Trigger Memoization in Self-Triggered Control

Indranil Saha¹ and Rupak Majumdar^{1,2}

¹University of California Los Angeles

²Max Planck Institute for Software Systems

EMSOFT 2012 October 8, 2012

→ Ξ → < Ξ →</p>

< 🗇 🕨

A Control System

- ξ State of the plant
- v Control signal generated by the controller

▶ < ∃ >

э

Implementation of a Control System

To implement the control law on a digital computer, the state of the plant is sampled at a sequence of time instants $t_0 = 0, t_1, t_2, ...$

The time instant t_k is called the trigger time

EMSOFT 2012

3/28

Time-Triggered Implementation

ъ

Time-Triggered Implementation

Sampling period is selected based on the worst case scenario

Inefficient usage of computational resource and communication bandwidth

< ≣ →

Event-Triggered Implementation

프 🖌 🛪 프 🛌

ъ

Event-Triggered Implementation

Requires dedicated hardware to monitor plant state

프 🖌 🛪 프 🛌

Self-Triggered Implementation

프 🖌 🛪 프 🛌

ъ

Self-Triggered Implementation

Has been shown to reduce the number of control computations significantly with respect to its time-triggered counterpart

▶ < ∃ >

Trigger time is computed based on two parameters:

- τ_{min} : minimum trigger time
 - The trigger-time which works in the worst case scenario
 - Can be computed from the parameters of the control system
- τ_{max} : maximum trigger time
 - The maximum duration the plant can be kept open loop
 - A design parameter

$$(t_k + \tau_{\min}) \le t_{k+1} \le (t_k + \tau_{\max})$$

(本間) (本語) (本語)

 τ_c - The time required to compute the trigger time

The self-triggered implementation scheme is feasible if and only if

 $(t_k + \tau_c) \leq t_{k+1}$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

8/28

The Problem

<ロト <回 > < 注 > < 注 > 、

æ

The Problem

イロン 不同 とくほう イヨン

The Problem

9/28

The closed loop system is exponentially stable if there exists a Lyapunov function V and a positive constant λ such that

 $V(\xi(t)) \leq V(\xi(0))e^{-\lambda t}$, for all $t \geq 0$.

The largest constant that can be used for λ in the above inequality is called the *rate of decay*.

Existence of such a Lyapunov function ensures that the state of the control system converges to the stable state or origin with an exponential decay.

Let V be a Lyapunov function and let $\lambda_0 > 0$ denote its rate of decay.

For self-triggered implementations, we fix $0 < \lambda < \lambda_0$ and define a function *S* upper-bounding the evolution of *V*:

$$S(t,\xi(t_k)) = V(\xi(t_k))e^{-\lambda(t-t_k)}$$

The constant λ in the function *S* specifies the desired performance of the control system.

ヘロト 人間 ト ヘヨト ヘヨト

Let V be a Lyapunov function and let $\lambda_0 > 0$ denote its rate of decay.

For self-triggered implementations, we fix $0 < \lambda < \lambda_0$ and define a function *S* upper-bounding the evolution of *V*:

$$S(t,\xi(t_k)) = V(\xi(t_k))e^{-\lambda(t-t_k)}$$

The constant λ in the function *S* specifies the desired performance of the control system.

Let V be a Lyapunov function and let $\lambda_0 > 0$ denote its rate of decay.

For self-triggered implementations, we fix $0 < \lambda < \lambda_0$ and define a function *S* upper-bounding the evolution of *V*:

$$S(t,\xi(t_k)) = V(\xi(t_k))e^{-\lambda(t-t_k)}$$

The constant λ in the function *S* specifies the desired performance of the control system.

Let V be a Lyapunov function and let $\lambda_0 > 0$ denote its rate of decay.

For self-triggered implementations, we fix $0 < \lambda < \lambda_0$ and define a function *S* upper-bounding the evolution of *V*:

$$S(t,\xi(t_k)) = V(\xi(t_k))e^{-\lambda(t-t_k)}$$

The constant λ in the function *S* specifies the desired performance of the control system.

An Example

The model of a batch reactor process is given by

$$\dot{\xi} = \begin{bmatrix} 1.38 & -0.20 & 6.71 & -5.67 \\ -0.58 & -4.29 & 0 & 0.67 \\ 1.06 & 4.27 & -6.65 & 5.89 \\ 0.04 & 4.27 & 1.34 & -2.10 \end{bmatrix} \xi + \begin{bmatrix} 0 & 0 \\ 5.67 & 0 \\ 1.13 & -3.14 \\ 1.13 & 0 \end{bmatrix} v.$$

The feedback controller

 $\upsilon = -\begin{bmatrix} 0.1006 & -0.2469 & -0.0952 & -0.2447 \\ 1.4099 & -0.1966 & 0.0139 & 0.0823 \end{bmatrix} \xi$

renders the system exponentially stable.

For this system, $\tau_{min} = 18ms$ Following literature we chose $\tau_{max} = 358ms$ On a Leon 2 processor with frequency 100*MHz*, the WCET of the trigger time computation is 29.793*ms*

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

An Example

The model of a batch reactor process is given by

$$\dot{\xi} = \begin{bmatrix} 1.38 & -0.20 & 6.71 & -5.67 \\ -0.58 & -4.29 & 0 & 0.67 \\ 1.06 & 4.27 & -6.65 & 5.89 \\ 0.04 & 4.27 & 1.34 & -2.10 \end{bmatrix} \xi + \begin{bmatrix} 0 & 0 \\ 5.67 & 0 \\ 1.13 & -3.14 \\ 1.13 & 0 \end{bmatrix} v.$$

The feedback controller

 $\upsilon = -\begin{bmatrix} 0.1006 & -0.2469 & -0.0952 & -0.2447 \\ 1.4099 & -0.1966 & 0.0139 & 0.0823 \end{bmatrix} \xi$

renders the system exponentially stable.

For this system, $\tau_{min} = 18ms$ Following literature we chose $\tau_{max} = 358ms$ On a Leon 2 processor with frequency 100*MHz*, the WCET of the trigger time computation is 29.793*ms*

It is possible that $(t_k + \tau_c) > t_{k+1}$

Proposed Solution: Memoization of Trigger Time

- A time-vs-space tradeoff memoizes trigger times for future reuse
- A memoization region [-w, w] ⊆ ℝⁿ is fixed around the origin of the control system
- The memoization region is discretized using a quantization factor *ε* ∈ ℝⁿ
- A trigger time is stored in a multi-dimensional array, called the Memoization Table
- A quantized state is mapped to an entry in the memoization table using a scaling parameter and an offset parameter

A D b 4 A b 4

Memoization of Trigger Time

Figure: Memoization region and table

The state (1.4, 1.3) is quantized to (1, 1)

The trigger time corresponding to the state (1,1) is stored in *Memo*[4,3]

EMSOFT 2012

```
Input: \xi(t_k), the state of the system at time instant t_k
Output: t_{k+1}, the next trigger time of the controller
function findTriggerTime(\xi)
begin
     \langle S_1 \dots S_n \rangle = \text{findIndex}(\xi)
    if outsideRange ((s_1 \dots s_n)) then
         return min(\tau_{min}, computeTrigger(\xi))
    else
         if Memo[s<sub>1</sub>...s<sub>n</sub>] is not found then
             \hat{\xi} = quantizeState (\xi)
              return min(\tau_{min},
                      scheduleTriggerAndMemoize(\hat{\varepsilon}))
         else
              return Memo[s<sub>1</sub>...s<sub>n</sub>]
         end
    end
end
```

Input: $\xi(t_k)$, the state of the system at time instant t_k

Output: t_{k+1} , the next trigger time of the controller

```
function findTriggerTime(\xi)
begin
     \langle S_1 \dots S_n \rangle = \text{findIndex}(\xi)
    if outsideRange ((s_1 \dots s_n)) then
         return min(\tau_{min}, computeTrigger(\xi))
    else
         if Memo[s<sub>1</sub>...s<sub>n</sub>] is not found then
              \hat{\xi} = guantizeState (\xi)
              return min(\tau_{min},
                      scheduleTriggerAndMemoize(\hat{\xi}))
         else
              return Memo[s<sub>1</sub>...s<sub>n</sub>]
         end
    end
end
```

```
Input: \xi(t_k), the state of the system at time instant t_k
Output: t_{k+1}, the next trigger time of the controller
function findTriggerTime(\xi)
begin
     \langle S_1 \dots S_n \rangle = \text{findIndex}(\xi)
    if outsideRange ((s_1 \dots s_n)) then
         return min(\tau_{min}, computeTrigger(\xi))
    else
         if Memo[s<sub>1</sub>...s<sub>n</sub>] is not found then
             \hat{\xi} = quantizeState (\xi)
              return min(\tau_{min},
                      scheduleTriggerAndMemoize(\hat{\varepsilon}))
         else
              return Memo[s<sub>1</sub>...s<sub>n</sub>]
         end
    end
end
```

```
Input: \xi(t_k), the state of the system at time instant t_k
Output: t_{k+1}, the next trigger time of the controller
function findTriggerTime(\xi)
begin
     \langle \mathbf{S}_1 \dots \mathbf{S}_n \rangle = \text{findIndex}(\xi)
     if outsideRange (\langle s_1 \dots s_n \rangle) then
          return min(\tau_{min}, computeTrigger(\xi))
    else
         if Memo[s<sub>1</sub>...s<sub>n</sub>] is not found then
              \hat{\xi} = quantizeState (\xi)
               return min(\tau_{min},
                       scheduleTriggerAndMemoize(\hat{\xi}))
         else
               return Memo[s<sub>1</sub>...s<sub>n</sub>]
         end
     end
end
```

```
Input: \xi(t_k), the state of the system at time instant t_k
Output: t_{k+1}, the next trigger time of the controller
function findTriggerTime(\xi)
begin
     \langle S_1 \dots S_n \rangle = \text{findIndex}(\xi)
    if outsideRange ((s_1 \dots s_n)) then
         return min(\tau_{min}, computeTrigger(\xi))
    else
         if Memo[s<sub>1</sub>...s<sub>n</sub>] is not found then
             \hat{\xi} = quantizeState (\xi)
              return min(\tau_{min},
                      scheduleTriggerAndMemoize(\hat{\varepsilon}))
         else
              return Memo[s<sub>1</sub>...s<sub>n</sub>]
         end
    end
end
```

```
Input: \xi(t_k), the state of the system at time instant t_k
Output: t_{k+1}, the next trigger time of the controller
function findTriggerTime(\xi)
begin
     \langle S_1 \dots S_n \rangle = \text{findIndex}(\xi)
    if outsideRange ((s_1 \dots s_n)) then
         return min(\tau_{min}, computeTrigger(\xi))
    else
         if Memo[s<sub>1</sub>...s<sub>n</sub>] is not found then
             \hat{\xi} = quantizeState (\xi)
              return min(\tau_{min},
                      scheduleTriggerAndMemoize(\hat{\varepsilon}))
         else
              return Memo[s<sub>1</sub>...s<sub>n</sub>]
         end
    end
end
```

```
Input: \xi(t_k), the state of the system at time instant t_k
Output: t_{k+1}, the next trigger time of the controller
function findTriggerTime(\xi)
begin
     \langle S_1 \dots S_n \rangle = \text{findIndex}(\xi)
    if outsideRange ((s_1 \dots s_n)) then
         return min(\tau_{min}, computeTrigger(\xi))
    else
         if Memo[s<sub>1</sub>...s<sub>n</sub>] is not found then
             \hat{\xi} = quantizeState (\xi)
              return min(\tau_{min},
                      scheduleTriggerAndMemoize(\hat{\varepsilon}))
         else
              return Memo[s<sub>1</sub>...s<sub>n</sub>]
         end
    end
end
```

```
Input: \xi(t_k), the state of the system at time instant t_k
Output: t_{k+1}, the next trigger time of the controller
function findTriggerTime(\xi)
begin
     \langle S_1 \dots S_n \rangle = \text{findIndex}(\xi)
    if outsideRange ((s_1 \dots s_n)) then
         return min(\tau_{min}, computeTrigger(\xi))
    else
         if Memo[s<sub>1</sub>...s<sub>n</sub>] is not found then
              \hat{\xi} = quantizeState (\xi)
              return min(\tau_{min},
                      scheduleTriggerAndMemoize(\hat{\varepsilon}))
         else
              return Memo[s<sub>1</sub>...s<sub>n</sub>]
         end
    end
end
```

```
Input: \xi(t_k), the state of the system at time instant t_k
Output: t_{k+1}, the next trigger time of the controller
function findTriggerTime(\xi)
begin
     \langle S_1 \dots S_n \rangle = \text{findIndex}(\xi)
    if outsideRange ((s_1 \dots s_n)) then
         return min(\tau_{min}, computeTrigger(\xi))
    else
         if Memo[s<sub>1</sub>...s<sub>n</sub>] is not found then
              \hat{\xi} = quantizeState (\xi)
              return min(\tau_{min},
                      scheduleTriggerAndMemoize(\hat{\mathcal{E}}))
         else
              return Memo[s<sub>1</sub>...s<sub>n</sub>]
         end
    end
end
```

```
Input: \xi(t_k), the state of the system at time instant t_k
Output: t_{k+1}, the next trigger time of the controller
function findTriggerTime(\xi)
begin
     \langle S_1 \dots S_n \rangle = \text{findIndex}(\xi)
    if outsideRange ((s_1 \dots s_n)) then
         return min(\tau_{min}, computeTrigger(\xi))
    else
         if Memo[s<sub>1</sub>...s<sub>n</sub>] is not found then
             \hat{\xi} = quantizeState (\xi)
              return min(\tau_{min},
                      scheduleTriggerAndMemoize(\hat{\varepsilon}))
         else
              return Memo[s<sub>1</sub>...s<sub>n</sub>]
         end
    end
end
```

Dynamic Choice of Memoization Region

- A control system may have a number of operating points
- The system can move from one operating point to another during its life cycle
- If the operating point changes from ξ₁ to ξ₂, the memoization region changes from [ξ₁ − w, ξ₁ + w] to [ξ₂ − w, ξ₂ + w]
- In case of a change in the operating point
 - the memoization table is cleared
 - the offset parameter is reconfigured to reflect the new memoization region

< ロ > < 同 > < 臣 > < 臣 > -

The state quantization can be modeled as a bounded disturbance added at the input of the plant.

In the presence of bounded disturbance, the controller can render the states of the plant exponentially in a region defined by

 $V(\xi(t)) \leq \max\{V(\xi(t_0))e^{-\gamma_0(t-t_0)}, \mathbf{V}_b\}$

Given a quantization factor ϵ , we can give a guarantee on the maximum size of V_b .

Alternatively, if a maximum value V_b^{max} is given as specification, we can find out the value of the quantization factor ϵ to ensure that the specification is met.

Self-Triggered Control of Nonlinear Systems

The self-triggered implementation for a nonlinear control systems is given by:

 $t_{k+1} = z(\xi(t_k))$

Trigger time is computed based on the quantized value $\hat{\xi}$ of ξ .

Find the maximum possible error introduced in the trigger time due to state quantization:

maximize
$$\tau_e$$

Subject to $\tau_e = \tau - \hat{\tau}$
 $\tau = z(\xi) \quad \hat{\tau} = z(\hat{\xi})$
 $\xi - \hat{\xi} \le \epsilon \quad \xi \ge \hat{\xi}$

The triggering time is computed as

$$t_{k+1} = z(\hat{\xi}(t_k)) - \tau_e^{max}$$

We choose PowerPC MPC5xx and Leon2 processors as the two target platforms

- The control computations and trigger time computations are implemented in C programming language, and then cross-compiled for respective processors using GNU-based cross compilation systems
- We use Truetime simulator to implement the control tasks and simulate the systems under different conditions
- The worst-case execution times for control computation and trigger time computation are obtained using the WCET analysis tool aiT

- We choose PowerPC MPC5xx and Leon2 processors as the two target platforms
- The control computations and trigger time computations are implemented in C programming language, and then cross-compiled for respective processors using GNU-based cross compilation systems
- We use Truetime simulator to implement the control tasks and simulate the systems under different conditions
- The worst-case execution times for control computation and trigger time computation are obtained using the WCET analysis tool aiT

- We choose PowerPC MPC5xx and Leon2 processors as the two target platforms
- The control computations and trigger time computations are implemented in C programming language, and then cross-compiled for respective processors using GNU-based cross compilation systems
- We use Truetime simulator to implement the control tasks and simulate the systems under different conditions
- The worst-case execution times for control computation and trigger time computation are obtained using the WCET analysis tool aiT

ヨト イヨト

- We choose PowerPC MPC5xx and Leon2 processors as the two target platforms
- The control computations and trigger time computations are implemented in C programming language, and then cross-compiled for respective processors using GNU-based cross compilation systems
- We use Truetime simulator to implement the control tasks and simulate the systems under different conditions
- The worst-case execution times for control computation and trigger time computation are obtained using the WCET analysis tool aiT

・ 回 ト ・ ヨ ト ・ ヨ ト

Three implementations

- Time-triggered implementation
 - Using the sampling period au_{\min}
- Self-triggered implementation

- The maximum trigger time $\tau_{\rm max}$ is updated to ensure that the computation of the trigger time is guaranteed to be finished before the minimum trigger time $\tau_{\rm min}$

- Hybrid implementation
 - Without decreasing the maximum trigger time
 - Falls back to the time-triggered implementation using trigger time $\tau_{\rm min}$ when the trigger time computation takes more than $\tau_{\rm min}$ time.

くロト (過) (目) (日)

Disturbance free

The system is free from any external disturbance

2 Disturbance scenario 1

The system is subjected to a periodic external disturbance signal of pulse shape

Oisturbance scenario 2

The system is subjected to a normally distributed random disturbance signal

Specification: The state of the system has to converge in a stability region $V_b^{max} = 0.5$

The upper bound on the quantization factor is found to be 0.04346

- We choose the quantization factor to be $\epsilon = 0.04$

We choose the memoization region to be [-0.5, 0.5]

Memory required to store the memoization table is 381.47KB

ヘロン 人間 とくほ とくほ とう

Implementation	Disturbance Free		Disturbance Scenario 1		Disturbance Scenario 2	
	PowerPC	Leon2	PowerPC	Leon2	PowerPC	Leon2
TT	0.164s	0.226s	0.164s	0.226s	0.164s	0.226s
ST	167.514s	342.554s	167.188s	341.117s	167.691s	342.541s
Hybrid	0.959s	1.824s	4.039s	7.336s	31.322s	57.360s

Table: **CPU time** required for different implementations of the controller of the batch reactor process running for 2000s

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Implementation	Disturbance Free		Disturbance Scenario 1		Disturbance Scenario 2	
	PowerPC	Leon2	PowerPC	Leon2	PowerPC	Leon2
TT	50251	50251	50251	50251	50251	50251
ST	5731	7422	14735	15786	5974	7422
Hybrid	5868	5891	15847	15868	6932	7343

Table: Number of control computations for different

implementations of the controller of the batch reactor process running for 2000s

ヘロト 人間 ト ヘヨト ヘヨト

Example: Batch Reactor Process

Figure: Evolution of states from initial state $\langle 2, 2, 2, 2 \rangle$ for no disturbance scenario

EMSOFT 2012

25/28

э

э

Example: Jet Engine Compressor

The formula to compute the trigger time [Anta and Tabuada 2010]:

$$t_{k+1}(\xi(t_k)) = \frac{29\xi_1(t_k) + \|\xi(t_k)\|^2}{5.36\|\xi(t_k)\|\xi_1(t_k)^2 + \|\xi(t_k)\|^2} \tau^*$$

The minimum trigger time $\tau_{min} = \tau^* = 7.63 ms$.

The operating point of the jet engine is $\xi_1 = 0, \xi_2 = 0$.

We choose the memoization region to be $\langle \xi_1 \in [0.25, 0.75], \xi_2 \in [-1, 1] \rangle$.

Memory used - 256KB

Quantization factor - 0.002

In the memoization region, τ_e^{max} is 6.634ms.

ヘロア 人間 アメヨア 人口 ア

э

Implementation	Disturbance Scenario 1			Disturbance Scenario 2			
	CPU Time		# Control	CPU Time		# Control	
	PowerPC	Leon2	Computations	PowerPC	Leon2	Computations	
TT	1.094s	1.732s	262122	1.094s	1.732s	262122	
ST	0.338s	0.473s	18729	0.303s	0.422s	16447	
Hybrid	0.190s	0.315s	19009	0.117s	0.211s	16464	

Table: **CPU time** and **number of control computations** for different implementations of the controller of the jet engine compressor running for 2000s

くロト (過) (目) (日)

Conclusions

 Self-triggered implementations have the potential to decrease communication costs and CPU requirements significantly

- an attractive technique to be used for integrated architectures of cyber-physical systems

- We propose an implementation scheme for self-triggered control
 - uses state quantization and memoization of trigger times in a cache
 - provides guarantees on the region stability of the control systems
- Our implementation scheme is always feasible, and the performance meets the expectation arisen in the literature of self-triggered control systems