ∀t ∈ R+

0 , (5.1)

whereKP ,KI , andKD are called proportional, integrator, and dif-
ferentiator gains, respectively. To describe the mismatch between
the PID specifications and its software implementation, we con-
sider the discrete-time version of (5.1). An integrator term:

η(t) =

∫ t

0

υ(s)ds, ∀t ∈ R+
0 ,

can be discretized based on the trapezoidal approximation as fol-
lows:

y[r + 1] = y[r] +
τ

2
(u[r + 1] + u[r]) , ∀r ∈ N0, (5.2)

where τ is the sampling time, y[r] = η(rτ)+e1 and u[r] = υ(rτ),
for any r ∈ N0. A common way of discretizing a differentiator, is
based on the backward Euler method. A differentiator term:

η(t) =
dυ(t)

dt
, ∀t ∈ R+

0 ,

can be discretized as follows:

y[r + 1] =
u[r + 1]− u[r]

τ
, ∀r ∈ N0, (5.3)

where y[r] = η(rτ) + e2 and u[r] = υ(rτ), for any r ∈ N0. By
using the fast sampling time assumption, we can ignore the errors
e1 and e2 in the discretized versions of the integrator and differen-
tiator in comparison with quantization errors. To follow the same
analysis as in Section 2, we need a state space realization of PID
controller. By resorting to control theoretic results (see, e.g., [11])
and using the discretization rules in (5.2) and (5.3), the state space
realization of discretized PID controller with input û[r] and output
ŷ[r] are obtained as follows:{

x̂[r + 1] = Âx̂[r] + B̂û[r],

ŷ[r] = Ĉx̂[r] + D̂û[r],
(5.4)

where

Â =

[
0 1
0 1

]
, B̂ =

[
0
1

]
, Ĉ =

[
KD

τ
KIτ −

KD

τ

]
,

D̂ =

(
KP +

KIτ

2
+
KD

τ

)
.

Without loss of generality, consider a single-input (m = 1) single-
output (p = 1) discrete-time linear control system of the form:{

x[r + 1] = Ax[r] +Bu[r],
y[r] = Cx[r].

Since the input of the PID controller is equal to the negative of the
output of the plant (û = −y) because of negative feedback and
the output of the PID controller is equal to the input of the plant
(u = ŷ), one obtains:{

x[r + 1] =
(
A−BD̂C

)
x[r] +BĈx̂[r],

x̂[r + 1] = −B̂Cx[r] + Âx̂[r].
(5.5)

Similar to what has been explained in Section 2, by fixed-point
implementation of the PID controller, one gets the following overall
dynamic:{

x[r + 1] =
(
A−BD̂C

)
x[r] +BĈx̂[r] +Beq2,

x̂[r + 1] = −B̂Cx[r] + Âx̂[r] + eq1,
(5.6)

where eq1 and eq2 are quantization errors in computing the PID
controller. Now, we can use the same strategy, as explained in Sub-
section 4.2, to design parameters KP , KI , and KD of PID con-
trollers minimizing a performance-based cost function as well as
the effect of quantization error. For example, one can consider:

J (KP ,KI ,KD) =
w1

PM
+

w2

GM
+w3γ(b(eq1) + b(eq2)), (5.7)

where PM and GM are phase and gain margins, w1, w2, w3 are
weighting factors, γ is the L2 gain of the linear control system
(5.6) and b(eq1) and b(eq2) are the bounds on the implementation
errors eq1 and eq2. Note that control over PM and GM guarantees
robust stability of the closed-loop systems [8]. The phase and gain
margins measure the system’s tolerance to the time delay and the
steady state gain, respectively.



Control systems # bits Synthesized gains Time cost
K L

Bicycle 16 [3.0253 12.6089] [0.0132 0.1021]T 1h36m41s
DC motor position 16 [0.1129 0.0211 0.0093] [0.0390 0.3700 − 0.0175]T 1h39m06s
Pitch angle control 32 [ -0.1202 42.5655 1.0001] [0.0001 0.0000 0.0017]T 8h31m53s

Inverted pendulum 32 [-1.5362 -2.0254 16.5192 2.7358]
[

0.0017 0.0021 0.0012 0.0000
0.0001 0.0018 0.0122 0.0770

]T
9h54m17s

Batch reactor process 16
[

0.0583 0.9093 0.3258 0.8721
−2.4638 −0.0504 −1.7099 1.1653

] [
0.0774 −0.0022 0.0267 0.0356
−0.0103 0.0227 0.0398 0.0001

]T
3h08m29s

Table 1: Synthesized gains and required time for synthesizing them.

Control lub of LQR cost LQG cost Steady state error
systems LQR Synthesized LQG Synthesized LQR-LQG Synthesized

K L gains
Bicycle 3956.3‖x‖2 4331.7‖x‖2 0.0229 0.0246 5.0489b(e1)+0.5486 2.5341b(e1)+0.0513

DC motor position 1001.6‖x‖2 1376.7‖x‖2 36.6315 36.6731 30.566b(e1)+0.16 15.421b(e1)+0.011
Pitch angle control 2.9732× 106‖x‖2 2.9887× 106‖x‖2 0.0013 0.0018 2.6781b(e1)+0.4746 1.4453b(e1)+0.0807
Inverted pendulum 4.2988× 104‖x‖2 5.3471× 104‖x‖2 0.3600 0.3897 83.4217b(e1)+0.0432 30.3801b(e1)+0.0086

Batch reactor process 223.1773‖x‖2 223.1825‖x‖2 0.0731 0.0949 2.9309b(e1)+0.4194 2.1216b(e1)+0.1642

Table 2: Least upper bound (lub) on the LQR cost (2.13), for a given initial condition x, the LQG cost (2.14), and the Euclidean norm
of the steady state error for the LQR-LQG and the synthesized gains.

6. EXPERIMENTAL RESULTS
We implemented the algorithm presented in Section 4.2 in Mat-

lab. We use a PSO function in Matlab from [5]. We implemented a
static analyzer in OCaml that synthesizes the best fixed-point pro-
gram and computes the bound on the fixed-point implementation
error for given feedback and observer gains K and L, respectively.
The tool gets the number of bits in the fixed-point datatype, com-
pact subsets Y ⊂ Rp and X̂ ⊂ Rn, and feedback and observer
gains K and L, respectively, as inputs. The optimization problems
in computing the error bound are solved using the mixed-integer
linear programming tool lp_solve [30]. All the experiments were
done on a laptop with CPU Intel Core 2 Duo at 2.4 GHz.

We applied the proposed controller synthesis approach to a num-
ber of linear control systems. In all of the experiments, the number
of particles in PSO is N = 24, the maximum number of itera-
tions is lmax = 100, and we choose the matrices Q = In and
R = Im in (2.13) and Q̂ = Iq , and R̂ = Ip in (2.16). The
value of lmax was chosen in such a way that appropriate gains
are obtained in terms of the cost function (2.21) (or (5.7)) for all
control systems. Moreover, we assume that the search space is
D =

∏n×m+n×p
i=1 [−150, 150] ⊂ Rn×m+n×p, which contains

the standard LQR and LQG gains for all the examples. Further,
we work on the compact subsets Y =

∏p
i=1[−1, 1] ⊂ Rp and

X̂ =
∏n
i=1[−1, 1] ⊂ Rn. All constants and variables are ex-

pressed in SI units.
Our unstable examples include a bicycle [2], a DC motor po-

sition control [31], a pitch angle control [31], an inverted pendu-
lum [31], a batch reactor process [7], and another inverted pendu-
lum for PID synthesis [31]. See Table 1 and 2 for experimental
results. Note that for those examples for which a 32-bit implemen-
tation is chosen, the 16-bit one provides a stability region which
is even larger than the range of the variables inside the controller.
As can be seen from Table 2, in comparison with the conventional
LQR-LQG approach, the synthesis approach proposed in this paper
worsens the LQR and LQG performances by at most 1.37 times
(for DC motor position) and 1.38 times (for Pitch angle control),
respectively. However, the proposed synthesis approach improves
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Figure 2: Cost of the best particle and average cost of all popu-
lation vs iteration.

the size of the region of practical stability due to quantization error
by at least 2.55 times. For certain examples, the improvement goes
beyond the factor of 10. For the bicycle and DC motor position
control, the region of practical stability due to quantization error
improves by a factor of 10.69 and 14.55, respectively.

The detailed descriptions of the systems are as follows.

Bicycle The model of a bicycle is shown in (2.20). The weighting
factors in (2.21) are chosen as w1 = w2 = w3 = 1 and w4 = 5.
The results of the LQR, LQG, and the method in this paper are
shown in Tables 1 and 2. To assess the quality of the proposed
stochastic search method, we run the algorithms 10 times. The re-
sulted standard deviation of the cost function J in (2.21) of all runs
was 0.2806 which is around 9% of the best cost 3.1406. Figure 2
shows how the value of the cost function improves monotonically
with the number of iteration for the best run. The fixed-point C
code for the synthesized controller is shown in Figure 3.

DC motor position control The dynamic of a DC motor position



float output(float yin)
{

static int x1 = x10; // fixdt(1,16,14)
static int x2 = x20; // fixdt(1,16,14)
int x1_new; // fixdt(1,16,14)
int x2_new; // fixdt(1,16,14)
int u; // fixdt(1,16,11)

// Intermediate variables
int Gain1; // fixdt(1,16,15)
int Gain2; // fixdt(1,16,15)
int Gain3; // fixdt(1,16,15)
int Add1; // fixdt(1,16,14)
int Gain4; // fixdt(1,16,15)
int Gain5; // fixdt(1,16,15)
int Gain6; // fixdt(1,16,15)
int Add2; // fixdt(1,16,15)
int Gain7; // fixdt(1,16,13)
int Gain8; // fixdt(1,16,11)

y = convert_to_fixedpoint(yin);
Gain1 = (31499 ∗ x1) >> 14;
Gain2 = (−3145 ∗ x2) >> 14;
Add1 = (Gain1 + Gain2) >> 1;
Gain3 = (432 ∗ y) >> 14;
x1_new = ((Add1 << 1) + Gain3) >> 1;
Gain4 = (−1907 ∗ x1) >> 14;
Gain5 = (23835 ∗ x2) >> 14;
Add2 = Gain4 + Gain5;
Gain6 = (3345 ∗ y) >> 14;
x2_new = (Add1 + Gain6) >> 1;
Gain7 = (24783 ∗ x1_new) >> 14;
Gain8 = (25823 ∗ x2_new) >> 14;
u = (Gain7 + (Gain8 << 2)) >> 2;
return(float(u));

}

Figure 3: synthesized fixed-point controller C code for Bicycle.

control, borrowed from [31], is given by:

 ξ̇1
ξ̇2
ξ̇3

 =

 0 1 0

0 −b
J

K
J

0 −K
L

−R
L

 ξ1
ξ2
ξ3

+

 0
0
1
L

 (υ + ω)

η = [1 0 0]

 ξ1
ξ2
ξ3

+ ν,

where ξ1 is the angle of the motor’s shaft, ξ2 is the angular
velocity of the motor’s shaft, ξ3 is the armature current, b =
3.508 × 10−6 is the damping ratio of the mechanical system,
J = 3.228×10−6 is the moment of inertia of the rotor,K = 0.027
is the electromotive force constant, R = 4 is the electric re-
sistance, L = 2.75 × 10−6 is the electric inductance, and υ
is the source voltage. The weighting factors in (2.21) are cho-
sen as w1 = w2 = w3 = 1 and w4 = 5. The LQR and
LQG gains are given by KLQR = [0.4055 0.3782 0.0022] and
LLQG = [0.0288 0.3858 − 0.0026]T and the gains, computed
by the approach in this paper, are given in Table 1. Tables 1 and
2 show the detailed results.
Pitch control The dynamic of the longitudinal motion of an air-
craft, borrowed from [31], is given by:

 ξ̇1
ξ̇2
ξ̇3

 =

 −0.313 56.7 0
−0.0139 −0.426 0

0 56.7 0

 ξ1
ξ2
ξ3


+

 0.232
0.0203

0

 (υ + ω)

η = [0 0 1]

 ξ1
ξ2
ξ3

+ ν,

where ξ1 is the angle of attack, ξ2 is the pitch rate, ξ3 is the pitch
angle, and υ is elevator deflection angle. The weighting factors in
(2.21) are chosen as w1 = w2 = w3 = 1 and w4 = 5. The LQR
and LQG gains are given byKLQR = [−0.1141 49.1428 0.9995]
and LLQG = 10−3 × [0.6407 0.0039 0.6655]T and the gains,
computed by the approach in this paper, are given in Table 1. Tables
1 and 2 show the detailed results.
Inverted pendulum Consider a simple physical model of an in-
verted pendulum on a cart, borrowed from [31]. The dynamics of
the system is given by:


ξ̇1
ξ̇2
ξ̇3
ξ̇4

 =


0 1 0 0

0
−(I+ml2)b

K
m2gl2

K
0

0 0 0 1

0 −mlb
K

mgl(M+m)
K

0


 ξ1
ξ2
ξ3
ξ4



+


0

I+ml2

K
0
ml
K

 υ +

 1
1
1
1

ω,

η =

[
1 0 0 0
0 0 1 0

] ξ1
ξ2
ξ3
ξ4

+ ν,

where ξ1, and ξ2 are the position and velocity of the cart, re-
spectively, ξ3, and ξ4 are the angular position and velocity of
the mass to be balanced, υ is the applied force to the cart,
K = I(M +m) +Mml2, g = 9.8 is the acceleration due to
gravity, l = 0.3 is the length of the rod, m = 0.2 is the mass of the
system to be balanced, M = 0.5 is the mass of the cart, b = 0.1
is the coefficient of friction of the cart, and I = 0.006 is the iner-
tia of the pendulum. The weighting factors in (2.21) are chosen as
w1 = w2 = w3 = 1 and w4 = 5. The LQR and LQG gains are
given by KLQR = [−0.9929 − 2.0276 20.2819 3.9126] and

LLQG =

[
0.0016 0.0011 0.0007 0.0034
0.0007 0.0051 0.0111 0.0618

]T
,

and the gains, computed by the proposed approach in this paper,
are given in Table 1.
Batch reactor process Consider an unstable batch reactor process,
borrowed from [7]. The dynamic of the system is given by:


ξ̇1
ξ̇2
ξ̇3
ξ̇4

 =

 1.38 −0.2077 6.715 −5.676
−0.5814 −4.29 0 0.675

1.067 4.273 −6.654 5.893
0.048 4.273 1.343 −2.104


 ξ1
ξ2
ξ3
ξ4



+

 0 0
5.679 0
1.136 −3.146
1.136 0

 υ +

 1
1
1
1

ω,
η =

[
1 0 1 −1
0 1 0 0

] ξ1
ξ2
ξ3
ξ4

+ ν.

The weighting factors in (2.21) are chosen as w1 = w3 = 1,
w2 = 2, and w4 = 5. The LQR and LQG gains are given by:

KLQR =

[
0.0376 0.9157 0.3262 0.8226
−2.4884 −0.0734 −1.7461 1.1438

]
,

LLQG =

[
0.0447 −0.0003 0.0170 0.0127

0 0.0020 0.0058 0.0059

]T
,

and the gains, computed by the approach in this paper, are given in
Table 1.
PID controller In this example, we provide a PID controller for an
inverted pendulum whose dynamic is given by a transfer function.



Consider the transfer function of an inverted pendulum, borrowed
from [31], given by:

Φ(s)

U(s)
=

ml
q
s

s3 + b(I+ml2)
q

s2 − (M+m)mgl
q

s− bmgl
q

, (6.1)

where q = (M + m)(I + ml2) − (ml)2, output φ is the angular
position of the mass to be balanced, input υ is the force applied
to the cart, g = 9.8 is the acceleration due to gravity, l = 0.3
is the length of the rod, m = 0.2 is the mass of the system to be
balanced,M = 0.5 is the mass of the cart, b = 0.1 is the coefficient
of friction of the cart, and I = 0.006 is the moment of inertia
of the pendulum. Using standard results in control theory [11],
one obtains the following state space realization for the inverted
pendulum:

 ξ̇1
ξ̇2
ξ̇3

 =

 −0.1818 3.8977 0.5568
8.000 0 0

0 1 0

 ξ1
ξ2
ξ3

+

 1
0
0

 υ
φ = [0 0.5682 1]

 ξ1
ξ2
ξ3

 .
Our objective is to design PID gainsKP ,KI , andKD minimizing
the cost function (5.7) with weighting factors w1 = w2 = w3 = 1
and such that the closed loop system has a settling time (ts) of
less than 5 seconds and such that the pendulum does not move
more than 0.05 radians away from the vertical axis. The latter
two constraints are treated the same as the stability constraint in
Subsection 4.2 by penalizing the cost function (5.7). The syn-
thesized gains are KP = 109.032, KI = 1.2268, and KD =
13.9945. The closed loop system has PM = +∞,GM = 26237,
γ(b(eq1) + b(eq2)) = 4.1705 × 10−4, settling time ts = 0.4790,
and ensures that the pendulum does not move more than 0.0098
radians away from the vertical axis.

7. CONCLUSION
We have presented a generic methodology to search for optimal

controller implementations that minimize implementation errors in
addition to traditional controller performance criteria. While we
have instantiated the methodology using the LQR and LQG costs
and quantization errors, our algorithm is more generally applica-
ble to other performance criteria and other sources of modeling or
implementation error.
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