CS201A: Math for CS I/Discrete Mathematics
 \#3

Max marks:90
Due on/before:23.00, 13-Sep.-2017.

1. (a) Let G be a graph with 10 nodes and 28 edges. Argue that G has a cyle of length 4 .
(b) $H=\left(V^{\prime}, E^{\prime}\right)$ is said to be an induced subgraph of graph $G=(V, E)$ if $V^{\prime} \subseteq V(u, v) \in E^{\prime}$ iff $(u, v) \in E$ where $u, v \in V^{\prime}$.
Let G be a graph with 10 nodes and 38 edges. Prove that G contains K_{4} as an induced sub-graph.
(c) An automorphism is an isomorphism between G and G. How many automorphisms do the following graphs have (assume all nodes are labelled):
i. K_{n}.
ii. C_{n}
iii. P_{n}
iv. S_{n} - Star n. This graph has one node with degree $n-1$ and other $n-1$ nodes have degree 1 .
(d) If G is a simple graph where each node has degree k then show that G has a cycle of length at least $k+1$.

$$
[8,8,(4 \times 4), 8=40]
$$

2. (a) Let $G=(V, E)$ be a graph with n nodes. Also, for distinct $u, v \in V$ let $\operatorname{deg}(u)+\operatorname{deg}(v) \geq n$.
i. First show that G is connected.
ii. Then show that G has a H-cycle. (Do not use Ore's or Dirac's theorems in your proof.)
iii. Show that if $\operatorname{deg}(u)+\operatorname{deg}(v) \geq n-1$ the above does not hold.
(b) Prove Dirac's theorem without using Ore's theorem. If $G=(V, E)$ is a simple graph with n nodes and $\forall v \in$ $V, \operatorname{deg}\left(y \geq \frac{n}{2}\right)$ then G has a H-cycle.
$[(4,6,5), 10=25]$
3. Two H-cycles in a graph are said to be different when their edge sets are different.
(a) How many different H-cycles does K_{n} contain? Derive/justify your answer.
(b) $K_{m, n}$ is a complete bi-partite graph where $\left|V_{1}\right|=m$ and $\left|V_{2}\right|=n$ and $m n$ edges connect nodes in V_{1} to nodes in V_{2}. Assuming $m \neq n$ find the number of H-cycles in $K_{m, n}$. Derive/justify your answer. What happens when $m=n$?

$$
[10,(10,5)=25]
$$

