CS201A: Math for CS I/Discrete Mathematics
 \#5

Max marks:105
Due on/before:23.00, 29-Oct-2017.
21-Oct-2017

1. A committee of n persons is to be chosen from a group of 7 women and 4 men. Find the number of ways a committee can be formed in each case below:
(a) $n=5$ and the committee has 3 women and 2 men.
(b) Committee must have equal number of men and women, $n>0$.
(c) The committee has $n=4$ persons and one of them is Mr. Sharma.
(d) The committee has $n=4$ persons and at least 2 are women.
(e) The committee has $n=4$ persons, two of each gender and Mr. and Mrs Sharma cannot both be in the committee.

$$
[5 \times 5=25]
$$

2. (a) Define a chromatic polynomial $P_{k}(G)$ of a graph G as a polynomial in k that gives the number of proper k-colourings of graph G. Recall that a proper colouring of a graph G is one in which no two adjacent nodes have the same colour. Find the chromatic polynomial of:
i. K_{5}
ii. C_{4}
(b) Derive an expression to find the number of ways to select r objects from n types of objects with repetition. Give a complete argument.
$[(5,5), 10=20]$
3. (a) A non-negative integer solution to the equation $x_{1}+x_{2}+x_{3}+x_{4}=12$ is an ordered 4-tuple $\left(n_{1}, n_{2}, n_{3}, n_{4}\right)$ where $n_{i} \geq 0$ and $x_{i}=n_{i}$. Find the number of non-negative integer solution to the above equation in each case below:
i. $x_{i} \geq 0$.
ii. $x_{i} \geq 1$.
iii. $x_{1} \geq 2, x_{2} \geq 2, x_{3} \geq 4, x_{4} \geq 0$
(b) You have 7 friends. Find the number of ways to invite a different subset of 3 friends for dinner on 7 successive nights such that each pair of friends are together at just one dinner.

$$
[(3 \times 5), 10=25]
$$

4. A partition of n is a set of positive integers that add up to n. n itself is a trivial partition of n.
(a) Find the generating function for a_{n}, the number of partitions that add up to at most n.
(b) Find a generating function for a_{n}, where n is partitioned into 3 parts such that no part is larger than the sum of the other two.
(c) Find a generating function for a_{n}, the number of different (incongruent) triangles with integral sides whose perimeter is n.
5. Use generating functions to solve the following set of simultaneous recurrences. $a_{n}=a_{n-1}+b_{n-1}+c_{n-1}, b_{n}=3^{n-1}-c_{n-1}$, $c_{n}=3^{n-1}-b_{n-1}$. Initial conditions are: $a_{1}=b_{1}=c_{1}=1$.
