CS201A: Math for CS I/Discrete Mathematics Quiz-2

Max marks:35 Time:50 mins.

- 1. Answer all 3 questions.
- 2. Please start an answer to a question on a fresh page and answer all parts of a question together.
- 3. Keep answers precise and brief. No justification/calculation, no marks.
- 4. You can consult only your own handwritten notes. Other reference material (like photocopies, books, articles, electronic gadgets etc.) is NOT allowed.
- 1. For a planar graph G define the edge-face adjacency matrix as the $|E| \times |F|$ matrix, $A = [a_{ij}]$ where $a_{ij} = 1$ if the i^{th} edge is part of the boundary of the j^{th} face else it is 0.
 - (a) Use the edge-face adjacency matrix to argue that for a connected graph G with $|V| \ge 3$, $3|F| \le 2|E|$.

Solution:

Each edge can separate at most two faces so each row can have at most two ones. Or the total number of ones, say s, is less than 2|E|, that is $s \leq 2|E|$. Since $|V| \geq 3$ each face will have at least 3 edges in its boundary so each column will have at least 3 ones. That is $3|F| \leq s$. So, $3|F| \leq 2|E|$.

(b) Use the above result to show that for G, $|E| \leq 3|V| - 6$.

Solution:

Using the result above and Euler's formula (|V|+|F| = |E|+2) we get $3|F| = 3|E|-3|V|+6 \le 2|E|$. So, $|E| \le 3|V| - 6$.

[6,4=10]

2. (a) Let $[n] = \{1, 2, 3, ..., n\}$. How many non-injective functions exist from [n] to [n]?

Solution:

Each element of [n] can be mapped to any element of [n] independent of any others. So, there are n^n possible functions. Assume the domain [n] is written as the *n*-tuple (1, 2, 3, ..., n) then an injective function maps the sequence to a permutation of the sequence. So, the total number of injective functions is n! giving $(n^n - n!)$ as the total number of non-injective functions.

(b) Consider the sequence of integers S below with 2003 elements where the i^{th} element of the sequence s_i has i 7s.

 $S = 7, 77, 777, 7777, \ldots, 7 2003$ times

We wish to show that S contains an element that is divisible by 2003 in two steps.

31-Oct-2017

i. First argue that if there exist two elements s_i , s_j , j > i in the sequence such that $(s_j - s_i)$ is divisible by 2003 then there exists an element in S which is divisible by 2003.

ii. Now complete the argument by showing that S has two elements s_i , s_j where j > i such that $(s_j - s_i)$ is divisible by 2003.

Solution:

Assume that S does not have any element divisible by 2003 then each element of S will leave a remainder between 1 and 2002. Since there are 2003 elements and only 2002 possible remainders at least two elements say s_i and s_j will have the same remainder (pigeonhole principle) say r. So, $s_i = q_i \times 2003 + r$ and $s_j = q_j \times 2003 + r$. Let j > i(wlog) then $s_j - s_i = (q_j - q_i) \times 2003$. That is $(s_j - s_i)$ is divisible by 2003.

[5,(4,6)=15]

- 3. You have 25 identical balls and 7 boxes. You have to find the number of ways in which the balls can be distributed in the boxes with the following constraints:
 - 1. The first box can contain at most 10 balls.
 - 2. The remaining 6 boxes can contain any number of balls.

Do this as follows:

(a) Write a generating function to count the number of ways to distribute r balls in 7 boxes given the constraints and reduce it to the simplest form.

Solution:

 $f(x) = (1 + x + x^{2} + x^{3} + \ldots + x^{10})(1 + x + x^{2} + \ldots)^{6}.$

The first factor can be written as: $\frac{(1-x^{11})}{(1-x)}$ - sum of geometric series - while the second to seventh identical factors are: $\frac{1}{(1-x)}$. So,

$$f(x) = \frac{(1-x^{11})}{(1-x)} \left(\frac{1}{1-x}\right)^6 = (1-x^{11})\frac{1}{(1-x)^7}$$

(b) You have to find the coefficient of x^{25} . Find this coefficient. You can leave the answer in the form ${}^{n}C_{k}$.

Solution:

To find the coefficient of x^{25} interpret f(x) as a product, f(x) = g(x)h(x). g(x) has only two non-zero coefficients for x^0 and x^{11} which are $a_0 = 1$ and $a_{11} = -1$ respectively. So, the only relevant terms from h(x) are coefficients of x^{25} and x^{14} namely b_{25} and b_{14} . That is $a_0b_{25} + a_{11}b_{14} = 1 \times {}^{25+7-1}C_{25} - 1 \times {}^{14+7-1}C_{14}$ or $({}^{31}C_{25} - {}^{20}C_{14})$ or $({}^{31}C_6 - {}^{20}C_6)$.

[5,5=10]