
CS771: Machine learning: tools, techniques and applications

Mid-semester exam

Time: 2 hours 15-Feb-2015
Max marks: 80

1. Answer all 4 questions. The question paper has 2 pages.

2. Your answers should show all calculations for full credit.

3. Please be precise in your answers.

4. You can consult only handwritten class notes. Any other printed or digital material or electronic
gadgets are not allowed.

1. (a) If |L| = n then answer the following with respect to the bagged learning sets used for creating the
decision trees of a random forest classifier:

i. What is the expression for the average size of the bagged learning set?

ii. What is the minimum size of a bagged learning set?

iii. What is the maximum size of a bagged learning set?

Solution:

i) Average size of bagged: n(1− 1
e ).

ii) Min. size of bagged set: 1

iii) Max. sized of bagged set: n

(b) What is the horizon effect and how does it affect the construction of decision trees (DTs)?

Assume a DT has been grown fully. Assuming a validation set is available how will you use it to
decide whether or not to prune a sub-tree subtended from a node z in the DT?

Solution:

The horizon effect is a situation where the maximum impurity reduction at a particular level
or depth is less than the maximum impurity reduction at a deeper/higher depth level. This
normally means that a threshold based stopping criterion does not give the best decision tree.
To avoid the horizon effect we grow the tree fully and then prune.

Find the error rate for vectors from the validation set that end up at node z and are classified
at that node (i.e. tree subtended from z has been pruned) - let this be epruned. Also find the
error rate when the classification is done at the leaves of the tree subtended from z - let this
error rate be eunpruned. If epruned ≤ eunpruned prune the tree else do not.

(c) Consider the function φ(x) = max(x, 1 − x), 0 ≤ x ≤ 1. Can φ be an impurity function? Justify
your answer.

Let a node z in a DT contain 10 vectors of class ω1 and 10 vectors of class ω2, written as (10, 10)
where the first number gives the number of vectors of class ω1 and the second one the number of
vectors of class ω2 at a node. While evaluating possible binary splits for z we get the following
splits: i) (3, 5)(7, 5) ii) (4, 3)(6, 7) iii) (2, 5)(8, 5). If Gini impurity is being used which of the 3 splits
will you choose? Justify.
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Figure 1: Graph of φ = max(x, 1− x), 0 ≤ x ≤ 1
.

Solution:

The function φ is clearly defined for binary classification with x being the fraction of vectors
of class ω1, and (1− x) the fraction of vectors of class ω2.

The graph of the function is shown above. It does not satisfy two important conditions for
an impurity function. First impurity should be maximum when the two classes are equally
represented that is at x = 0.5. Actually, it is a minimum at that point and second when nodes
are pure, that is at x = 0.0 and x = 1.0, impurity should be a minimum while it is a maximum.
So φ cannot be an impurity function. Actually, it is a mirror image of an impurity function
w.r.t to the X-axis.

To calculate the correct split we do not actually need to go through the impurity calculations.
We just have to pick the minimum impurity split. This will result in the maximum impurity
reduction. By inspection it is clear that the impurity will be smallest when the disbalance
between the vectors of class ω1 and ω2 is largest at the child nodes (nodes are more pure when
disbalance between classes is higher). The disbalance is a maximum for split iii) and so this will
have the minimum impurity (giving rise to maximum impurity reduction) and so iii) should be
the chosen split.

Of course, one can confirm this with a calculation:

Impurity for split i): 30
64 + 70

144
Impurity for split ii): 24

49 + 84
169

Impurity for split iii): 20
49 + 80

169

It is clear that iii) is the minimum impurity value.

(d) We had an upper bound PE∗ ≤ ρ(1−s2)
s2

for the generalization error of a random forest, where ρ is
the average correlation between pairs of trees in the forest and s is the average strength of a tree in
the forest. Given the learning set L briefly describe how you will estimate the error bound above.

Solution:

The estimate of the bound can be calculated by estimating the values of s and ρ by using
their definitions. Let |L| = n. First we estimate s. s = EX,Y [mr(X, Y )] where mr(X, Y ) =
Pθ(f(X, θ) = Y )−max

j 6=Y
Pθ(f(X, θ) = j). Let estimate of Pθ(f(X, θ) = Y ) be written as p̂(x, y).

Let Li be the ith bagged sample and f(x, θi) the corresponding DT. Then we can calculate
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p̂(x, y) using the OOB vector (x, y):

p̂(x, y) =

∑
i I[f(x,θi)=y;(x,y)6∈Li]∑

i I[(x,y)6∈Li]

Then the strength s can be estimated using the learning set L:

ŝ =
1

n

n∑
i=1

(p̂(xi, yi)− p̂(xi, ỹi)) where ỹi = argmax
y′i 6=yi

p̂(xi, y
′
i)

To estimate ρ̄ we use ρ̄ = V ar(mr(X,Y ))
Eθ[σ(θ)]2

. We have:

V ar(mr(X, Y )) = EX,Y [mr(X, Y )2]− s2

=
1

n

n∑
i=1

(p̂(xi, yi)− p̂(xi, ỹi))2 − ŝ2

To calculate the denominator Eθ[σ(θ)]2 we use the expression for σ(θ):

σ(θ)2 = V arX,Y (rmg(X, Y, θ))

= EX,Y [rmg(X, Y, θ)2]− (EX,Y [rmg(X, Y, θ)])2

Note that the raw margin score is defined as: rmg(X, Y, θ) = I(f(X, θ) = Y )− I(f(X, θ) = Ỹ )
where Ỹ is the label different from Y that has the maximum probability of being predicted.
The two terms of rmg can be estimated by using OOB vectors for the ith bagged set Li to get
IY and IỸ . The expectation EX,Y [.] can be calculated by dividing IY ( IỸ ) by ni the number
of OOB vectors in Li. Finally, to get the expectation Eθ[.] we find the average w.r.t all the θs
- that is all the DTs in the forest.

[4,(2+3),(2+3),6=20]

2. BDR requires knowing class conditional PDFs and a priori probabilities. In some cases the a priori
probabilities may not be known and it may not be possible to calculate reasonable estimates from what
is known. In such cases one can choose to minimize the maximum error (or more generally loss) that
can be incurred due to misclassification. In a 2-class case if the decision regions R1 and R2 are known
or given then we know the error e can be written as:

e = P (ω1)

∫
R2

p(x|ω1)dx + P (ω2)

∫
R1

p(x|ω2)dx = P (ω1)r12 + P (ω2)r21

where P (ω2) = 1 − P (ω1). If R1 and R2 are given/known then e is a linear function of P (ω1) and is
a maximum either at P (ω1) = 0 or P (ω1) = 1. The Bayes error, eb is bound to be less than or equal
to e for any value of P (ω1). If we choose the regions R1, R2 or equivalently P (ω1) such that the Bayes
error is a maximum (denoted by eminmax) then the actual error for any value of P (ω1) will always be
less than equal to eminmax and it is independent of the value of the priors. See the figure below.

(a) Formulate the binary minmax decision problem for the setting where the loss coefficients are given
by λij , i, j = 1..2 and derive the expression for the minmax risk and the expression to calculate
the decsion boundary.
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Solution:

Let R1 be the region where the classifier predicts ω1 and R2 where it predicts ω2. Then the
total risk or loss r with loss coefficients λij , i, j = 1..2 is:

r =

∫
R1

(λ11P (ω1)p(x|ω1)+λ21P (ω2)p(x|ω2))dx+

∫
R2

(λ12P (ω1)p(x|ω1)+λ22P (ω2)p(x|ω2))dx

Now use the fact that P (ω2) = 1− P (ω1),
∫
R1
p(x|ω1)dx +

∫
R2
p(x|ω1)dx = 1 and similarly for

p(x|ω2) and separate terms containing P (ω1) and those not containing P (ω1):

r =λ22 + (λ21 − λ22)

∫
R1

p(x|ω2)dx +

P (ω1)
[
λ11

∫
R1

p(x|ω1)dx− λ21

∫
R1

p(x|ω2)dx + λ12

∫
R2

p(x|ω1)dx− λ22

∫
R2

p(x|ω2)dx
]

Notice that the risk is a linear function of P (ω1) assuming R1, R2 are given.

We want the minmax risk rminmax to be independent of P (ω1) so the minmax risk is given by
the first term that does not contain P (ω1). And for the minmax solution since the risk must
be independent of P (ω1) the second term within [..] that multiplies P (ω1) should be 0 and this
gives the regions R1, R2.

So,

rminmax = λ22 + (λ21 − λ22)

∫
R1

p(x|ω2)dx

and the regions R1 and R2 are given by:

λ11

∫
R1

p(x|ω1)dx− λ21

∫
R1

p(x|ω2)dx + λ12

∫
R2

p(x|ω1)dx− λ22

∫
R2

p(x|ω2)dx = 0

The above equation can be slightly simplified by using the identities for p(x|ω1) and p(x|ω2).

(b) If p(x|ω1) = N (5, 1) and p(x|ω2) = N (6, 1) what will be xt (the boundary point) for the minmax
criterion?

Solution:
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For 0− 1 loss the equation for the decision regions reduces to:∫
R1

p(x|ω2)dx =

∫
R2

p(x|ω1)dx

When the class conditional distributions are univariate normal distributions with the same
variance and different means µ1 and µ2 the integrals will be equal exactly at the point of
intersection of the two distributions which by symmetry will be at the half way point between
the means that is: µ1+µ2

2 . For the given distributions for ω1 and ω2 this is: xt = 5+6
2 = 5.5.

For arbitrary distributions calculating the region boundary is non-trivial and closed form solu-
tions are generally not possible.

[12,8=20]

3. For a 2-class problem the prior probabilities are: P (ω1) = 1
4 and P (ω2) = 3

4 . The class conditional
distributions for x = x, that is x has only a single attribute, are:

p(x|ω1) = N (0, 1) and p(x|ω2) = N (1, 1)

.

(a) Calculate the threshold boundary value xt which gives the probability of minimum error.

Solution:

The decision boundary is given by: P (ω1)p(x|ω1) = P (ω2)p(x|ω2).

Using the given normal distribution for ω1 and ω2 this gives us:

1

4

1√
2π
e−

x2

2 =
3

4

1√
2π
e−

(x−1)2

2

1 =3 e
2x−1

2 . Taking ln of both sides.

0 =ln(3) +
2x− 1

2
. So, boundary xt is:

xt =
1

2
− ln(3)

(b) If the loss matrix is: λij =

[
0 1
1
2 0

]
find the threshold boundary value xt for minimum risk.

Solution:

In this case we get:

r1 =λ11p(x|ω1)P (ω1) + λ21p(x|ω2)P (ω2)

r2 =λ12p(x|ω1)P (ω1) + λ22p(x|ω2)P (ω2)

The rule for prediction is: ω1 if r1 < r2 and ω2 if r2 < r1. The boundary point is given by
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solving r1 = r2. Using the given values for λij and the class conditional distributions we get:

1

2

3

4

1√
2π
e−

(x−1)
2 =

1

4

1√
2π
e−

x2

2

3

2
e

2x−1
2 = 1. Taking ln of both sides.

ln(
3

2
) +

2x− 1

2
= 0. This gives the following value for xt:

xt =
1

2
− ln(

3

2
)

[10,10=20]

4. In the proof of the perceptron convergence theorem we reached the following inequality:

‖w′(t+ 1)− αw′∗‖2 ≤ ‖w′(t)− αw′∗‖2 + ρ(t)2β2 − 2ρ(t)α|γ|

with

β = max
Y∈P(L),Y 6=Φ

‖
∑
x∈Y

δxx
′‖

and

γ = max
Y∈P(L),Y 6=Φ

∑
x∈Y

δxw
′∗Tx′

where P(L) is the power set of L.

(a) We wish to explore a proof of the case when ρ is fixed and does not depend on t. Choose a suitable
value for α (using β, γ) and a bound on ρ and argue that the perceptron algorithm converges in
finitely many iterations.

Solution:

Choose α = β2

|γ| and substitute for α in the equation. We replace ρ(t) by ρ since it is a constant
and not dependent on t any more.

‖w′(t+ 1)− αw′∗‖2 ≤ ‖w′(t)− αw′∗‖2 + ρ2β2 − 2ρβ2

≤ ‖w′(t)− αw′∗‖2 + β2(ρ2 − 2ρ)

unfolding with respect to t gives:

≤ ‖w′(0)− αw′∗‖2 + β2t(ρ2 − 2ρ)

If the rhs has to be reduced to ≤ 0 then (ρ2 − 2ρ) must be negative. In which case for a large
enough t, say t̂ the rhs will be ≤ 0 thereby proving that the iteration converges. This implies
ρ2 < 2ρ and ρ > 0 giving the following bound 0 < ρ < 2.
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(b) Based on a) above give an expression for the number of iterations that will be needed for conver-
gence.

Solution:

In part a) we require that rhs goes to 0 at t̂ so ‖w′(0) − αw′∗‖2 = β2ρ(2 − ρ)t̂ giving us the
following value for t̂:

t̂ =

⌈
‖w′(0)− αw′∗‖2

β2ρ(2− ρ)

⌉
where 0 < ρ < 2

[12,8=20]
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