
Trigger Memoization in Self-Triggered Control

Indranil Saha1 and Rupak Majumdar1,2

1University of California Los Angeles

2Max Planck Institute for Software Systems

EMSOFT 2012
October 8, 2012

EMSOFT 2012 Saha and Majumdar Trigger Memoization in Self-Triggered Control 1/28



A Control System

Plant

Sensor

Controller

Actuator

ξ

υ ξ̇ = f (ξ, υ), ξ(0) = ξ0

υ(t) = k(ξ(t))

ξ - State of the plant
υ - Control signal generated by the controller

EMSOFT 2012 Saha and Majumdar Trigger Memoization in Self-Triggered Control 2/28



Implementation of a Control System

Plant

Sensor

Controller

Actuator
Triggering

Logic

ξ(tk )

υ(tk ) ξ̇ = f (ξ, υ), ξ(0) = ξ0

υ(tk ) = k(ξ(tk ))

tk

To implement the control law on a digital computer, the state of the
plant is sampled at a sequence of time instants t0 = 0, t1, t2, . . .

The time instant tk is called the trigger time

EMSOFT 2012 Saha and Majumdar Trigger Memoization in Self-Triggered Control 3/28



Time-Triggered Implementation

Plant

Sensor

Controller

Actuator

ξ(tk )

υ(tk ) ξ̇ = f (ξ, υ), ξ(0) = ξ0

υ(tk ) = k(ξ(tk ))

Clock

EMSOFT 2012 Saha and Majumdar Trigger Memoization in Self-Triggered Control 4/28



Time-Triggered Implementation

Plant

Sensor

Controller

Actuator

ξ(tk )

υ(tk ) ξ̇ = f (ξ, υ), ξ(0) = ξ0

υ(tk ) = k(ξ(tk ))

Clock

Sampling period is selected based on the worst case scenario

Inefficient usage of computational resource and communication
bandwidth

EMSOFT 2012 Saha and Majumdar Trigger Memoization in Self-Triggered Control 4/28



Event-Triggered Implementation

Plant

Sensor

Controller

Actuator Event Detector

ξ(tk )

υ(tk ) ξ̇ = f (ξ, υ), ξ(0) = ξ0

υ(tk ) = k(ξ(tk ))

EMSOFT 2012 Saha and Majumdar Trigger Memoization in Self-Triggered Control 5/28



Event-Triggered Implementation

Plant

Sensor

Controller

Actuator Event Detector

ξ(tk )

υ(tk ) ξ̇ = f (ξ, υ), ξ(0) = ξ0

υ(tk ) = k(ξ(tk ))

Requires dedicated hardware to monitor plant state

EMSOFT 2012 Saha and Majumdar Trigger Memoization in Self-Triggered Control 5/28



Self-Triggered Implementation

Plant

Sensor

Controller

Actuator
Event

Scheduler
ξ(tk )

υ(tk ) ξ̇ = f (ξ, υ), ξ(0) = ξ0

υ(tk ) = k(ξ(tk ))

tk+1

EMSOFT 2012 Saha and Majumdar Trigger Memoization in Self-Triggered Control 6/28



Self-Triggered Implementation

Plant

Sensor

Controller

Actuator
Event

Scheduler
ξ(tk )

υ(tk ) ξ̇ = f (ξ, υ), ξ(0) = ξ0

υ(tk ) = k(ξ(tk ))

tk+1

Has been shown to reduce the number of control computations
significantly with respect to its time-triggered counterpart

EMSOFT 2012 Saha and Majumdar Trigger Memoization in Self-Triggered Control 6/28



Trigger Time Computation

Trigger time is computed based on two parameters:
τmin : minimum trigger time

The trigger-time which works in the worst case scenario

Can be computed from the parameters of the control
system

τmax : maximum trigger time
The maximum duration the plant can be kept open loop

A design parameter

(tk + τmin) ≤ tk+1 ≤ (tk + τmax)

EMSOFT 2012 Saha and Majumdar Trigger Memoization in Self-Triggered Control 7/28



Computation Time of Trigger Time

τc - The time required to compute the trigger time

The self-triggered implementation scheme is feasible if and
only if

(tk + τc) ≤ tk+1

EMSOFT 2012 Saha and Majumdar Trigger Memoization in Self-Triggered Control 8/28



The Problem

tk (tk + τmin) (tk + τmax )tk+1(tk + τc)

EMSOFT 2012 Saha and Majumdar Trigger Memoization in Self-Triggered Control 9/28



The Problem

tk (tk + τmin) (tk + τmax )tk+1(tk + τc)

tk (tk + τmin) (tk + τmax )tk+1 (tk + τc)

EMSOFT 2012 Saha and Majumdar Trigger Memoization in Self-Triggered Control 9/28



The Problem

tk (tk + τmin) (tk + τmax )tk+1(tk + τc)

tk (tk + τmin) (tk + τmax )tk+1 (tk + τc)

tk (tk + τmin) (tk + τmax )tk+1

(tk + τc)

EMSOFT 2012 Saha and Majumdar Trigger Memoization in Self-Triggered Control 9/28



Stability of a Control System

The closed loop system is exponentially stable if there exists a
Lyapunov function V and a positive constant λ such that

V (ξ(t)) ≤ V (ξ(0))e−λt , for all t ≥ 0.

The largest constant that can be used for λ in the above
inequality is called the rate of decay.

Existence of such a Lyapunov function ensures that the state of
the control system converges to the stable state or origin with
an exponential decay.

EMSOFT 2012 Saha and Majumdar Trigger Memoization in Self-Triggered Control 10/28



Self-Triggered Control of a Linear Control System

Let V be a Lyapunov function and let λ0 > 0 denote its rate of
decay.

For self-triggered implementations, we fix 0 < λ < λ0 and define
a function S upper-bounding the evolution of V :

S(t , ξ(tk )) = V (ξ(tk ))e−λ(t−tk )

The constant λ in the function S specifies the desired
performance of the control system.

EMSOFT 2012 Saha and Majumdar Trigger Memoization in Self-Triggered Control 11/28



Self-Triggered Control of a Linear Control System

Let V be a Lyapunov function and let λ0 > 0 denote its rate of
decay.

For self-triggered implementations, we fix 0 < λ < λ0 and define
a function S upper-bounding the evolution of V :

S(t , ξ(tk )) = V (ξ(tk ))e−λ(t−tk )

The constant λ in the function S specifies the desired
performance of the control system.

tk

S

V
time

V (ξ(tk ))

EMSOFT 2012 Saha and Majumdar Trigger Memoization in Self-Triggered Control 11/28



Self-Triggered Control of a Linear Control System

Let V be a Lyapunov function and let λ0 > 0 denote its rate of
decay.

For self-triggered implementations, we fix 0 < λ < λ0 and define
a function S upper-bounding the evolution of V :

S(t , ξ(tk )) = V (ξ(tk ))e−λ(t−tk )

The constant λ in the function S specifies the desired
performance of the control system.

tk tk+1

S

V
time

V (ξ(tk ))

EMSOFT 2012 Saha and Majumdar Trigger Memoization in Self-Triggered Control 11/28



Self-Triggered Control of a Linear Control System

Let V be a Lyapunov function and let λ0 > 0 denote its rate of
decay.

For self-triggered implementations, we fix 0 < λ < λ0 and define
a function S upper-bounding the evolution of V :

S(t , ξ(tk )) = V (ξ(tk ))e−λ(t−tk )

The constant λ in the function S specifies the desired
performance of the control system.

tk tk+1∆τmin τmax

S

V
time

V (ξ(tk ))

EMSOFT 2012 Saha and Majumdar Trigger Memoization in Self-Triggered Control 11/28



An Example

The model of a batch reactor process is given by

ξ̇ =

2664
1.38 −0.20 6.71 −5.67
−0.58 −4.29 0 0.67
1.06 4.27 −6.65 5.89
0.04 4.27 1.34 −2.10

3775 ξ +

2664
0 0

5.67 0
1.13 −3.14
1.13 0

3775 υ.
The feedback controller

υ = −
»

0.1006 −0.2469 −0.0952 −0.2447
1.4099 −0.1966 0.0139 0.0823

–
ξ

renders the system exponentially stable.

For this system, τmin = 18ms
Following literature we chose τmax = 358ms
On a Leon 2 processor with frequency 100MHz, the WCET of the
trigger time computation is 29.793ms

EMSOFT 2012 Saha and Majumdar Trigger Memoization in Self-Triggered Control 12/28



An Example

The model of a batch reactor process is given by

ξ̇ =

2664
1.38 −0.20 6.71 −5.67
−0.58 −4.29 0 0.67
1.06 4.27 −6.65 5.89
0.04 4.27 1.34 −2.10

3775 ξ +

2664
0 0

5.67 0
1.13 −3.14
1.13 0

3775 υ.
The feedback controller

υ = −
»

0.1006 −0.2469 −0.0952 −0.2447
1.4099 −0.1966 0.0139 0.0823

–
ξ

renders the system exponentially stable.

For this system, τmin = 18ms
Following literature we chose τmax = 358ms
On a Leon 2 processor with frequency 100MHz, the WCET of the
trigger time computation is 29.793ms

It is possible that (tk + τc) > tk+1

EMSOFT 2012 Saha and Majumdar Trigger Memoization in Self-Triggered Control 12/28



Proposed Solution: Memoization of Trigger Time

A time-vs-space tradeoff - memoizes trigger times for
future reuse

A memoization region [−w ,w ] ⊆ Rn is fixed around the
origin of the control system

The memoization region is discretized using a quantization
factor ε ∈ Rn

A trigger time is stored in a multi-dimensional array, called
the Memoization Table

A quantized state is mapped to an entry in the
memoization table using a scaling parameter and an offset
parameter

EMSOFT 2012 Saha and Majumdar Trigger Memoization in Self-Triggered Control 13/28



Memoization of Trigger Time

-3 -2 -1 0 3 2 1 

-1 

-2 

1 

2 

ξ(t)ξ̂(t)

�0, 0�

�0, 1�

�1, 0� �6, 0�

�0, 4�

�1

�2

Figure: Memoization region and table

The state (1.4,1.3) is quantized to (1,1)

The trigger time corresponding to the state (1,1) is stored in
Memo[4,3]

EMSOFT 2012 Saha and Majumdar Trigger Memoization in Self-Triggered Control 14/28



Hybrid Implementation

Input: ξ(tk ), the state of the system at time instant tk
Output: tk+1, the next trigger time of the controller

function findTriggerTime(ξ)
begin
〈s1 . . . sn〉 = findIndex(ξ)
if outsideRange(〈s1 . . . sn〉) then

return min(τmin, computeTrigger(ξ))
else

if Memo[s1 . . . sn] is not found then
ξ̂ = quantizeState(ξ)
return min(τmin,

scheduleTriggerAndMemoize(ξ̂))
else

return Memo[s1 . . . sn]
end

end
end

EMSOFT 2012 Saha and Majumdar Trigger Memoization in Self-Triggered Control 15/28



Hybrid Implementation

Input: ξ(tk ), the state of the system at time instant tk
Output: tk+1, the next trigger time of the controller

function findTriggerTime(ξ)
begin
〈s1 . . . sn〉 = findIndex(ξ)
if outsideRange(〈s1 . . . sn〉) then

return min(τmin, computeTrigger(ξ))
else

if Memo[s1 . . . sn] is not found then
ξ̂ = quantizeState(ξ)
return min(τmin,

scheduleTriggerAndMemoize(ξ̂))
else

return Memo[s1 . . . sn]
end

end
end

EMSOFT 2012 Saha and Majumdar Trigger Memoization in Self-Triggered Control 15/28



Hybrid Implementation

Input: ξ(tk ), the state of the system at time instant tk
Output: tk+1, the next trigger time of the controller

function findTriggerTime(ξ)
begin
〈s1 . . . sn〉 = findIndex(ξ)
if outsideRange(〈s1 . . . sn〉) then

return min(τmin, computeTrigger(ξ))
else

if Memo[s1 . . . sn] is not found then
ξ̂ = quantizeState(ξ)
return min(τmin,

scheduleTriggerAndMemoize(ξ̂))
else

return Memo[s1 . . . sn]
end

end
end

EMSOFT 2012 Saha and Majumdar Trigger Memoization in Self-Triggered Control 15/28



Hybrid Implementation

Input: ξ(tk ), the state of the system at time instant tk
Output: tk+1, the next trigger time of the controller

function findTriggerTime(ξ)
begin
〈s1 . . . sn〉 = findIndex(ξ)
if outsideRange(〈s1 . . . sn〉) then

return min(τmin, computeTrigger(ξ))
else

if Memo[s1 . . . sn] is not found then
ξ̂ = quantizeState(ξ)
return min(τmin,

scheduleTriggerAndMemoize(ξ̂))
else

return Memo[s1 . . . sn]
end

end
end

EMSOFT 2012 Saha and Majumdar Trigger Memoization in Self-Triggered Control 15/28



Hybrid Implementation

Input: ξ(tk ), the state of the system at time instant tk
Output: tk+1, the next trigger time of the controller

function findTriggerTime(ξ)
begin
〈s1 . . . sn〉 = findIndex(ξ)
if outsideRange(〈s1 . . . sn〉) then

return min(τmin, computeTrigger(ξ))
else

if Memo[s1 . . . sn] is not found then
ξ̂ = quantizeState(ξ)
return min(τmin,

scheduleTriggerAndMemoize(ξ̂))
else

return Memo[s1 . . . sn]
end

end
end

EMSOFT 2012 Saha and Majumdar Trigger Memoization in Self-Triggered Control 15/28



Hybrid Implementation

Input: ξ(tk ), the state of the system at time instant tk
Output: tk+1, the next trigger time of the controller

function findTriggerTime(ξ)
begin
〈s1 . . . sn〉 = findIndex(ξ)
if outsideRange(〈s1 . . . sn〉) then

return min(τmin, computeTrigger(ξ))
else

if Memo[s1 . . . sn] is not found then
ξ̂ = quantizeState(ξ)
return min(τmin,

scheduleTriggerAndMemoize(ξ̂))
else

return Memo[s1 . . . sn]
end

end
end

EMSOFT 2012 Saha and Majumdar Trigger Memoization in Self-Triggered Control 15/28



Hybrid Implementation

Input: ξ(tk ), the state of the system at time instant tk
Output: tk+1, the next trigger time of the controller

function findTriggerTime(ξ)
begin
〈s1 . . . sn〉 = findIndex(ξ)
if outsideRange(〈s1 . . . sn〉) then

return min(τmin, computeTrigger(ξ))
else

if Memo[s1 . . . sn] is not found then
ξ̂ = quantizeState(ξ)
return min(τmin,

scheduleTriggerAndMemoize(ξ̂))
else

return Memo[s1 . . . sn]
end

end
end

EMSOFT 2012 Saha and Majumdar Trigger Memoization in Self-Triggered Control 15/28



Hybrid Implementation

Input: ξ(tk ), the state of the system at time instant tk
Output: tk+1, the next trigger time of the controller

function findTriggerTime(ξ)
begin
〈s1 . . . sn〉 = findIndex(ξ)
if outsideRange(〈s1 . . . sn〉) then

return min(τmin, computeTrigger(ξ))
else

if Memo[s1 . . . sn] is not found then
ξ̂ = quantizeState(ξ)
return min(τmin,

scheduleTriggerAndMemoize(ξ̂))
else

return Memo[s1 . . . sn]
end

end
end

EMSOFT 2012 Saha and Majumdar Trigger Memoization in Self-Triggered Control 15/28



Hybrid Implementation

Input: ξ(tk ), the state of the system at time instant tk
Output: tk+1, the next trigger time of the controller

function findTriggerTime(ξ)
begin
〈s1 . . . sn〉 = findIndex(ξ)
if outsideRange(〈s1 . . . sn〉) then

return min(τmin, computeTrigger(ξ))
else

if Memo[s1 . . . sn] is not found then
ξ̂ = quantizeState(ξ)
return min(τmin,

scheduleTriggerAndMemoize(ξ̂))
else

return Memo[s1 . . . sn]
end

end
end

EMSOFT 2012 Saha and Majumdar Trigger Memoization in Self-Triggered Control 15/28



Hybrid Implementation

Input: ξ(tk ), the state of the system at time instant tk
Output: tk+1, the next trigger time of the controller

function findTriggerTime(ξ)
begin
〈s1 . . . sn〉 = findIndex(ξ)
if outsideRange(〈s1 . . . sn〉) then

return min(τmin, computeTrigger(ξ))
else

if Memo[s1 . . . sn] is not found then
ξ̂ = quantizeState(ξ)
return min(τmin,

scheduleTriggerAndMemoize(ξ̂))
else

return Memo[s1 . . . sn]
end

end
end

EMSOFT 2012 Saha and Majumdar Trigger Memoization in Self-Triggered Control 15/28



Dynamic Choice of Memoization Region

A control system may have a number of operating points

The system can move from one operating point to another
during its life cycle

If the operating point changes from ξ1 to ξ2, the
memoization region changes from [ξ1 − w , ξ1 + w ] to
[ξ2 − w , ξ2 + w ]

In case of a change in the operating point

1 the memoization table is cleared
2 the offset parameter is reconfigured to reflect the new

memoization region

EMSOFT 2012 Saha and Majumdar Trigger Memoization in Self-Triggered Control 16/28



Effect of State Quantization

The state quantization can be modeled as a bounded
disturbance added at the input of the plant.

In the presence of bounded disturbance, the controller can
render the states of the plant exponentially in a region defined
by

V (ξ(t)) ≤ max{V (ξ(t0))e−γ0(t−t0),Vb}

Given a quantization factor ε, we can give a guarantee on the
maximum size of Vb.

Alternatively, if a maximum value V max
b is given as specification,

we can find out the value of the quantization factor ε to ensure
that the specification is met.

EMSOFT 2012 Saha and Majumdar Trigger Memoization in Self-Triggered Control 17/28



Self-Triggered Control of Nonlinear Systems

The self-triggered implementation for a nonlinear control
systems is given by:

tk+1 = z(ξ(tk ))

Trigger time is computed based on the quantized value ξ̂ of ξ.

Find the maximum possible error introduced in the trigger time
due to state quantization:

maximize τe
Subject to τe = τ − τ̂

τ = z(ξ) τ̂ = z(ξ̂)

ξ − ξ̂ ≤ ε ξ ≥ ξ̂

The triggering time is computed as

tk+1 = z(ξ̂(tk ))− τmax
e

EMSOFT 2012 Saha and Majumdar Trigger Memoization in Self-Triggered Control 18/28



Experimental Setup

We choose PowerPC MPC5xx and Leon2 processors as
the two target platforms

The control computations and trigger time computations
are implemented in C programming language, and then
cross-compiled for respective processors using
GNU-based cross compilation systems

We use Truetime simulator to implement the control tasks
and simulate the systems under different conditions

The worst-case execution times for control computation
and trigger time computation are obtained using the WCET
analysis tool aiT

EMSOFT 2012 Saha and Majumdar Trigger Memoization in Self-Triggered Control 19/28



Experimental Setup

We choose PowerPC MPC5xx and Leon2 processors as
the two target platforms

The control computations and trigger time computations
are implemented in C programming language, and then
cross-compiled for respective processors using
GNU-based cross compilation systems

We use Truetime simulator to implement the control tasks
and simulate the systems under different conditions

The worst-case execution times for control computation
and trigger time computation are obtained using the WCET
analysis tool aiT

EMSOFT 2012 Saha and Majumdar Trigger Memoization in Self-Triggered Control 19/28



Experimental Setup

We choose PowerPC MPC5xx and Leon2 processors as
the two target platforms

The control computations and trigger time computations
are implemented in C programming language, and then
cross-compiled for respective processors using
GNU-based cross compilation systems

We use Truetime simulator to implement the control tasks
and simulate the systems under different conditions

The worst-case execution times for control computation
and trigger time computation are obtained using the WCET
analysis tool aiT

EMSOFT 2012 Saha and Majumdar Trigger Memoization in Self-Triggered Control 19/28



Experimental Setup

We choose PowerPC MPC5xx and Leon2 processors as
the two target platforms

The control computations and trigger time computations
are implemented in C programming language, and then
cross-compiled for respective processors using
GNU-based cross compilation systems

We use Truetime simulator to implement the control tasks
and simulate the systems under different conditions

The worst-case execution times for control computation
and trigger time computation are obtained using the WCET
analysis tool aiT

EMSOFT 2012 Saha and Majumdar Trigger Memoization in Self-Triggered Control 19/28



Three implementations

1 Time-triggered implementation

- Using the sampling period τmin

2 Self-triggered implementation

- The maximum trigger time τmax is updated to ensure that
the computation of the trigger time is guaranteed to be
finished before the minimum trigger time τmin

3 Hybrid implementation

- Without decreasing the maximum trigger time

- Falls back to the time-triggered implementation using
trigger time τmin when the trigger time computation takes
more than τmin time.

EMSOFT 2012 Saha and Majumdar Trigger Memoization in Self-Triggered Control 20/28



Simulation Scenarios

1 Disturbance free
The system is free from any external disturbance

2 Disturbance scenario 1
The system is subjected to a periodic external disturbance
signal of pulse shape

3 Disturbance scenario 2
The system is subjected to a normally distributed random
disturbance signal

EMSOFT 2012 Saha and Majumdar Trigger Memoization in Self-Triggered Control 21/28



Example: Batch Reactor Process

Specification: The state of the system has to converge in a
stability region V max

b = 0.5

The upper bound on the quantization factor is found to be
0.04346

- We choose the quantization factor to be ε = 0.04

We choose the memoization region to be [−0.5,0.5]

Memory required to store the memoization table is 381.47KB

EMSOFT 2012 Saha and Majumdar Trigger Memoization in Self-Triggered Control 22/28



Example: Batch Reactor Process

Implementation Disturbance Free Disturbance Scenario 1 Disturbance Scenario 2
PowerPC Leon2 PowerPC Leon2 PowerPC Leon2

TT 0.164s 0.226s 0.164s 0.226s 0.164s 0.226s
ST 167.514s 342.554s 167.188s 341.117s 167.691s 342.541s

Hybrid 0.959s 1.824s 4.039s 7.336s 31.322s 57.360s

Table: CPU time required for different implementations of the
controller of the batch reactor process running for 2000s

EMSOFT 2012 Saha and Majumdar Trigger Memoization in Self-Triggered Control 23/28



Example: Batch Reactor Process

Implementation Disturbance Free Disturbance Scenario 1 Disturbance Scenario 2
PowerPC Leon2 PowerPC Leon2 PowerPC Leon2

TT 50251 50251 50251 50251 50251 50251
ST 5731 7422 14735 15786 5974 7422

Hybrid 5868 5891 15847 15868 6932 7343

Table: Number of control computations for different
implementations of the controller of the batch reactor process running
for 2000s

EMSOFT 2012 Saha and Majumdar Trigger Memoization in Self-Triggered Control 24/28



Example: Batch Reactor Process

0 2 4 6 8 101

0

1

2

3

Time (in Sec)

Va
lu

e 
of

 S
ta

te
s

(a) TT

0 2 4 6 8 100.5

0

0.5

1

1.5

2

2.5

Time (in Sec) 

Va
lu

e 
of

 S
ta

te
s

(b) ST

0 2 4 6 8 100.5

0

0.5

1

1.5

2

2.5

Time (in Sec)

Va
lu

e 
of

 S
ta

te

(c) Hybrid

Figure: Evolution of states from initial state 〈2,2,2,2〉 for no
disturbance scenario

EMSOFT 2012 Saha and Majumdar Trigger Memoization in Self-Triggered Control 25/28



Example: Jet Engine Compressor

The formula to compute the trigger time [Anta and Tabuada
2010]:

tk+1(ξ(tk )) = 29ξ1(tk )+‖ξ(tk )‖2

5.36‖ξ(tk )‖ξ1(tk )2+‖ξ(tk )‖2 τ
∗

The minimum trigger time τmin = τ∗ = 7.63ms.

The operating point of the jet engine is ξ1 = 0, ξ2 = 0.

We choose the memoization region to be
〈ξ1 ∈ [0.25,0.75], ξ2 ∈ [−1,1]〉.

Memory used - 256KB

Quantization factor - 0.002

In the memoization region, τmax
e is 6.634ms.

EMSOFT 2012 Saha and Majumdar Trigger Memoization in Self-Triggered Control 26/28



Example: Jet Engine Compressor

Implementation Disturbance Scenario 1 Disturbance Scenario 2
CPU Time # Control CPU Time # Control

PowerPC Leon2 Computations PowerPC Leon2 Computations
TT 1.094s 1.732s 262122 1.094s 1.732s 262122
ST 0.338s 0.473s 18729 0.303s 0.422s 16447

Hybrid 0.190s 0.315s 19009 0.117s 0.211s 16464

Table: CPU time and number of control computations for different
implementations of the controller of the jet engine compressor
running for 2000s

EMSOFT 2012 Saha and Majumdar Trigger Memoization in Self-Triggered Control 27/28



Conclusions

Self-triggered implementations have the potential to
decrease communication costs and CPU requirements
significantly
- an attractive technique to be used for integrated
architectures of cyber-physical systems

We propose an implementation scheme for self-triggered
control
- uses state quantization and memoization of trigger times
in a cache
- provides guarantees on the region stability of the control
systems

Our implementation scheme is always feasible, and the
performance meets the expectation arisen in the literature
of self-triggered control systems

EMSOFT 2012 Saha and Majumdar Trigger Memoization in Self-Triggered Control 28/28


