CS201A: Math for CS I/Discrete Mathematics
 \#6

Max marks:75
Due on/before:23.00, 15-Nov-2017.

1. (a) Two players, A, B take turns at rolling a die; they each need a different value to win. If they do not roll the required value, play continues. At each of their attempts A wins with probability α whereas B wins with probability β. What is the probability that A wins if $\mathrm{s} /$ he rolls first? What is it if s / he rolls second?
(b) Two coins, A and B, show heads with respective probabilities α and β. They are tossed alternately, giving $A B A B A B \ldots$. Find the probability of the event E that A is first to show a head.
(c) Suppose you toss three fair coins. At least two must be alike, and the probability that the third is a head or a tail is $\frac{1}{2}$. So the probability that all three are the same is $\frac{1}{2}$. But probability that all three are same is clearly $P(H H H)+P(T T T)=\frac{1}{8}+\frac{1}{8}=\frac{1}{4}$. What is wrong with the argument?
(d) A flips $n+1$ fair coins and B flips n fair coins. A wins if $\mathrm{s} /$ he has more heads than B. Find the probability that A wins.
$[(5,5), 5,5,5=25]$
2. (a) A fair die has s sides. Find the expression for the probability p that each side has turned up at least once if it was rolled r times?
(b) A large number of students in a lecture room are asked to state their birthday one by one. The first student who shares a birthday with someone whose birthday has been already announced wins a prize. When (that is sequence number) should you be asked to state your birthday so that you have the best chance of winning the prize.
3. Example Let X have mass function $f(x)$. Find the mass functions of the following functions of X.
(a) $-X$
(b) $X^{+}=\max (0, X)$
(c) $X^{-}=\max (0,-X)$
(d) $|X|=X^{+}+X^{-}$
(e) $\operatorname{sgn}(X)=\left\{\begin{array}{l}\frac{X}{|X|}, \quad X \neq 0 \\ 0, \quad X=0\end{array}\right.$
$[2,3,3,3,4=15]$
4. (a) Supposing a box contains n cards numbered 1 to n. You pick one card at random. It has the number X.

Find $E[X]$ and $E\left[X^{2}\right]$. What is the second central moment?
(b) Assuming $E[X]$ exists argue that $(E[X])^{2} \leq(E[|X|])^{2} \leq E\left[X^{2}\right]$.

