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Multi-Robot Motion Planning

I2

I1 I4

I3

F1

F2 F3

F4

x

y

Goal: I1→ F1, I2→ F2,
I3→ F3, I4→ F4

Invariants:
Maintain a rectangular formation

Maintain a precedence
relationship

The X co-ordinate of the
quadrotors at I1and I2 will be
always less than the X
coordinate of the quadrotors at
I3 and I4

Maintain a minimum distance
The distance between two
quadrotors is always greater
than one unitStart movie
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Goal

To synthesize motion plans automatically for

a group of robots

complex dynamics

complex specification

Specification is given in Linear Temporal Logic (LTL)
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Existing Solutions for LTL Motion Planning

Generate a finite abstraction for the robot dynamics

Generate a finite model for the property

Apply a game theoretic algorithm to generate a high level
plan

Generate low level control signals that satisfy the
bisimulation property

Work by Kress-Gazit, Fainekos, Pappas, Karaman, Frazzoli,
Kavraki, Verdi, Topcu, Murray, Belta, Rus and others..

Computationally expensive.. Not suitable for multi-robot
systems
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Our Approach

We assume availability of a set of precomputed control
laws for each robot

motion primitives

We use an off-the-shelf SMT solver to generate motion
plans composing these motion primitives
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State of a Multi-Robot System

State of a robot i : φi = 〈q,X 〉

q - Velocity configuration
X - Position

State of the multi-robot system:
Φ = [φ1, . . . , φN ]
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Motion Primitive

A motion primitive is formally defined as
a 7-tuple: 〈u, τ, qi ,qf ,Xrf ,W , cost〉.

u - a precomputed control input

τ - the duration for which the control
signal is applied
qi - initial velocity configuration

qf - final velocity configuration

Xrf - relative final position
W - the set of relative blocks
through which the robot may pass

cost - an estimated energy
consumption for executing the
control law
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Motion Planning Problem

An input problem instance P = 〈N, I,F ,PRIM,OBS, ξ〉

N - Number of robots

I - Initial state of the group of robots

F - Final state of the group of robots

PRIM = [PRIM1,PRIM2, . . . ,PRIMN ]

OBS - the set of obstacles

ξ - �Ψ, conjunction of a set of invariant properties

Definition (Motion Planning Problem)

Given an input problem P and a positive integer L, synthesize a
motion plan of length L + 1
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Motion Plan

A motion plan of a multi-robot system for an input problem
instance P = 〈N, I,F ,PRIM,OBS,�Ψ〉 is defined as a
sequence of states Φ = (Φ(0),Φ(1), . . . ,Φ(L)) such that

Φ(0) ∈ I
Φ(L) ∈ F
Φ(0) |= Ψ

and the states are related by the transitions in the following way:

Φ(0)
Prim1−−−→ Φ(1)

Prim2−−−→ Φ(2) . . .Φ(L− 1)
PrimL−−−→ Φ(L)
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Transition Constraints

Φ1 = [φ11, . . . , φ1N ], Φ2 = [φ21, . . . , φ2N ]

Prim = [prim1, . . . ,primN ], where primi ∈ PRIMi .

A transition
Φ1

Prim−−−→ Φ2

is associated with the following constraints:

∀i ∈ {1, . . . ,N} : φ1i .q = primi .qi

∀i ∈ {1, . . . ,N} : φ2i .q = primi .qf

∀i ∈ {1, . . . ,N} : φ2i .X = φ1i .X + primi .Xrf

obstacle_avoidance(Φ1,Φ2,Prim,OBS)

collision_avoidance(Φ1,Φ2,Prim)

(Φ1 |= Ψ)→ (Φ2 |= Ψ)
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Specification 2
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Goal: (I1 and I2)→ B
(I3 and I4)→ A

Invariants:
Maintain a rectangular or linear
formation

Maintain a minimum distance

The distance between two
quadrotors is always greater
than one unit
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Specification 2
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Goal: (I1 and I2)→ B
(I3 and I4)→ A

Invariants:
Maintain a rectangular or linear
formation

Maintain a minimum distance

The distance between two
quadrotors is always greater
than one unit

No motion plan that satisfies the
formation constraint exists
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Specification 2
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Goal: (I1 and I2)→ B
(I3 and I4)→ A

Invariants:
Maintain a minimum distance

The distance between two
quadrotors is always greater
than one unit

Start movie
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Finding Optimal Trajectory

Find the least number of motion primitives that can
generate a valid trajectory

Among all trajectories that use the least number of motion
primitives, find the one that incurs the least cost
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Specification 2
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Goal: (I1 and I2)→ B
(I3 and I4)→ A

Invariants:
Maintain a minimum distance

The distance between two
quadrotors is always greater
than one unit

Start movie
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Completeness

The completeness is with respect to the given set of motion
primitives.

Given a positive integer L, If there exists a trajectory of length L
using the given set of motion primitives, our technique is able to
generate that trajectory.
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Runtime

Destination Specification Without rectangular abstraction With rectangular abstraction
Spec 1 4m51s 2m06s
Spec 2 5m59s 3m25s

Table: Experimental results on two case studies.
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Current and Future Work

How to handle arbitrary LTL specification in our
framework?

- Persistent Surveillance
[Belta and others, ICRA 2012, CDC 2012, ...]

How to deal with change in environment?

- Patching task level robot controllers
[LivingstonPrabhakarJoseMurray, ICRA 2013]

How to scale our framework for a large number of robots?

- Distributed motion planning
[TurpinMichaelKumar, ICRA 2012, JRR 2014]
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Thank You!!
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