#3

Max marks:90 Due on/before:23.00, 13-Sep.-2017.

- 1. (a) Let G be a graph with 10 nodes and 28 edges. Argue that G has a cyle of length 4.
 - (b) H = (V', E') is said to be an **induced subgraph** of graph G = (V, E) if $V' \subseteq V$ $(u, v) \in E'$ iff $(u, v) \in E$ where $u, v \in V'$.

Let G be a graph with 10 nodes and 38 edges. Prove that G contains K_4 as an induced sub-graph.

- (c) An **automorphism** is an isomorphism between G and G. How many automorphisms do the following graphs have (assume all nodes are labelled):
 - i. K_n .
 - ii. C_n
 - iii. P_n
 - iv. S_n Star n. This graph has one node with degree n-1 and other n-1 nodes have degree 1.
- (d) If G is a simple graph where each node has degree k then show that G has a cycle of length at least k + 1.

[8,8,(4x4),8=40]

- 2. (a) Let G = (V, E) be a graph with n nodes. Also, for distinct $u, v \in V$ let $deg(u) + deg(v) \ge n$. i. First show that G is connected.
 - ii. Then show that G has a H-cycle. (Do not use Ore's or Dirac's theorems in your proof.)
 - iii. Show that if $deg(u) + deg(v) \ge n 1$ the above does not hold.
 - (b) Prove Dirac's theorem without using Ore's theorem. If G = (V, E) is a simple graph with n nodes and $\forall v \in V$, $deg(y \geq \frac{n}{2})$ then G has a H-cycle.

[(4,6,5),10=25]

- 3. Two H-cycles in a graph are said to be different when their edge sets are different.
 - (a) How many different H-cycles does K_n contain? Derive/justify your answer.
 - (b) $K_{m,n}$ is a complete bi-partite graph where $|V_1| = m$ and $|V_2| = n$ and mn edges connect nodes in V_1 to nodes in V_2 . Assuming $m \neq n$ find the number of H-cycles in $K_{m,n}$. Derive/justify your answer. What happens when m = n?

[10,(10,5)=25]