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Abstract. To overcome the complexity of verification of real-time sys-
tems with dense time dynamics, Dutertre and Sorea proposed timeout
and calender based transition systems to model real-time systems and
verify safety properties using k-induction. In this work, we propose a
canonical finitary reduction technique, which reduces the infinite state
space of timeout and calender based transition systems to a finite state
space. The technique is formalized in terms of clockless finite state time-
out and calendar based models represented as predicate transition dia-
grams. Using the proposed reduction, we can verify these systems using
finite state model checkers and thus can avoid the complexity of induction
based proof methodology. We present examples of Train-Gate Controller
and the TTA startup algorithm to demonstrate how such an approach
can be efficiently used for verifying safety, liveness, and timeliness prop-
erties using the finite state model checker Spin.

1 Introduction

Modeling and verification of timeout based real-time systems with continuous
dynamics is an important and hard problem that has evoked a lot of prime
research interest with industrial focus for many years in the recent past. The
problem of faithfully modeling and consequently formally verifying such time-
out based real-time systems is rather difficult because the state space of these
systems is essentially infinite owing to the diverging valuation required by the
timing and timeout variables. Because of this infiniteness of the state space none
of the known formal verification techniques can be applied to completely ver-
ify some of the interesting properties, e.g., liveness properties, timing deadlocks
etc. Although infinite state model checkers like SAL (Symbolic Analysis Labo-
ratory) [10] have been used with limited success for verifying safety properties.
The verification process employed by these tools demands significant additional
manual efforts in defining supporting lemmas and abstractions for scaling up the
model.

Spin [9] is a tool for automatically verifying finite state distributed systems.
There are broadly two attempts for extending Spin with time [4, 5, 16]. Real-
time extension of Spin (RT-Spin [16]) is one such work, which provides timed
automata (TA) [1] with real-valued clocks as a modeling framework, though



is incompatible with the partial order reduction implementation of Spin. An-
other is the work on DT-Spin [4, 5], which allows one to quantify (discrete)
time elapsed between events, by specifying the time slice in which they occur.
DT-Spin is compatible with the partial order reduction of Spin and has been
used to verify industrial protocols, e.g., AFDX Frame management protocol [13]
and TTCAN [14]. Nonetheless, systems with asynchronous communication with
bounded delays between components cannot be modeled directly by using the
mechanism of asynchronous channels that Spin provides since there is no ex-
plicit provision to capture message transmission delays. One possibility is to
model each channel as a separate process with delay as a state variable. In [4],
the channels in the example of PAR protocol have been implemented in the same
way. But for systems with relatively large number of components and dense con-
nectivity among the components, modeling channels in this way is difficult and
state space explosion becomes an unavoidable problem. UPPAAL [2], which can
model TA, has the same limitation when modeling asynchronous communica-
tions with bounded delays - every channel has to be modeled as a separate TA
capturing the message transmission delays.

Dutertre and Sorea [6] proposed timeout based modeling of time triggered
systems with dense time dynamics, which have been traditionally used as a model
of execution in discrete event system simulations. They presented a modeling
approach, where expected delivery delays for all undelivered messages can be
stored in a global data structure called calendar [6, 7]. Formally, a calendar is a
set of bounded size of the form C = {〈e1, t1〉, . . . , 〈er, tr〉}, where each event ei

is associated with the time point ti when it is scheduled to occur. The calendar
based model along with the timeouts for individual processes has been used to
model the TTA startup protocol [7]. Using the infinite bounded model checker of
SAL [10], they proved the safety property by k induction. Unfortunately, not all
of the safety properties are inductive in nature and therefore may require support
of auxiliary lemmas. In [7], proof of the safety property for the TTA startup
having just 2 nodes itself required 3 additional lemmas. A verification diagram
based abstraction method proposed in [12], was used to prove the invariant
property for models having upto 10 nodes. However, liveness properties still
remain beyond the scope of this approach. Pike [11] builds on the work of [6]
and proposes a new formalism called Synchronizing Timeout Automata (STA)
to reduce the induction depth k required for k-induction. STA is defined using
shared timeouts such that the resulting transition system does not involve a
clock.

Since in timeout and calendar based models, global time and timeouts always
increase, such models cannot be directly used for finite state verification. To
that end, we propose a finitary reduction technique which effectively reduces
the infinite state timeout and calendar based transition systems with discrete
dynamics to finite state transition systems. This technique enables us to model a
real-time system without considering a clock explicitly. We formalize the timeout
and calendar based models as predicate transition diagrams and their behavior in
terms of timeout and calendar based transition systems. Such a formal modeling



framework provides background to effectively reason about the correctness of the
various possible hypotheses for efficiently verifying these models beyond limited
experiments. We demonstrate by examples, how such a modeling approach can
be efficiently used for verifying safety, liveness, and timeliness properties using
the finite state model checker Spin.

The remainder of the paper is organized as follows: section, In Section 2, we
describe the finitary reduction technique and formalize it in terms of clockless
modeling in Section 3. In Section 4 we discuss models of time and executablitiy
conditions for dense time model. Section 5 presents the experimental results
followed by concluding discussion in section 6.

2 Finitary Reduction

With reference to the timeout and calendar based modeling presented in [6, 7],
notice that although these models can be used to efficiently capture dense time
semantics without using a continuously varying clock, it is difficult to use these
models for finite state model checking. The difficulty arises because of the fact
that the valuations for the global clock t and the timeout variables in T diverge
and thus are not bounded by a finite domain. Unlike TA one cannot reset the
global clock or the individual timeouts in these models because straightforward
attempts for such resetting results only in incorrect behaviors. One possible
solution may be to bound the value of the global clock and the timeouts by ap-
propriate large constants based upon the system specification. But such a upper
bound is quite difficult to estimate in case of practical industrial applications
and also with such an approach liveness properties cannot be verified.

We propose a finitary reduction technique, which is formalized in terms of
clockless modeling and semantics in the next section. This technique effectively
reduces the timeout and calendar based transition systems with discrete dynam-
ics into finite state systems, which, in turn, can be expressed and model checked
by finite state model checkers.

Informally, the technique can be described as follows: To implement time
progress transition, a special process is required to increase the global clock to
the minimum of timeouts, when each of the timeout values is strictly greater
than the current value of the clock. Other processes wait until their timeouts are
equal to the global clock, and when it is so, they take the discrete transitions and
updates their timeouts in future. We propose to model the special process which
is responsible for time progress transition in such a way that it does not explicitly
use the clock variable and prevents the timeout variables to grow infinitely.
We call this process time progress. When no discrete transition is possible in
the system due to the fact that the discrete transitions for all the systems are
scheduled in the future, time progress finds out the minimum of all the timeouts
in T and scales down all these timeouts by the minimum. In this way at least one
of the timeouts becomes zero. A process is allowed to take a discrete transition
when its timeout becomes zero. When it happens the process updates its timeout
and does other necessary jobs.



If the timeouts are always incremented by finite values then it is guaranteed
that the value of a timeout will always be in a finite domain. But there are cases
when a timeout increment cannot be bounded by finite value. For example, a
process may have to wait for an external signal before its next discrete transition.
In this case, next discrete transition of the process does not depend on its own
timeout, so the timeout of the process is set to the relatively large value, so that
it does not affect the next discrete transitions of other processes. In another
situation, it may be desired that the next discrete transition of a process may
happen at any time in the future, for example, the process may be in a sleeping
mode and can wake up at any future point of time. In that case all what we need is
to limit the value of the timeout without omitting any of the possible interleaving
of the process steps. To do that we limit the timeout value in [0,M + 1], where
M is the maximum of all the integer constants that are used to define the upper
limit of different timeouts for different processes in the system.

The suggested technique gives rise to a canonical representation of the clock
and timeout valuations in any state in the sense that for the timeout and calendar
based models considered here, there cannot be any further reduction possible
without actually loosing the relative timing delay information. This is because
this technique effectively reduces timeout valuations into a canonical partial
ordering structure and also simultaneously keeps the information on the actual
timeout increments intact. This approach can be seamlessly extended for the
calendar based models as well.

It should be added that the finitary reduction considered in this work is
effective only under discrete dynamics since with dense modeling such a reduc-
tion though reduces an infinite region (e.g., Rn) to a finitely bounded region
(e.g., [0, 1]n), it would still contain infinitely many points resulting into infinite
permissible paths.

Above discussion is formalized in terms of “clockless” modeling and associ-
ated semantics in the next section.

3 Timeout and Calendar based Clockless Models

In this section we provide a formalization of timeout and calendar based clockless
models as predicate transition diagrams and associated semantics in terms of
state transition systems.

3.1 Timeout based Models: Clockless Modeling

Syntax The Timeout based Model (ToM) ([6]) can be represented as

P : {θ}[P1||P2|| . . . ||Pn],

Where each process Pi is a sequential non-deterministic process having τi as its
local timeout and Xi as a set of local timing variables used for determining the



relative delay between events. “||” is the parallel composition operator. Formula
θ restricts the initial values of variables in

U = T ∪ X ∪Var ,

where the set of all timeouts is T = {τ1, τ2, . . . , τn}, and X =
⋃

i Xi. Var =
G ∪ L1 ∪ L2 ∪ . . . ∪ Ln is the set of other state variables assuming values from
finite domains. Variables in G are globally shared among all the processes while
Li contains variables local to process Pi. fVar is the set of computable functions
on Var .

Each process Pi is represented using a predicate transition diagram, which is
a finite directed graph with nodes Loci = {li0, li1, . . . , limi

}, called locations. The
entry location is li0. There are two kinds of edges in the graph of a process Pi:
Timeout edges and Synchronous Communication edges. Edge definitions involve
an enabling condition or guard ρ, which is a boolean-valued function or a pred-
icate.

Timeout Edges: A timeout edge (lij , ρ ⇒ 〈τi := updatei, η, f〉, lik) in the graph
of the process Pi is represented as

lij
ρ ⇒〈τi:=updatei,η,f〉−→ lik,

where updatei specifies how timeout τi is to be updated on taking a transition
on the edge when guard ρ evaluates to True. η ⊆ Xi specifies the local timing
variables which capture the relative increment in the value of timeout τi while
taking transition on the edge. f ∈ fVar manipulates the state variables in G∪Li.

updatei is defined using the rule: updatei = k1 | k2 | ∞ | max(M), where
l − z ≺ k1 ≺′ m − z′, ≺,≺′∈ {<,≤} and k2 � l − z, �∈ {>,≥}; z, z′ := w|0
and l,m ∈ N0 are non-negative integer constants. M is the set of all the integer
constants that are used to define the upper limit of different timeouts for different
processes in the system. max(M) returns the maximum of all the integers in M.

Constraints on k1, k2 specify how the new value of timeout τi should be deter-
mined based upon the value of some local timing variable w, which would have
captured the increments in the value of timeout τi in some earlier transitions.
Setting a timeout to ∞ is used to capture the requirement of indefinite waiting
for an external signal/event. Setting the timeout value using max(M) is used to
capture the situation where the next discrete transition of a process may happen
at any time in the future, for example, the process may be in a sleeping mode
and can wake up at any future point of time.

Synchronous Communication Edges: As rendezvous communication between
a pair of processes (Ps, Pr) is represented by having an edge pair (es, er) s.t.
es ∈ Ps and er ∈ Pr:

es : lsj
ρ ⇒〈ch!m,τs:=updates,η,g〉−→ lsk

er : lrj
True ⇒〈ch?m̄,τi:=updater,η′,h〉−→ lrk



where ch is the channel name, m ∈ Ls is the message sent, and m̄ ∈ Lr receives
the message; g, h ∈ fVar .

Semantics With a given ToM

P : {θ}[P1||P2|| . . . ||Pn]

we associate the following transition system SP = (V, Σ,Σ0, Γ ), which will be
referred to as a timeout based clockless transition system :

1. V = U∪{π1, . . . , πn}. Each control variable πi ranges over the set Loci∪{⊥}.
The value of πi indicates the location of the control for the process Pi and
⊥ denotes before the start of the process.

2. Σ is the set of states. Every state σ ∈ Σ is an interpretation of V such that,
for x ∈ V, σ(x) is its value in state σ.

3. Σ0 ⊆ Σ is the set of initial states such that for every σ0 ∈ Σ0, θ is true in
σ0 and σ0(πi) = ⊥ for each process Pi.

4. Γ = Γe∪Γ+∪Γ0∪Γsyn comm is the set of transitions. Every transition ν ∈ Γ
is a binary relation on Σ defined further as follows:

Entry Transitions: Γe is the set of entry transitions and contains an entry tran-
sition νi

e for every process Pi. In particular ∀σ0 ∈ Σ0,

(σ0, σ
′) ∈ νi

e ⇔

1. ∀x ∈ U : σ′(x) = σ0(x)
2. ∀τ ∈ T : σ′(τ) ≥ 0
3. σ0(πi) = ⊥ and σ′(πi) = li0

Time Progress Transition: The first kind of edges ν+ ∈ Γ+ are those where all
the timeouts are decremented by the minimum of the current timeout values. In
particular,

(σ, σ′) ∈ ν+ ⇔


1. min{σ(T )} > 0
2. ∀τ ∈ T : σ′(τ) = σ(τ)−min{σ(T )}
3. ∀x ∈ X ∪Var : σ′(x) = σ(x)
4. ∀i : σ′(πi) = σ(πi)

Timeout Increment Transition: If (lij , ρ ⇒ 〈updatei, η, f〉, lik) is an edge in the
predicate transition diagram for process Pi, then there is a corresponding edge
νi
0 ∈ Γ0:

(σ, σ′) ∈ νi
0 ⇔



1. ρ holds in σ
2. If σ(τi) = 0 then

σ′(τi) = updatei > 0 else σ′(τi) = σ(τi)
3. ∀x ∈ η : σ′(x) = σ′(τi) + σ(x) and
∀x ∈ X \ η : σ′(x) = σ(x)

4. ∀v ∈ G ∪ Li : σ′(v) = f(σ(v)) and
∀v ∈ Var \ (G ∪ Li) : σ′(v) = σ(v)

5. σ(πi) = lij and σ′(πi) = lik



If updatei = k1 s.t. l − z ≺ k1 ≺ m− z′, updatei nondeterministically selects an
integer δ such that l − σ(z) ≺ δ ≺ m − σ(z′). If updatei = k2 s.t. k2 � l − z,
updatei nondeterministically selects an integer δ such that δ � l − σ(z), else if
updatei = ∞, it selects a relatively very large integer value and returns it to ac-
count for indefinite waiting. If updatei = max(M), updatei nondeterministically
selects any integer δ in [0,M + 1], where M is the maximum of all the integers
in M returned by max(M).

Synchronous Communication For a pair of processes Ps, Pr having edges (es, er)
as defined before, νsr

syn comm ∈ Γsyn comm exists such that:

(σ, σ′) ∈ νsr
syn comm ⇔



1. ρ holds in σ
2. σ′(τs) = updates > σ(τs)

σ′(τr) = updater > σ(τr)
3. ∀x ∈ (η) : σ′(x) = σ′(τs) + σ(x), and
∀x ∈ (η′) : σ′(x) = σ′(τr) + σ(x) and
∀x ∈ X \ (η ∪ η′) : σ′(x) = σ(x)

4. σ′(m̄) = σ(m)
5. ∀v ∈ G ∪ Ls : σ′(v) = g(σ(v)), and
∀v ∈ G ∪ Lr : σ′(v) = h(σ(v)) and
∀v ∈ Var \ (G ∪ Lr ∪ Ls) : σ′(v) = σ(v)

6. σ(πs) = lsj , σ(πr) = lrj and
σ′(πs) = lsk, σ′(πr) = lrk

This semantic model defines the set of possible computations of the timeout
system P as a set of state sequences (possibly infinite) starting with some initial
state in Σ0 and following edges in Γ .

Example: Train-Gate Controller

We will illustrate the timeout based model as formalized above using the example
of the Train-Gate Controller (TGC) (adapted from [1].) The example of TGC
demonstrates synchronous communication between system components, since
the communications between Train and Controller, and between Controller and
Gate are assumed to be synchronous.

TGC is an automatic controller that controls the opening and closing of a
Gate at railroad crossing. The system is composed of three components: Train,
Gate, and Controller. Before entering the railroad crossing the Train sends the
signal approach. The Controller on receiving this signal is supposed to send the
signal lower to the Gate within 10 time units and the Gate has to be down
within another 10 time units. The Train can enter the crossing at any time
after 20 time units since it sent the approach signal. While exiting the crossing
the Train sends the exit signal to the Controller. The requirement is that after
sending the approach signal the Train must send the exit signal within 50 time
units. The Controller sends the raise signal to the Gate within 10 time units
after it receives the exit signal. The Gate is required to be up within another



10 time units. All the communications are assumed to be synchronous, that is,
there is no message transmission delay.

Figure 1 demonstrates the clockless timeout based model of TGC. The tim-
ing requirements are captured by suitably defining the update functions on
the edges. For example, consider the edge (t0, t1) for the train labeled with
(τt = 0) ⇒ 〈ch!approach, (τt := k|20 ≤ k ≤ 50), x〉. Here (τt = 0) indicates that
the system starts when train sends the approach signal over the shared channel
ch and nondeterministically sets its timeout τt to some value k between [20, 50]
indicating that after sending the approach signal it can enter the crossing any
time after 20 time units. Upper limit of 50 is used to indicate that the train
cannot enter later than 50 time units because it is required that train has to
indeed exit the crossing on or before 50 time units. Having spent k units of
time in state t1, train takes transition on the next timeout to state t2 and resets
its timeout to some value k′ between [0, 50 − k], which indicates that the train
must exit (and send exit signal to the controller) from state t2 no more than
before it has spent at most total of 50 units of time in states t1 and t2, that is,
0 ≤ k + k′ ≤ 50. Similarly on taking a transition on edge from g1 to g2 for the
gate, τg := ∞ denotes that the Gate would be waiting for the signal raise in
state g2 to be received on channel ch1 from the Controller.

3.2 Calendar Based Models: Clockless Modeling

Syntax To capture (lossless) asynchronous communication with bounded mes-
sage transfer delay, timeout based model is extended with a calendar data struc-
ture. A calendar is a linear array of bounded size, where each cell contains the fol-
lowing information: {message, sender id, receiver id, expected delivery time}. Let
C to denote the calendar array, a globally shared object. We have

U = T ∪ X ∪Var ∪ C

Sending a message is represented in the predicate transition diagram of process
Pi using the following edge:

lij
ρ⇒〈send(m,i,R,Λ),τi:=updatei,η,f〉−→ lik,

where send(..) specifies that a message m is to be sent to each of the processes
Pr, where r ∈ R ⊆ {1, 2, . . . n}, and with expected delivery time of λr ∈ Λ for
each Pr. On taking a transition on this edge an entry {m, i, r, λr} is added to C
for each r ∈ R.

Corresponding receiving of the message is represented in the predicate tran-
sition diagram of each of the processes Pr (∀ r ∈ R) using the following edge:

lrj
True⇒〈receive(m,i,r),τr:=updater,η,g〉−→ lrk,

where receive(..) specifies that a message m sent by process Pi is to be re-
ceived by the process Pr. When ‘time’ elapsed in terms of timeout increments
approaches some expected delivery time λr as specified by the sender process in
the calendar C for entry e = {m, i, r, λr}, a transition is taken on this edge and
the entry e is deleted from C.
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Fig. 1. Clockless model for Train-Gate Controller

Semantics Given a calendar C, we assume that the set of delays for all unde-
livered messages at any state σ can be extracted using function ∆ : σ(C) → 2N .

Let Γ = Γe ∪ Γ+ ∪ Γ0 ∪ Γsyn comm ∪ Γasyn comm denote the set of transitions in
the calendar based clockless transition system. Γe (the set of Entry Transitions),
Γsyn comm (Synchronous Communications) and Γ0 (Timeout Increment Transi-
tions) are defined in same way as in the timeout based model. The definition for
the Time Progress Transition edges in Γ+ are modified using calendar object C
as follows:

Time Progress Transition: The edges ν+ are redefined so that all the timeout
and calendar delay entries are decremented by the minimum of all timeouts and



the message delays in calendar. Let α = min{σ(T ) ∪∆(σ(C))},

(σ, σ′) ∈ ν+ ⇔



1. α > 0
2. ∀τ ∈ T : σ′(τ) = σ(τ)− α
3. ∀λ ∈ ∆(σ(C)) : σ′(λ) = σ(λ)− α
4. ∀z ∈ Var : σ′(z) = σ(z)
5. If ∃{m, i, r, λr} ∈ σ(C) such thatα = λr

then ∀x ∈ Xr : σ′(x) = σ(x) + α and
∀x ∈ X \ Xr : σ′(x) = σ(x)

else ∀x ∈ X : σ′(x) = σ(x)
6. ∀i : σ′(πi) = σ(πi)

We additionally define new transitions Γasyn comm corresponding to send() and
receive() to capture asynchronous communication:

Send Transition: If (lij , ρ ⇒ 〈send(m, i,R, Λ), updatei, η, f〉, lik) is an edge in
process Pi, then we have a corresponding edge νi

send which adds |R| cells to
the calendar array C:

(σ, σ′) ∈ νi
send ⇔



1. ρ holds in σ
2. If min{σ(T )} = σ(τi) = 0

then σ′(τi) = updatei > 0
else σ′(τi) = σ(τi)

4. ∀x ∈ η : σ′(x) = σ′(τi) + σ(x) and
∀x ∈ X \ η : σ′(x) = σ(x)

5. ∀v ∈ G ∪ Li : σ′(v) = f(σ(v)) and
∀v ∈ Var \ (G ∪ Li) : σ′(v) = σ(v)

6. ∀r ∈ R : σ′(C) := σ(C) + {m, i, r, λr}
7. σ(πi) = lij and σ′(πi) = lik

Receive Transition: If (lrj , T rue ⇒ 〈receive(m, i, r), τr := updater, η, g〉, lrk) is an
edge in the graph of process Pr, then we have a corresponding edge νr

receive ∈
Γasyn comm, which deletes the entry {m, i, r, λr} from the calendar array C when
λr is 0:

(σ, σ′) ∈ νr
receive ⇔



1. ∃{m, i, r, λr} ∈ σ(C) s.t. λr = 0
2. σ′(τr) = updater > 0
3. ∀x ∈ η : σ′(x) = σ′(τr) + σ(x) and
∀x ∈ X \ η : σ′(x) = σ(x)

4. ∀v ∈ G ∪ Lr : σ′(v) = f(σ(v)) and
∀v ∈ Var \ (G ∪ Lr) : σ′(v) = σ(v)

5. σ′(C) := σ(C)− {m, i, r, λr}
6. σ(πr) = lrj and σ′(πr) = lrk

Example: TTA Startup Algorithm

Above formalization of the calendar based model can be illustrated using the
TTA startup algorithm. TTA startup executes on a logical bus meant for safety-
critical applications in both automotive and aerospace industries. In a normal



operation, N computers or nodes share a TTA bus using a TDMA schedule. The
goal of the startup algorithm is to bring the system from the power-up state,
in which all processors are unsynchronized, to the normal operation mode in
which all processors are synchronized and follow the same TDMA schedule. For
detailed understanding of startup protocol, we refer the reader to [15].

Figure 2 depicts the calendar based clockless predicate transition diagram of
the ith node. In the TTA startup algorithm, all the communications are asynchro-
nous and message delivery delays, which are finite and specified by the designer,
have to be taken into account for correct operation of the protocol. τ listen

i and
τ cs
i represent how much time a node spends in the Listen state and the Coldstart

state respectively, if no external signal is received. τ round denotes the time a node
spends in the Active state before sending its next massage. R = {1, . . . , N} \ {i}
represents that all the nodes except the sender i are required to receive the mes-
sage in the network. λi’s denote the message delivery time for the corresponding
send events. In the TTA, message delivery times for all the receivers are consid-
ered to be the same, and that is why we have considered a single variable λi to
represent that delay.

   Init Listen 

  Active 

           (τi = 0)�  

�send(cs_frame, i, R, λ1),  

                   τi := τi
cs

 � 

        (τi = 0) �        

�send(cs_frame, i, R, λ1),  

         τi := τi
cs

 � 

             True�                     

  �receive(i_frame, j, i),  

         τi := τ
round

 � 

 

True��receive(cs_frame, j, i), τi := τ
round

 � 

True� �receive(i_frame, j, i), 

                τi := τ
round

 � 

           (τi = 0)� 

�send(i_frame, i, R,λ2), 

          τi := τ
round

 � 

(τi = 0)� �τi := τi
listen

 � 

True��receive(cs_frame, j, i), 

             τi := τi
cs

 � 

ColdStart 

Fig. 2. Clockless model for the ith processor in TTA Startup algorithm.



4 Models for Time

It remains unspecified as to what the underlying model of time is (for clock,
timeouts, timing variables etc.) while defining the clockless semantics of the
timeout and calendar based models.

The choice of dense (R+) domain versus discrete (N0) domain critically af-
fects the size of the state space of the model. Indeed, with the dense time model,
we need to add the following nonzenoness condition to ensure effective progress
in the model: There must not be infinitely many time progress (or timeout in-
crement) transitions effectively within a finite interval. Formally,

Nonzenoness: Clockless Semantics:

¬[∃ σ0σ1 . . . s.t. ∃ δ ∈ R+ and Σ∞
i=0 min{σi(T )} ≤ δ]

Another point to note is that clockless semantics reduces infinite state transi-
tion system to a finite state transition system only in case of the choice of discrete
domain for the clock and timeout variables. This is because for the dense do-
main, clockless semantics can only limit unbounded setR+ to a bounded interval.
Nonetheless, verification of a real-time system in a dense domain is equivalent
to verifying the system in the discrete domain if the behavior of the system
captured by the model and the properties considered are digitizable [8]. It can
be shown that if we restrict the update function to weakly constrained intervals
(e.g., updatei = k1 | k2 | ∞ | max(M), where k1 ∈ [l,m] and k2 ≥ l) then sim-
ilar to the timed transition system of [8] (refer theorem 2), transition systems
for timeout and calendar based models also give rise to digitizable behaviors
(computations). Also for qualitative properties like the safety and liveness prop-
erties, their verification in the discrete domain is equivalent to verifying these
properties in dense domain (refer to proposition 1 in [8]).

5 Experimental Results

In this section, we report experimental results of verification of TGC and the
TTA startup algorithm using the model checker Spin. We carry out our exper-
iments on an Intel (R) P4 machine with 2.60 GHz speed and 1 GB RAM, and
running Windows 2000.

Train-Gate Controller

For the TGC example as discussed before, we consider safety and timeliness
properties for verification.

The safety property considered is: “When the Train crosses the line, the Gate
should be down”. The property can be expressed in LTL as follows:

�((t state = t2) → (g state = g2))



where, t state denotes different states of the Train and it is t2 when the Train
comes into the crossing, g state denotes different states of Gate and is g2 when
the Gate is down.

The timeliness property considered states that the time between two states
in execution will by bounded by a particular value. We can find many timeliness
properties in this example. We mention one of them here: “The time between
the transmission of the approach signal by the Train and when the Gate is down
should not be more than 20 time units”. To verify this property we use two
auxiliary flags: flag1 and flag2 in our model. When the first event occurs flag1

is set to true. When the second event happens, flag2 is set to true and flag1 is
reset to false. Also, the proctype time progress is modeled as follows:

proctype time_progress () {
do
:: timeout ->
atomic {

Find out the minimum of all the timeout values
Subtract the minimum value from all the timeouts
if
:: flag1 == true ->

time_diff = time_diff + min_timeout;
:: flag2 == true ->

flag2 = false;
time_diff = 0;

:: else ->
fi;

}
od

}

A global variable time diff (initially set to 0) captures the time difference be-
tween the instants when these two flags are set. During every discrete transition
between the two discrete transitions of interest, minimum timeout value is added
to time diff . The property is specified as:

�(time diff ≤ 20)

Table 1 illustrates computational resources and time required to prove the safety
and the timeliness property for TGC. Both the properties have been proved by
exhaustive verification keeping the option of partial order reduction turned on.

TTA Startup Algorithm

For TTA startup algorithm, we consider the following safety property: “When-
ever two nodes are in their active states, the nodes agree on the slot time”. For



Properties States States Transitions Total actual Time
stored matched usage memory (in seconds)

(in MB)

Safety 246236 422596 668832 19.531 6

Timeliness 253500 415484 668984 21.988 6

Table 1. Computational resources and time required for verification of the Train-Gate
Controller

two nodes participating in the startup process, the corresponding LTL property
is given below:

�((p0 ∧ p1) ∧ (q0 ∧ q1) → ♦(r ∧ s))

where, p0 ≡ (pc[0] = state active), p1 ≡ (pc[1] = state active), q0 ≡ (time out[0]
> 0), q1 ≡ (time out[1] > 0), r ≡ (time out[0] = time out[1]), and s ≡ (slot[0] =
slot[1]). pc[i] denotes the current state of the ith node, time out[i] denotes the
timeout of the ith node, and slot[i] denotes the current time slot viewed by the
ith node. state active characterizes the synchronized state of a node.

The Safety property ensures that when the nodes are in the active state,
then they are indeed synchronized. But it does not answer the question whether
all the nodes will eventually be synchronized or not. To ensure that all the nodes
will eventually be synchronized, it has to be specified in the form of a liveness
property: “Eventually all the nodes will be in the active state and remain so”.
This liveness property for two nodes can be specified in LTL as follows:

♦�((pc[0] = state active) ∧ (pc[1] = state active))

To verify the safety and the liveness property for the TTA startup we used
clockless modeling together with the options of exhaustive verification and bit-
state hashing technique offered by Spin, in both the cases keeping the the option
of partial order reduction turned on. By exhaustive verification technique, the
safety property can be verified for the TTA models with upto 5 nodes and live-
ness property can be verified upto 4 nodes. Bitstate hashing enables us to verify
both the properties for models with upto 9 nodes. For 10 nodes, the verification
does not terminate even in 4 hours.

Table 2 describes the computational resources and time required to prove
the safety and liveness properties for the TTA Startup protocol using bitstate
hashing technique.

Experiments with dense time modeling with clockless reduction using SAL
were also carried out on the TGC model presented in [6]. The safety property
has been verified at depth 14 as done in [6]. Nonetheless, applying the clockless
reduction in SAL models do not scale up the existing results further, primarily
because the clockless reduction even though reduces the unbounded set R+ to
a bounded interval, such an interval still will contain uncountably many points
giving rise to infinite many possible execution paths of finite lengths.



Properties No States States Transitions Total actual Time
of stored matched memory usage

nodes (in MB)

2 487 143 630 8.914 6 sec
3 6142 6490 12632 8.914 7 sec
4 123452 253057 376509 8.914 7 sec
5 3.31158e+06 1.03436e+07 1.36552e+07 8.914 47 sec

Safety 6 1.59195e+07 5.93261e+07 7.52457e+07 9.016 3 min
7 3.44457e+07 1.29191e+08 1.63636e+08 9.016 8 min
8 4.01727e+07 2.43036e+08 2.83209e+08 9.016 16 min
9 4.10158e+07 1.29835e+09 1.33936e+09 9.016 97 min

2 1445 1036 2481 8.914 7 sec
3 16582 21980 38562 8.914 7 sec
4 305893 677235 983128 8.914 8 sec
5 7.39657e+06 2.38099e+07 3.12064e+07 8.914 1 min

Liveness 6 2.73472e+07 1.09554e+08 1.36901e+08 8.914 8 min
7 3.83552e+07 2.0233e+08 2.40685e+08 9.016 14 min
8 4.07954e+07 3.47211e+08 3.88006e+08 9.016 24 min
9 4.10157e+07 2.30705e+09 2.34807e+09 9.016 163 min

Table 2. Computational resources and time required to verify safety and liveness
property by bitstate hashing technique in Spin for the TTA Startup

6 Conclusion

In this work we proposed a canonical finitary reduction technique formalized in
terms of clockless modeling and associated semantics, which renders timeout and
calendar based models of real-time systems amenable to finite state verification.
There exists an equivalence between the corresponding discrete and the dense
domain verifications for the qualitative safety and liveness properties considered
in this work on the weakly constrained models assuming discrete dynamics.
Verification of safety properties for the TTA start up protocol consisting of upto
9 nodes demonstrates the effectiveness of the reduction technique as compared
to the dense time modeling and verification results reported in literature [7],
which rely on additional efforts to find out appropriate supporting lemmas and
abstractions to scale up the model.

Dynamic rescheduling of timeouts to deal with interrupts can further ex-
tend the current framework in order to model hardware-software co designs and
preemptive scheduling type of scenarios. Work can also be further extended by
considering shared timing variables, deadlines to capture urgencies [3], and by
considering the timeout update rules, which include the possibility of interactive
updation to deal with game theoretic properties.
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