
CS201/201A: Assignment1 Solutions

August 30, 2014

1) Let p be a prime number.

1a) Show that if m2 is divisible by p then m is divisible by p.

Proof: Take contrapositive i.e. if m is not divisible by p then m2 is not
divisible by p. Let

m = mq1
1 ×m

q2
2 ...×mqn

n

and
m2 = m2q1

1 ×m2q2
2 ...×m2qn

n

mi is prime ∀i ∈ [1, n] and qi ≥ 0.
gcd(mi, p) = 1∀i ∈ [1, n] as m is not divisible by p.
=⇒ None of prime factors of m2 are divisible by p.
=⇒ m2 isn’t divisible by p.
Hence, the contrapositive is proved.
Hence, given proposition is proved z

1b) Will (a) hold if p is composite? Prove your answer

Proof: Prove by counter example z

1c) Using (a), prove that
√
p is always irrational.
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Proof: Let
m = a× p

and
m2 = b× p

Claim 1: b is not a perfect square
Proof:
Suppose b is a perfect square.
Clearly, m2 is a perfect square.
=⇒ From second equation, p is a perfect sqaure
But p is prime.
=⇒ Claim proved by contradiction.
Now,
Substituting value of m in second equation from first equation, we get:

a2 × p2 = b× p

=⇒ p =
b

a2

=⇒ √
p =

√
b

a

From Claim 1,
√
b is irrational.

=⇒ √
p is irrational.

Hence, proved. z

2.(a) Suppose x is rational. Then x = a
b where a, b ∈ N and a and b have no

common factors greater than 1. Then

an

bn
+ c1

an−1

bn−1
+ · · ·+ cn−1

a

b
+ cn =0

⇒ an + c1a
n−1b+ · · ·+ cn−1ab

n−1 + cnb
n =0

. Thus b divides an and, as a and b have no common factors greater than
1, b divides an

a i.e. an−1. By repeated application we conclude that b
divides a. Then, as there are no shared common factors greater than 1,
b must be 1. Thus if x is rational then it is an integer. Hence if real x
satisfies the equation it is either an integer or is irrational.

2.(b) Consider the equation xn −m = 0. This is a special case of the above
equation where c1 = c2 = · · · = cn−1 = 0 and cn = −m. Thus x is either
an integer or is irrational. Suppose x is an integer. Then m = xn i.e. m is
the nth power of an integer. Here we have a contradiction. Thus x must
be irrational. Then m

1
n = x. Hence m

1
n is irrational.
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2.(c) Suppose
√
a+
√
b is rational. Then

(√
a+
√
b
)2

= a+b+2
√
n is rational

i.e.
√
n is rational. Here we have a contradiction. Thus

√
a+
√
b must be

irrational.

3.(a) Base case for n = 1 doesn’t work. n(n+1) = 2, which is not odd.

3.(b) Two line not parallel to each other intersect at one point, let it be A. But
third line not parallel to these two line can be drawn such that it does not
pass through A. So the prrog breaks at n = 3.

4.(a) Base case:
For n = 1 :
LHS: 12 = 1
RHS: 1(2)(3)

6 = 1
LHS=RHS.
Thus the statement is true for n = 1.

Let the statement be true for n = k:
12 + 22 + · · ·+ (k)2 = k(k+1)(2k+1)

6

For n = k + 1:

LHS : 12 + 22 + · · ·+ k2 + (k + 1)2 = k(k+1)(2k+1)
6 + (k + 1)2

= (k+1)(2k2+k+6k+6)
6 = (k+1)(2k2+7k+6)

6 = (k+1)(2k2+4k+3k+6)
6 = (k+1)(2k+3)(k+2)

6

= (k+1)(k+2)(2(k+1)+1)
6

=RHS.

Thus, the statement is true for n = k + 1.
Thus, by principle of mathematical induction, the given statement is true
for all n ∈ No.

4.(b) Base case:
For n = 2 :
LHS: 1× 2 = 2
RHS: 1(2)(3)

3 = 2
LHS=RHS.
Thus the statement is true for n = 2.

Let the statement be true for n = k:
1× 2 + 2× 3 + · · ·+ (k − 1)× k = (k−1)k(k+1)

3

For n = k + 1:

3



LHS : 1×2+2×3+ · · ·+(k−1)×k+k×(k+1) = (k−1)k(k+1)
3 +k×(k+1)

= k(k+1)(k−1+3)
3 = k(k+1)(k+2)

3

=RHS.

Thus, the statement is true for n = k + 1.
Thus, by principle of mathematical induction, the given statement is true
for all n ∈ N .

4.(c) Base case: This is true for n = 0 because n has exactly one subset, namely
φ itself.

Let the claim be true for set X with k elements. Given a set Y with k+ 1
elements, such that Y = X ∪ {p}. There are 2k subsets A ⊂ X, and each
subset A ⊂ X gives rise to two subsets of Y, namely A∪ {p} and A itself.
Moreover, every subset of Y arises in this manner. Therefore the number
of subsets of Y is equal to 2k × 2, which in turn is equal to 2k+1. Thus,
the claim is true for k + 1 elements.
Thus, by principle of mathematical induction, the given statement is true
for all n ≥ 0.

4.(d) Base case: This is true for n = 1 because there is exactly one permutation-
the letter itself.

Let the claim be true for k letters, that is, the number of permutations of
a string of k letters is k!.

Consider the case when we are given k + 1 letters. We know that the
number of permutations of a string of k letters is k!. The remaining letter
can be placed anywhere in between, that is, at any of the possible k + 1
positions. Thus, the number of permutations of a string of k+ 1 letters is
k!× (k + 1) = (k + 1)!. Thus, the claim is true for k+1 letters.
Thus, by principle of mathematical induction, the given statement is true
for all n.

5. Observation 1: Horizontal move − > doesn’t change number of inversions
and doesn’t change row number of the space.
Observation 2: Vertical move − > change number of inversions by 3 and
row number of space changes by one.So sum (number of inversions + row
number of space) changes by multiple of 2.

Invariant: Parity of (number of inversions + row number of space) remains
unchanged.

Number of inversions in (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15) = 0.
Number of inversions in (15,14,13,12,11,10,9,8,7,6,5,4,3,2,1) = 14 + 13
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+12+ 11 + 10 + 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 = 105

If we assume space at bottom left(as follows), then row number of space
is same(4) in both states.

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15

15 14 13 12
11 10 9 8
7 6 5 4
3 2 1

Parity of (number of inversions + row number of space) is not same in
two states, so they are not reachable from each other.
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