#5

Max marks:105 Due on/before:23.00, 29-Oct-2017.

- 1. A committee of n persons is to be chosen from a group of 7 women and 4 men. Find the number of ways a committee can be formed in each case below:
 - (a) n = 5 and the committee has 3 women and 2 men.
 - (b) Committee must have equal number of men and women, n > 0.
 - (c) The committee has n = 4 persons and one of them is Mr. Sharma.
 - (d) The committee has n = 4 persons and at least 2 are women.
 - (e) The committee has n = 4 persons, two of each gender and Mr. and Mrs Sharma cannot both be in the committee.

 $[5 \times 5 = 25]$

21-Oct-2017

- 2. (a) Define a chromatic polynomial $P_k(G)$ of a graph G as a polynomial in k that gives the number of proper k-colourings of graph G. Recall that a proper colouring of a graph G is one in which no two adjacent nodes have the same colour. Find the chromatic polynomial of:
 - i. K_5
 - ii. C_4
 - (b) Derive an expression to find the number of ways to select r objects from n types of objects with repetition. Give a complete argument.

[(5,5),10=20]

- 3. (a) A non-negative integer solution to the equation $x_1 + x_2 + x_3 + x_4 = 12$ is an ordered 4-tuple (n_1, n_2, n_3, n_4) where $n_i \ge 0$ and $x_i = n_i$. Find the number of non-negative integer solution to the above equation in each case below:
 - i. $x_i \geq 0$.
 - ii. $x_i \geq 1$.
 - iii. $x_1 \ge 2, x_2 \ge 2, x_3 \ge 4, x_4 \ge 0$
 - (b) You have 7 friends. Find the number of ways to invite a different subset of 3 friends for dinner on 7 successive nights such that each pair of friends are together at just one dinner.

 $[(3 \times 5), 10 = 25]$

- 4. A partition of n is a set of positive integers that add up to n. n itself is a trivial partition of n.
 - (a) Find the generating function for a_n , the number of partitions that add up to at most n.
 - (b) Find a generating function for a_n , where n is partitioned into 3 parts such that no part is larger than the sum of the other two.
 - (c) Find a generating function for a_n , the number of different (incongruent) triangles with integral sides whose perimeter is n.

$$[3 \times 5 = 15]$$

5. Use generating functions to solve the following set of simultaneous recurrences. $a_n = a_{n-1} + b_{n-1} + c_{n-1}$, $b_n = 3^{n-1} - c_{n-1}$, $c_n = 3^{n-1} - b_{n-1}$. Initial conditions are: $a_1 = b_1 = c_1 = 1$. [20]