CS201A: Math for CS I/Discrete Mathematics

\#2

Max marks:140
Due on/before:23.00, 26-Aug-2017.

The first question defines two types of binary relations that are important in CS - partial orders and equivalence relations. It introduces the basic properties of these two kinds of relations.

1. Let $R \subseteq S \times S$ be a binary relation. For elements $a, b \in S$ let us write $a R b$ if $(a, b) \in R$. We say R is a partial order if R satisfies:
2. $\forall a \in S, a R a . R$ is reflexive.
3. $\forall a, b \in S, a R b \wedge b R a \Longrightarrow a=b$. R is anti-symmetric.
4. $\forall a, b, c \in S, a R b \wedge b R c \Longrightarrow a R c . R$ is transitive.

If S has a partial order defined on it it is often called a partially ordered set (or poset for short).
We say R is an equivalence relation if R satisfies:

1. $\forall a \in S, a R a . R$ is reflexive.
2. $\forall a, b \in S, a R b \Longrightarrow b R a$. R is symmetric.
3. $\forall a, b, c \in S, a R b \wedge b R c \Longrightarrow a R c$. R is transitive.
$a, b \in S$ are comparable if $a R b$ or $b R a$ else they are incomparable. They are compatible if $\exists c$ such that $c R z$ and $c R b$ else they are incompatible.
Subset $T \subset S$ is called a chain iff any pair $a, b \in T$ are comparable. It is an anti-chain iff for no pair $a, b \in T$ is compatible. T is said to be linked iff any pair $a, b \in T$ is compatible. S is said to be linear or linearly ordered iff S is a chain under R. R is said to be a linear order.
Let S be a poset then $m \in S$ is a minimal element iff $\forall a \in S a R m \Longrightarrow a=m ; m$ is a minimum element iff $\forall a \in S$ $m R a$. Similarly, $M \in S$ is a maximal element if $\forall a \in S M R a \Longrightarrow a=M ; M$ is a maximum element if $\forall a \in S a R M$.
(a) Show that the divides relation where $S=\mathbb{N}$ and $a \mid b$ means a divides b is a partial order but not an equivalence relation.
(b) Give an example of an equivalence relation from Euclidean geometry. Show that your relation satisfies all the properties.
(c) Can a relation be both a partial order and an equivalence relation? Justify your answer.
(d) Prove maximum elements are maximal.
(e) Prove minimum elements are minimal.
(f) Prove: If S has a minimum element then every subset is linked.
(g) Prove: There can be at most one maximum element and at most one minimum element.
(h) Prove: A maximal element in a linear order is a maximum and minimal element is a minimum.
(i) Give an example of a poset where a unique minimal element need not be a minimum and a unique maximal element need not be a maximum.
(j) A partition of set S is a collection of subsets of S, say S_{1}, S_{2}, till S_{n} such that every element of S belongs to exactly on of S_{i}. It is clear from the definition that $i \neq j \Longrightarrow S_{i} \cup S_{j}=\varnothing$ and $\bigcup_{i} S_{i}=S$. Prove that if R is an equivalence relation on S then it partitions S.
4. Recall we had two definitions for a countable set. S is countable if $\exists f$ such that $f: S \rightharpoondown \mathbb{N} \mid \mathbb{N}_{0}$ (that is if there exists an injection f from S to \mathbb{N} or \mathbb{N}_{0}) or equivalently if $S \sim T$ where $T \subseteq \mathbb{N} \mid \mathbb{N}_{0}$ (that is S is equipollent to a subset of \mathbb{N} or \mathbb{N}_{0}). We said in class that the two definitions are equivalent. Prove this.
5. In class we claimed that the set of algebraic numbers (roots of polynomials with rational coefficients) is countable.

Prove the claim. First show that $\mathbb{Q}[x]$ the set of polynomials with rational coefficients is countable. Then argue that the roots of such polynomials is also countable.
4. (a) A useful version of the CSB theorem is the following:

Theorem: If A, B are infinite sets and $f: A \rightarrow B, g: B \rightarrow A$ are surjections then there exists a bijection between A and B.
Prove the above theorem.
(b) The set $S_{b}=\{0,1\}^{\star}$ is the set of all finite sequences of strings of 0 s and 1 s . Argue that S_{b} is countable.
(c) Show that if A is an infinite set and S is countable then there is a bijection $f: A \rightleftarrows A \cup S$.
5. This problem looks at another proof of the CSB theorem in multiple steps. Assume A and B are infinite sets and $f: A \mapsto B$ and $g: B \mapsto A$ are injections.
(a) Consider the two sequences below:

$$
\begin{aligned}
& A=A_{0}, A_{1}=g\left(B_{0}\right), \ldots, A_{n}=g\left(B_{n-1}\right), \ldots \\
& B=B_{0}, B_{1}=f\left(A_{0}\right), \ldots, B_{n}=f\left(A_{n-1}\right), \ldots
\end{aligned}
$$

What cardinality relation holds between the sets of the sequence: $A_{0}, B_{1}, A_{2}, B_{3}, \ldots$ Similarly, between the sets of the sequence: $B_{0}, A_{1}, B_{2}, A_{3}, \ldots$?
(b) What subset relation holds between the sets of the sequences in part (a) above?
(c) Show that if X_{i}, with i ranging over some index set is a collection of mutually disjoint sets and similarly Y_{i} (same index set for i) are also mutually disjoint and $X_{i} \sim Y_{i}$ then $\bigcup_{i} X_{i} \sim \bigcup_{i} Y_{i}$. Also, argue this does not hold if the mutually disjoint condition does not hold.
(d) Define suitable sets A_{i}^{*}, B_{i}^{*} (based on A_{i} and B_{i}) such that the result in (c) can be applied to: $\bigcup_{i} A_{i}^{*} \sim \bigcup_{i} B_{i}^{*}$
(e) Show that $A=\left(\bigcup_{i} A_{i}^{*}\right) \bigcup\left(\bigcap_{i} A_{i}\right)$ and $B=\left(\bigcup_{i} B_{i}^{*}\right) \bigcup\left(\bigcap_{i} B_{i}\right)$.
(f) Argue that $f\left(\bigcap_{i} A_{i}\right)=\bigcap_{i} B_{i}$ and $g\left(\bigcap_{i} B_{i}\right)=\bigcap_{i} A_{i}$.
(g) Put everything together to prove CSB.
6. Consider the subset $F_{n}=\left\{s \in\{0,1\}^{\omega} \mid s\right.$ has only 0 s after $n^{t h}$ bit $\}$. For example, $011010 \ldots$ where there are only 0 s after the last 1 is in F_{5} (and also in $F_{n}, n>5$).
In each case below justify your answer.
(a) What is the cardinality of $F_{n}, n \in \mathbb{N}_{0}$? Justify.
(b) Let $F \subset\{0,1\}^{\omega}$ be the set of binary strings with only finitely many 1 s. What is the cardinality of F ? Justify.
(c) What is the cardinality of the set of binary strings that have infinitely many 1s? Justify.

