Reconstruction of Web-Based Email in PickPacket

A Thesis Submitted
in Partial Fulfillment of the Requirements
for the Degree of

Master of Technology

by
Vinaya Natarajan

to the

Department of Computer Science & Engineering

Indian Institute of Technology, Kanpur

May, 2006

Certificate

This is to certify that the work contained in the thesis entitled “ Reconstruction
of Web-Based Email in PickPacket”, by Vinaya Natara jan, has been carried out under
my supervision and that this work has not been submitted elsewhere for a degree.

QM?‘ 1 L ‘
May, 2006 (Dr. Dheeraj Sanghi)

Department of Computer Science & Engineering,

Indian Institute of Technology,

Kanpur.

Abstract

The Internet is fast becoming one of the most popular means of communication
because it is fast, cheap and accessible. Its low cost and pervasiveness also make
it attractive for use by criminals and terrorists. Thus there is a need to monitor
network traffic. However, this monitoring should not be at the cost of the privacy
of individuals. PickPaket is a flexible network monitoring tool that achieves these
conflicting aims. It is a passive monitoring tool that sniffs online packets on the
network and captures packets that match the criteria specified by the user. It then
analyzes the captured packets offline based on the application level protocol that
the packet payload belongs to. It reconstructs the original connections from the
captured data and displays them in a user-friendly format. While PickPacket has a
built-in support for several application level protocols like HT'TP, FTP, SMTP, POP,
IMAP, Telnet, Yahoo chat and IRC, it can also filter and capture traffic belonging
to unsupported protocols.

While PickPacket supports capture and analysis of HT'TP traffic, one important
class of HT'TP traffic needs further attention. Web-based email, which is basically
email transfer using HTTP, is one of the most popular forms of email communi-
cation today. While PickPacket can be configured to capture all web-based email
data, displaying this captured data to the PickPacket user in its original form is a
challenging problem. This is because not all data gets transferred as simple HT'TP
pages that can be displayed as is. Also, PickPacket captures a lot of web-based
email data, most of which is not of interest to the user. Some mechanism for au-
tomatic classification of the captured data is needed. This thesis investigates the
problems involved in reconstruction of web-based email traffic and describes the

solution implemented.

Acknowledgments

I take this opportunity to express my gratitude to my thesis supervisor Dr.
Dheeraj Sanghi for his guidance, encouragement and support throughout my thesis
work. I would also like to thank Dr. Deepak Gupta who, despite being on a
sabbatical, was ready to guide us whenever necessary. And of course my thesis
partner, Devendar Bureddy, for the year long supply of ideas, support, help and fun.
I would also like to thank everybody at Prabhu Goel Research center - Chinmay,
Dungara, Satyam and Palak, for making it such a cool place to work in. Also Sudheer
and Ananth, my seniors, for the gentle introduction to PickPacket and their patient
explanation of its architecture and functioning.

This work was carried out as part of a project that is financially supported by
the Ministry of Communications and Information Technology, Government of India.
Their support is duly acknowledged.

I would also like to express my gratitude and admiration for the faculty of CSE
department for showing me what passion for work means and for inspiring, motivat-
ing, and improving me. I would, a little unfairly perhaps, like to collectively thank
the entire MTech 2004 batch. Thank you for being so much fun, for supporting and
encouraging my crazy ideas, for making me do things I would have never dared to
do elsewhere!

Finally, I would like to thank my family for always being there. Their support,

help and encouragement is the reason I am here today.

Contents

1 Introduction
1.1 Network Monitoring Tools
1.2 PickPacketo
1.3 Reconstructing Web-Based Email Sessions
1.4 Organization of the Report

2 PickPacket: Architecture and Design
2.1 Architecture L.
2.2 Design
2.2.1 PickPacket Configuration File Generator
2.2.2 The PickPacket Filter
2.2.3 PickPacket Post-Processor
2.2.4 PickPacket Data Viewer

3 Reconstruction of Web-Based Email: The Problem
3.1 Introduction
3.2 Hidden Data
3.3 Developing a General Solution
3.4 Handling AJAX Based Services
3.5 Uninteresting Pages Lo
3.6 HTTP Requests From Captured Pages

4 Reconstruction of Web-Based Email: The Solution
41 Designo e

i

15
17

19
19
20
21
22
23
23

25

4.2 Filtering Mail Sessions oo L 27

4.3 Displaying Hidden Data 28
4.3.1 HTTP concepts 28

4.3.2 Finding the Request Generating Page 29

4.3.3 Correlating POST Data with the Fields. 31

4.4 Handling AJAX Based Services L. 32
4.5 Uninteresting Pages 0oL 33
4.5.1 Classifiers L 34

4.5.2 Selecting Keywords 0oL 34

4.5.3 Target Classes o 36

4.5.4 'Training the Classifier 36

4.5.5 Extracting Keywords 38

4.6 HTTP Requests From Captured Pages 39

5 Tests and Conclusion 41
0.1 Testing L 41
5.2 Conclusion L e 42
5.3 Future Work L 43
Bibliography 44
A Sample Configuration File 46
A.1 Configuration File with Filtering Criteria (httpmail.cfg) 46

B HTTP Requests 53
B.1 Sample HTTP Request with z-www-form-url-encoded POST Data . . 53
B.2 Sample HTTP Request with multipart/form-data POST Data 54

iii

List of Figures

2.1
2.2
2.3
24

4.1
4.2

Architecture of PickPacket 8
Data Flow in Pickpacket oo 12
Control Flow in Pickpacket 14
Post-Processing Design oL 16
Hash of HT'TPMail Connections 27
Composing an Email with Attachments 30

v

Chapter 1
Introduction

With the Internet becoming ubiquitous, it is fast becoming one of the most popular
mediums of communication all over the world. With Internet services becoming
accessible to the common man in our country, it has become an easy and attractive
medium of communication for criminals as well. Lack of tools to monitor Inter-
net traffic further encourages its use for illegal activities. Thus there is a need to
develop and deploy tools that can monitor Internet traffic and detect such misuse.
Such tools are also useful for companies who wish to monitor their network traffic
for anti-company activities. However, one necessary and somewhat contradictory
requirement of any such tool is that it should not compromise the privacy of indi-
viduals.

Monitoring tools work by passively listening for packets on the network and
filtering them based on user-specified rules. Tools which provide the facility of
specifying simple rules for filtering packets are called packet filters. Tools that filter
packets based on complex rules and analyze the captured data are called network
monitoring tools. Such tools understand network applications and can thus support

application level filtering rules.

1.1 Network Monitoring Tools

Network monitoring tools are used to monitor data flowing across the network. They
are passive tools that sniff packets on the network and capture packets that match
some rules specified by the user. Network monitoring tools are usually application-
aware, that is they can analyze application protocol data. Thus, packets can be
filtered based on application level rules.

The network monitoring tool runs on a host machine and listens to the traffic on
the network. By default, the network interface card of a host machine passes on only
those packets to the operating system which are destined for itself. Since we want
to monitor all traffic, the network card of the host is run in “promiscuous mode”. In
this mode, the network interface copies all packets that arrive on the network. Hubs
were used in earlier LANs. Since hubs copy all traffic to all ports, a monitoring
tools could listen to all the network traffic by simply connecting to a port of the
hub. But now switches have almost completely replaced hubs in LANs. Switches
forward packets only to the port to which the destination host is connected. Thus
for network monitoring, special switches that support “port mirroring” are needed.
These switches have a mirror port on which traffic received by other ports of the
switch can be copied. The host that runs the network monitoring tool can then
connect to this port and listen to network traffic.

The power and flexibility of network monitoring tools come from the ability to
specify filtering rules. Filtering rules can be specified at two levels. First level
filtering is based on TCP/IP criteria like IP addresses and port numbers. This level
of filtering can be performed at the kernel level and is quite efficient. For example,
BPF (Berkley Packet Filter) [14] is an in-kernel filter that filters packets based on
a directed acyclic Control Flow Graph method. The second level of filtering rules
can specify application level criteria like HT'TP host names, SMTP email addresses,
search strings etc. Packets that match these rules are stored on disk. This captured
data is further decoded and presented in human readable form.

Several sniffers are available in commercial and public domains. Tcpdump [11]
is a UNIX based command line sniffer. It supports on-line filtering criteria based on

IP addresses and port numbers. Windump [6] is a version of Tcpdump for windows.

FEthereal |7] also sniffs packets from the network based on filtering criteria. However,
it has better packet decoding capabilities. Carnivore [8, 9, 17|, a packet capturing
system, has been developed by FBI. It is designed to collect information about the
electronic communication to or from a specific user targeted in the investigation.
Carnivore is quite different from other tools as it performs filtering of packet based
on a wide range of filtering criteria specific to application level protocols. It func-
tions through wire-taps across gateways and ISPs. It is capable of monitoring users
who work on dynamic IP address based networks. It has capabilities to search the
application-level content for specific strings. However, most of the tools described
above are designed for network management related tasks. They do not support a

powerful rule specification language.

1.2 PickPacket

PickPacket is a Network Monitoring Tool being developed at Indian Institute of
Technology Kanpur for the last four years. PickPacket listens to the network traffic
and selects some packets for storage and further analysis. The selection /filtering cri-
teria for the packets can be specified at all three levels - IP addresses and ports num-
bers, application specific parameters like email-ids, user names, URLs and search
strings for the application payload.

PickPacket supports the following application layer protocols - HTTP, FTP,
Telnet, SMTP, POP, IMAP, RADIUS, IRC, Yahoo chat and instant messages. The
user can specify application specific criteria as well as search strings for each ap-
plication protocol separately. Also, there are two levels of granularity at which the
PickPacket captures packets. In “FULL” mode the whole connection data is stored
while in “PEN” mode a minimal amount of information about the connection is
stored. Judicious use of these features can help protect the privacy of individuals.
The captured data is analyzed off line during post processing. The data is separated
into TCP sessions. The application session is then reconstructed and displayed to
the user. The user can view the reconstructed application data as well as the raw

connection data.

1.3 Reconstructing Web-Based Email Sessions

Email is one of the most heavily used forms of communication on the Internet. While
specialized protocols like SMTP, POP and IMAP are defined for mail exchange, web-
based email services like Yahoo and Rediffmail account for a considerable amount
of the email traffic in our country. Hence capture and display of web-based email is
of immense interest to PickPacket users. While this might seem trivial given that
PickPacket can be configured to capture HT'TP traffic, there are several challenges
in reconstructing the mail session. The aim is to show to the PickPacket user, minus
unnecessary images, the exact screen that the original user must have seen. This
thesis describes these challenges and presents a general solution for reconstruction
of web-based email sessions.

The main challenge relates to the display of hidden data, i.e. data that does not
get transferred as an HTML page that can be displayed as is by the browser. We
need mechanisms to correlate this kind of data with the source of the HTML page
that generates it. We also need a mechanism to populate the HTML page with the
data. Secondly, web-based email services follow no standards, every service provider
has developed his own way of doing things. Thus any solution to the reconstruction
problem has to be general enough to accommodate the reality that new email service
providers come up everyday and existing ones may change the way they do things
anytime.

While PickPacket provides a powerful mechanism to filter out data that the user
is not interested in, the user still ends up with a considerable amount of data to be
analyzed. Since majority of the web traffic is HT'TP, some mechanism for further
filtering of HTTP data would be very useful. This is possible in case of web-based
emails since we are working with pages from a known domain. This thesis also

presents a mechanism for automatic filtering of web-based email data.

1.4 Organization of the Report

This report describes the extension of PickPacket for reconstruction of web-based
email sessions. Chapter 2 discusses the architecture and design of PickPacket. Chap-
ter 3 discusses the problems in reconstruction of web-based email traffic. Chapter 4

describes the solution and implementation. Chapter 5 discusses the testing results.

Chapter 2

PickPacket: Architecture and Design

This chapter briefly discusses the architecture and design of PickPacket. Design and

implementation issues are discussed in detail in References [1, 12, 13, 16].

2.1 Architecture

PickPacket consists of four components which together capture, analyze and display

data of interest to the user.

o PickPacket Configuration File Generator is a Java based GUI that is used to
accept filtering criteria for PickPacket from the user. The user can specify
IP addresses, port numbers, RADIUS criteria, application specific criteria and
keywords separately for each application protocol. The criteria are written
to configuration files in a format expected by the PickPacket Filter. This

component can run on Windows or Linux.

e PickPacket Filter is the online filtering component. It receives packets from
the Ethernet card of the machine it runs on and filters them based on criteria
specified in the configuration files generated by the Configuration File Gener-
ator. The filtering happens at multiple levels and packets which pass through

all levels are saved to disk. The Filter component runs on Linux.

e PickPacket Post-Processor performs offline analysis of packets stored by the
Filter. It basically reconstructs TCP connections from the captured data.
Data belonging to each connection is stored in a separate directory along with

corresponding meta data. The PostProcessor component runs on Linux.

e PickPacket Data Viewer provides a web based GUI for viewing post processed
data. It provides the user access to the reconstructed data, connection meta
data as well as raw packet data. The DataViewer component runs on a PHP

enabled web server and can be accessed from any machine that has a browser.

These components can be installed on four separate machines. It is also possible
for some of the components to reside on the same machine. The PickPacket Filter,
which is the online component, should typically reside on a separate machine. The
PickPacket PostProcessor and the DataViewer can be installed on the same machine
so that PostProcessor’s output does not have to be transferred across the network.

PickPacket architecture is shown in Figure 2.1. The figure shows each component

of PickPacket and the interaction between them.

2.2 Design

This section describes the design of the four components of PickPacket.

2.2.1 PickPacket Configuration File Generator

PickPacket Configuration File Generator is a Java based GUI component. It is used
by the user to accept filtering criteria from the user. The user can specify TCP /IP
as well as application specific criteria for each protocol supported by PickPacket.
PickPacket also supports limited filtering of packets belonging to unsupported pro-
tocols. The GUI has separate tabs for each protocol where the following criteria can

be entered:

e [P address: A specific address or an address range can be supplied.

Network

Packet

HTTP ‘ POP ‘ ‘ SMTP|

Configuration
Files

)

Configuration File Generator

UL

PickPacket

Filter

R

Dump File
Post Processor
GUI Directory

Data Viewer

Browser

Figure 2.1: Architecture of PickPacket

Port Numbers: Port numbers other than the default port number for the

application protocol can be specified.

RADIUS criteria: Radius user names for which traffic is to be monitored can

be supplied.

Application specific criteria: Host names, email addresses, chat IDs etc can be

specified.

Keywords: Strings to be searched for in the application data can be specified.

PickPacket supports combining of filtering criteria using AND and OR operators
thus giving users a lot of flexibility in specifying what they are interested in.

The Configuration File Generator writes the criteria into two files, one which
contains filter configuration parameters and the other which contains filtering rules.
The first file has an extension of .bcfg and contains the maximum number of si-
multaneous connections PickPacket should monitor for each application protocol.
It also contains the maximum number of packets PickPacket will keep in memory
for each connection to check for filtering criteria matches. These parameters should
be carefully set based on the available system memory and the expected amount of
traffic for the application protocol so that no packets are dropped from memory and
no connections are missed.

The filtering rules are saved in a file with extension .pcfg. This file has three

sections:

1. The first section deals with the output files into which PickPacket Filter will
write the captured packets. The user can specify the prefix to be used for the
output file. The output file rolls over periodically so that captured data can
be post processed. The roll over criteria can either be the file creation time or

maximum file size and is specified in this section.

2. The second sections lists the IP addresses and TCP ports that the user is

interested in monitoring along with the application protocol.

3. The third section contains application specific criteria. It has one subsection
for each application level protocol. The subsection contains application specific
criteria like hostnames, email addresses and keywords to be searched for in the
application data. Whether the Filter should operate in PEN mode or FULL

mode for that protocol is also specified.

2.2.2 The PickPacket Filter

The Filter is the online sniffing component. It listens to the network traffic and stores

packets that match the filtering criteria. The Filter supports two transport layer

protocols - UDP and TCP. Since UDP is a connectionless protocol UDP packets
are treated independent of each other. All UDP packets are stored to disk. In
case of TCP, which is a connection oriented protocol, the Filter keeps track of TCP
connections. It sequences packets that belong to a connection, keeping them in
memory to facilitate a search for keywords across packet boundaries. If a packet
matches any of the filtering criteria, all packets belonging to that connection are

saved to disk.

pa Filtering levels

Filtering of packets is done at the following levels:
e Basic filtering on network parameters (IP addresses, port numbers).

e Application level filtering based on criteria like host names, email addresses

etc.
e Filtering based on content present in the application payload.

In kernel filters [14] are used for basic filtering. This makes filtering based on
network parameters very efficient because only those packets that match the filtering
criteria get copied from kernel space to user space. The next two levels of filtering are
done in user space by PickPacket’s application layer filters. Each application level
protocol has its own filter that understands the application’s data format. Thus, a
new application protocol can be added to PickPacket by simply defining a filter for
it.

g Filter modules

The PickPacket Filter consists of the following modules:

e Filter generator reads the basic filtering criteria from PickPacket’s configura-
tion files and generates corresponding BPF code. This code is used to perform

in kernel filtering.

10

e Basic Filter reads packets from the network and performs in-kernel filtering
based on the code generated by the Filter Generator. Packets which do not

match the criteria are dropped.

o Demultiplexer receives packets that satisfy the basic criteria from the basic
Filter. Its function is to deliver the packet to the appropriate Connection
Manager based on the application level protocol to which the packet belongs.
For this it makes use of the filtering rules specified in the configuration files. It
uses the four tuple {Source IP, Destination IP, Source Port, Destination Port}

to decide which Connection Manager the packet should be forwarded to.

e Connection Manager is associated with every application level protocol sup-
ported by PickPacket. It maintains TCP connection information. It keeps
in memory, packets belonging to connections that might be of interest. It
performs sequencing on these packets based on their TCP sequence numbers,
taking care of fragmented, overlapping and out of order TCP packets. Once
a packet matches some filtering criteria, the Connection Manager sets a flag
for the connection that causes all packets belonging to that connection to be

stored on disk.

o Application Level Filter receives packets from the Connection Manager. It
checks the packet to see if it matches any of the application level criteria.
If it does, the Application Level Filter alerts the Connection Manager which
then stores all past packets belonging to that connection that are in memory.
The Connection Manager will also store all future packets that belong to the
connection. In case of certain protocols like FTP, dynamic filtering criteria
need to be attached to the Basic Filter on the fly. The Application Level
Filter for such protocols passes corresponding filtering criteria to the Filter

Generator which then generates BPF code and attaches it to the Basic Filter.

e Qutput File Manager gets packets that are to be stored on disk. It writes
packets to the output file, taking care to roll over to the next output file based

on the criteria specified in the configuration file.

Figure 2.2 shows how data flows between the Filter modules described above.

11

Network

CFG Filter | BPF o Basic
File Generator Code Filter
7
a Packet
y
,’l Demultiplexer

," Filter

. Criteria

Connection
Manager

Connection
Manager
! Packet

Connection

Output file /
Alert '\\ Info

manager

\ Packet

“Connection
+ Info ,
J/ Packet N
Application Application
layer filter layer filter
Disk

Figure 2.2: Data Flow in Pickpacket

12

g Control Flow

We now describe the control flow within PickPacket Filter.

10.

. The PickPacket configuration files are read in and the remaining modules of

the Filter are initialized.

The BPF code for the filtering criteria specified in the configuration file is

generated.
The filtering code is attached to the socket listening on the network.

The socket listens to traffic on the network in promiscuous mode.

. When a packet is received from the network, it is passed on to the kernel. Here,

the BPF code executes and checks whether the packet satisfies the filtering

criteria.

Packets that do not match the filtering criteria are ignored (not processed any
further)

Packets that match the filtering criteria are passed on to the Demultiplexer.
The Demultiplexer decides which application protocol filter should handle the
packet based on the criteria specified in the configuration file. The packet is

then passed on to the Connection Manager for the appropriate protocol.

The Connection Manager determines whether it is monitoring the TCP con-

nection to which the packet belongs.

If the connection is not being monitored (which will be the case when the first
packet for a connection is received), the packet is passed on to the correspond-

ing application level filter.

In certain application level protocols like FTP, filtering criteria need to be
attached to the Basic Filter on the fly. In such cases, the BPF code for the

criteria is generated and attached to the Basic Filter.

13

Ignore packet

6

Generate BPF code
and attach to socket,
if needed

Initialize

Generate
BPF code

Attach code
to socket

Listen for packets

5
Packet

matches basic
. criteria? e

Y

Demultiplex
packet

N

10

Generate alert if conn
is to be monitored

Pass packet to
Application level filter

Write packet to disk

Are we
monitoring the
connection?

Y

Should the
packet be
dumped?

N

Pass packet to
Application level filter

Packet
matches
criteria?

Y

14

Set dump flag for
connection

Figure 2.3: Control Flow in Pickpacket

13

14

11.

12.

13.

14.

15.

16.

The application filter looks at the packet and determines if connection is of
interest. If so it alerts the Connection Manager to monitor all future packets

belonging to the connection.

If the connection is being monitored, the Connection Manager checks whether
the dump flag for the connection is set. The dump flag indicates that packets
belonging to the connection should be written to disk. It is set when the the

packet matches any of the filtering criteria.

If the dump flag is not set, the Connection Manager passes the packet to the

corresponding application level filter.

The application filter checks whether the packet matches any filtering criteria.
This includes application specific criteria like host names, email addresses and
a search for keywords in the packet payload. The filter takes care of the case

where the keyword of interest crosses packet boundary.

If the packet matches any filtering criteria, the application filter sets the dump
flag for the connection so that the Connection Manager can store all future

packets belonging to this connection.

If the dump flag for a connection is set, the Connection Manager writes the

packet to the output file.

As the filter is an online component, it has to process packets at least at the speed

at which then they arrive on the wire. Keyword search is the most computationally

expensive job of the Filter. PickPacket provides a text string search library that

uses the Boyer-Moore [5] string matching algorithm. The library provides efficient

functions for case sensitive and case insensitive search.

2.2.3 PickPacket Post-Processor

PickPacket PostProcessor processes the output file generated by the Filter and con-

verts the captured data into a format that is required by the Data Viewer and can

15

F1 Cl
Filter B2 C2
Output
F3 C3
Intermediate Connection
Files Files
Config
File
o1 PostProcessor
Output
(GUI
Cc2 directory)
C3

Figure 2.4: Post-Processing Design

be understood by the user. It also extracts network, transport and application layer
related meta information from the connection.

The PostProcessor consists of three modules as shown in Figure 2.4.

e (Connection Breaker separates the packets in the output file into connections.
Each connection is defined by a four tuple - source IP, source port, destination
IP and destination port. The Connection Breaker creates one file for each four

tuple into which it writes all packets that match the four tuple.

e Session Breaker takes each file generated by the Connection Breaker and sep-

arates it into multiple files if it contains packets belonging to multiple sessions.

e Meta Information Gathering Module collects network, transport and applica-
tion layer information about the connection. It creates a separate directory for

each connection and writes the raw connection data, the reconstructed data

16

and the meta information to it. Meta data extraction being an application
protocol specific task, this module contains a separate sub-module for each

application layer protocol supported in PickPacket.

The output of the PostProcessor is a directory whose name ends with the string
" gui"” and hence is referred to as the GUI directory. It contains information
about all the connections present in the output file generated by the Filter with

each connection having its own sub-directory.

2.2.4 PickPacket Data Viewer

PickPacket DataViewer is used to display post-processed information to the user.
The DataViewer reads the GUI directories created by the PostProcessor and displays
the connection information present in them along with meta data. The DataViewer
is written in PHP and runs on a web server. We use the Apache web server, but
any web server that supports PHP should work. The functioning of the DataViewer

can be divided into three steps:

1. Dump Selection: In this step, the DataViewer displays a list of GUI directories
present in its “Data” directory. The path to the Data directory is configured

during install.

2. Connection Selection: Once the user selects a GUI directory, the DataViewer
reads and displays information about the connections present in the GUI di-
rectory. A GUI directory can typically contain thousands of connections. The
DataViewer can be configured to display a fixed number of connections per
page, say N. The DataViewer reads only N connections at a time from the
disk. It also maintains a cache of recently viewed connections in memory, each

entry of the cache being a set of N connections.

3. Display of Connection Details: When a user selects a connection, the DataViewer
displays connection details. This includes network and transport layer details,

application specific details, meta data and link to raw packet data.

17

Apart from this basic functionality, the DataViewer also provides several features

that make it easier for the user to scan though captured data.

e The connections in a GUI directory can be sorted on various fields like Ap-
plication Protocol name, capture time, keywords present in the application

payload etc.

e An output file typically contains thousands of connections and it becomes
difficult for the user to go through all of them. DataViewer provides the facility
of further filtering these connections. This filtering can be based on network
parameters and application protocol criteria. Once the user has applied a
filter, only those connections that match the filtering criteria are displayed.

The user is also given the option of temporarily hiding certain connections.

18

Chapter 3

Reconstruction of Web-Based Email:
The Problem

3.1 Introduction

Web-based email is basically the use of HI'TP to transfer emails. Despite the pres-
ence of specialized protocols for mail transfer like POP, IMAP and SMTP, web-based
email remains one of the most popular forms of email communication. This is be-
cause they provide ease of access, allowing the user to check mail from anywhere
without requiring an email client. Some of the most popular web-based email service
providers in our country are Yahoo, Hotmail, Rediffmail and recently, Gmail. Each
of these providers have their own web interface for email transfer.

Since web-based email is HT'TP traffic, PickPacket can be easily configured to
capture the email pages. Once the pages have been captured by the Filter, it is the
job of the PostProcessor to reconstruct the email session. By reconstruction, we
mean that the PickPacket user should be able to see, minus some images, what the
original user must have seen on his screen from the time he logged in to the time he
logged out.

In this chapter, we present the problems in reconstructing web-based email traf-
fic. Before we get into the problems, we define certain terms that are used in

describing the problem.

19

e (lient is the browser end of the HT'TP communication between two hosts.

e Serveris the HT'TP server that listens on Port 80 for requests from clients and
sends back stored or generated HTML pages in response. In our case, it mostly
refers to the web server of the web-based email service provider. For example,

www.yahoo.com is the server for Yahoo, www.rediffmail.com for Rediffmail.

e HTTP Request is sent from the client to the server and typically contains the
URL of the HTML file that the client is interested in. It may also contain

data that the client wants to send to the server.

e HTTP Response is sent from the server to the client and typically contains the
HTML file requested by the client.

e POST is one of the methods defined for submitting data using an HTTP
Request. It is generally used when the request contains data that is likely to
change the state of the server database. For example, when a user composes
and sends an email, the email contents are transmitted to the server as POST
data.

e PickPacket user is the person who uses PickPacket to capture and analyze
network traffic. He thus sets up PickPacket configuration parameters, runs
the Filter, PostProcesses the filter output and goes though the resulting data

using the Data Viewer.

o (Web-based) Email user is the person using a web-based email service to send
and receive mails. The PickPacket user is interested in capturing the HTTP

traffic generated by the email user.

3.2 Hidden Data

One of the main challenges in reconstructing web-based email pages is reconstruction

of pages that accept some text input from the user. Examples of such pages are:

e The login page, where the username and password are accepted.

20

e The compose page where email addresses, subject and body of the mail are

required as input.

Consider the common case of a web-based email user composing a mail. When
the email user types in the address, subject, content, etc., and submits the page, this
data is sent to the server using some standard method defined by HTTP (generally
POST). Though this communication between the client and the server is captured
by PickPacket, it is captured as a request sent by the client to the server. And
while the Dataviewer gives the user the option of viewing HT'TP requests, viewing
email contents this way is not convenient. The problem is more severe in case the
email user sends attachments, which are also sent as HT'TP POST requests. Word
documents, PDF files, images, etc., cannot be displayed in the browser as part of
an HTTP request. Such files can only be displayed by corresponding viewers when
the attachment content is extracted from the HTTP request into a file of its own.

As far as email addresses, subject and the text component of an email is con-

!

cerned, the most natural way of displaying this data is to display the "‘compose"’
page with the corresponding fields filled up using POST data from the HTTP Re-

quest. There are two issues to be solved here:

1. Finding out the compose page that generated the HT'TP Request containing

emalil data.

2. Correlating the POST data in the HTTP Request with the fields of the com-
pose page.

3.3 Developing a General Solution

Web-based email services follow no standards. Each email service provider has
his own way of doing things. And the providers are free to change their interface
anytime. Also, new web-based mail service providers are coming up everyday. Hence
any solution for reconstruction of web-based emails has to be general enough to
accommodate new players as well as tolerant of changes made by existing ones.

Hence it has to based on the basic features that are most likely to be common

21

across all email service providers. For example, a solution that assumes that a
certain URL is used for certain task is not general, easily extensible or resistant to
change.

Also, each service provider has his own idiosyncrasies that need to be considered.
For example, consider an email user who is composing a mail and now wants to add
an attachment. In case of Yahoo, when the user clicks on “Add Attachment”, a
draft of the composed mail is saved on the server. This save draft request is sent to
the server as an HTTP Request, with the data entered in the compose page so far
forming POST data of the request. When we try to correlate HI'TP requests that
contain such POST data with the corresponding compose page, we should be careful
not to use data from this draft request. This is because the actual mail contents

might be different from the draft contents.

3.4 Handling AJAX Based Services

AJAX or Asynchronous JavsScript And XML is a web development technique that
is fast being adopted by web-based email services providers. It is a combination of
several existing technologies like XML, HTML, CSS and JavaScript. In traditional
web applications, every user action generally results in an HTTP request from the
client to the server. The server does the processing required by the request and
sends data back to the client. Every request thus results in a page being loaded into
the browser. AJAX does things a little differently [3]. When a web page is loaded,
an AJAX engine is also loaded along with it, usually in some hidden frame. The
AJAX engine is JavaScript code that is used to communicate with the server and to
display the data sent by the server in the browser. The advantages of this technique

are:

1. The requests made by the engine to the server as a result of some email user
action are asynchronous, that is, the user does not have to wait for the response
to come back. He can continue to view the rest of the page and can also perform

actions that generate further (asynchronous) requests.

2. Since the display logic is now on the client side, the server does not have to

22

send an entire HTML page in response to each request. It simply sends the
“data” for the page and the AJAX engine is responsible for rendering this data.
For example, if the email user has clicked on an email link, the server needs
to send back only the contents of the mail. The AJAX engine running on the

browser is responsible for displaying the email in a suitable format.

Reconstruction of pages belonging to mail services that uses AJAX has to be
handled differently from that of traditional email services. This is because in tra-
ditional email services the entire HI'ML page is captured and can be displayed as
is by the browser. In case of AJAX however, what is captured is the “data” for the
page. This data is not in any standard format. Every mail service uses a different
format for the data and uses its own engine to interpret and display it. We need to

develop a general solution for display of AJAX data.

3.5 Uninteresting Pages

Consider that a PickPacket user wants PickPacket to monitor an email address
that has been provided by some web-based email service. PickPacket should ideally
capture all mails sent to and from that account. To achieve this, the PickPacket
user cannot simply supply the email address as one of the HT'TP keywords and
capture pages that contain the address. This is because it is not necessary that
the user’s email address be contained in every communication (TCP connection)
between client and server. Thus, PickPacket has to be configured to captures all
packets that are exchanged between the client and the web-based email server. This
results in a lot of unnecessary pages being captured. It would make the PickPacket
user’s job a lot easier if he can be given some indication about which of the captured

pages might be of interest to him.

3.6 HTTP Requests From Captured Pages

PickPacket DataViewer provides the PickPacket user the option of viewing the cap-
tured HTTP page. However, the captured page might have code that generates

23

HTTP requests for images, scripts, stylesheets and even other HT'TP pages. For
example, some web-based email services have code in every page that checks if cer-
tain cookies are set in the browser and if not, sends a request for the home page of
the mail service to be loaded. This kind of code prevents the end user from viewing
the captured page content. Also, the PickPacket user might not want the captured
page to generate any HTTP requests unless he specifically clicks on one of the links
on the page. Thus, we need a mechanism to block or prevent a captured page from

automatically generating HT'TP Requests.

24

Chapter 4

Reconstruction of Web-Based Email:
The Solution

In the last chapter, we looked at the problems in reconstruction of web-based email
traffic in PickPacket. In this chapter we present the solution developed for the same.

The following terms are used in describing the solution.

o HTTPMail refers to web-based email. A HT'TPMail connection is an HTTP

connection that has a web-based email server as one of its end points.

o A Mail Session is the set of HI'TPMail connections established between the
web-based email server and client from the time an email user logged in to the

time he logged out.

4.1 Design

In this section, we present the top level design for reconstruction of web-based email.

We do this by describing the changes made to each of PickPacket’s components.

e PickPacket Configuration File Generator: As described in the previous chap-
ter, in order to capture web-based email traffic PickPacket has to be configured

to capture all HT'TP traffic that has any of the the web-based email server

25

names as hostname. Thus the Configuration File Generator is changed to au-
tomatically include a list of hostnames belonging to web-based email servers
in HTTP criteria.

PickPacket Filter: Since web-based email traffic is HT'TP, there is no change
in the PickPacket Filter. The Filter works on the configuration file generated
by the Configuration File Generator and captures all traffic originating or

terminating at the web-based email servers.

PickPacket PostProcessor: All the reconstruction logic lies in this component.
The PostProcessor is provided with web-based email specific information via
a configuration file httpmail.cfg. A sample configuration file can be found in
the Appendix. The configuration file contains, among other things, a list of
hostnames for each mail service. If the URL of an HTTP connection con-
tains a hostname from this list, it means the connection belongs to the corre-
sponding mail service. For example, an HT'TP connection with the hostname

mail.yahoo.com in its URL belongs to Yahoo.

The PostProcessor essentially treats web-based email traffic as a special case
of HTTP. When the PostProcessor processes an HT'TP connection, it checks
whether the URL of the connection contains the hostname of any of the web-
based email services. If so, it marks the connection as belonging to “HTTP-
Mail”. The PostProcessor then processes the connection as a regular HT'TP
connection. At the end of its processing, it adds the connection to a hash.
The client IP address of the connection and the mail service name are used as
the hash key. After all connections in the Filter output file have been post-
processed, the hashed connections are processed further from the point of view
of web-based email reconstruction. After reconstruction, HTTPMail connec-
tions are written to a directory of their own and have HT'TPMail instead of

HTTP as the protocol name in the meta-information file.

PickPacket DataViewer: The DataViewer treats HI'TPMail as a separate
protocol altogether. For each HT'TPMail connection, the DataViewer displays
a list of pages that belong to it. For each page it displays the type of page

26

(i.e. Inbox, Mail, Compose etc), a link to the captured contents, the content

type and the keywords found in the page.

4.2 Filtering Mail Sessions

As described earlier, PickPacket captures all connections that belong to any of the
web-based email services. However, the PickPacket user is interested in only certain

email addresses. Thus, we need to
e Group captured connections into Mail Sessions
e Filter out uninteresting Mail Sessions

The hash of HT'TPMail connections created by the PostProcessor groups con-

nections based on the the client IP address and mail service, as shown in Figure 4.1.

Mail Session 1 Mail Session 2
172.27.2.3 Conn 1 Conn 2 Conn 3 Conn 4 Conn 5
Rediff (login) (Inbox) (compose) (login) (Inbox)
172.27.2.5 Conn 1 Conn 2 Conn 3
Yahoo (login) (Inbox) (compose)
-”|HTTP Request

) Content File Path
172.27.2.3 Conn 1 Conn 2 Com3 | -~ Content type
Hotmail N

Content encoding

Keywords

*+ | Page type

Figure 4.1: Hash of HT'TPMail Connections

For each hash value, PickPacket maintains a linked list of HI'TPMail connec-
tions. All connections in a list have the same destination IP and belong to the same

mail service. Thus all connections in the list corresponding to a hash value can be

27

grouped into a Mail Session provided we handle the case of multiple email users log-
ging into the same email service from the same client machine (a common scenario
in Internet Cafes). For example, consider the first entry in Figure 4.1. Here, the first
three connections belong to one Mail Session while the next two belong to another.
To separate such sessions, we need to be able to detect the HI'TPMail connection
that represents a new user logging in. The httpmail.cfg file lists the login URL for
each email service. Thus, a connection that has the same URL as the login URL
indicates the starting of a new Mail Session.

Since Pickpacket treats web-based email addresses as HI'TP keywords, a Mail
Session is of interest to PickPacket user only if at least one of its connections contains
a keyword. Once we group Mail Sessions using the procedure discussed above, all

Mail Sessions with no keywords can be filtered out.

4.3 Displaying Hidden Data

In this section, we describe the solution to the problem of reconstructing pages that
accept text input from the user (described in Section 3.2). In order to describe the
solution, we first take a look at some HTTP concepts including the different ways

in which the text input entered by the email user can be sent to the HT'TP server.

4.3.1 HTTP concepts

A form in HTTP is a container for other elements. An input element is an element
that accepts input from the user. Some examples are text boxes, text areas, buttons
and checkboxes. Every input element on an HTML page is normally a part of some
form. The text entered by the user into an input element is sent to the server when
the user submits the form containing the input element. Form submission in HT'TP
can be done using two methods - GET and POST. POST is used when the data
that is being sent is likely to modify the state of the server. The content (data)
being sent using POST can have the following content types depending on how they
are encoded [10]:

1. z-www-form-url-encoded: This is the default encoding and is used when the

28

amount of data being sent is small or is in ASCII format. In case of web-based
emails, it is used to send the username and password when the login page of a
mail service is submitted. It is also used when the compose page is submitted
to send the address, subject and content of mail. An example HTTP Request
with POST data of content type x-www-form-url-encoded can be found in the

Appendix.

2. multipart/form-data: This encoding is used while sending large amount of
binary or non-ASCII data. This is especially used when uploading files to
the HTTP server. In the context of web-based emails, it is used to send
attachments to the server. An example HTTP Request with POST data of
content type multipart/form-data can be found in the Appendix.

Thus, by looking at the content type of the POST data in an HTTP request, we
can detect requests that submit some data to the server.

Another concept in HTTP is that of referrers. Referrer is an optional HTTP
Request header that the client can use to specify the URL of the document that
generated the HT'TP request.

4.3.2 Finding the Request Generating Page

In order to display composed emails in PickPacket, we first need to find the HT'TP
request that sends email data to the server and the compose page that generated
the HT'TP Request. The procedure for this differs depending on whether the email
is sent with or without attachments. We first look at the easier case of a mail sent

without attachments.

1. Go through the hash of HI'TPMail sessions and look for HI'TP Requests with

content type x-www-form-url-encoded.

2. If such an HT'TP Request is found, it contains the POST data for a composed

mail. Extract the referrer of the request.

3. Go through the entries in the current HT'TPMail session and look for an entry

with the same URL as the referrer found in the above step.

29

4. If such an entry is found, it represents the compose page that generated the
HTTP Request found in Step 1.

While we have described the above procedure with respect to the compose page,
the method remains the same if the POST data is generated by some other page,

like the login page for example.

Now we look at the procedure for the more general case of a mail that may have
been sent with attachments. To understand this procedure let us look at the actions
that an email user performs in order to send a mail with attachment(s). He first
opens the compose page and probably types in text. He then clicks on the “Add
Attachment” link which opens a page on which he browses his filesystem and specifies
the path of the attachment file(s). Once he has specified the path(s), the user clicks
“Done” and comes back to the compose page. He then (optionally) edits the mail
and sends it.

The sequence of HTML pages along with corresponding actions is shown in

Figure 4.2
Compose Attach Browse Done Compose Send Mail Sent
Action: Upload Action: Upload
Attachments Mail

Figure 4.2: Composing an Email with Attachments

The HTTP Request to upload the (first) attachment contains the Browse page
URL as its referrer which in turn contains the URL for the Compose page as refer-
rer. Thus, going back two referrers from the first attachment gives us the URL of
the compose page. We now present the procedure to find the Compose page that

generated the HT'TP POST requests for an email sent with attachments.

1. Go through the hash of HT'TPMail sessions and look for HT'TP Requests with

content type either x-www-form-url-encoded or multipart/form-data.

30

. If an HTTP Request with content type multipart/form-data is found, it con-
tains attachment data. If this is the first attachment in this HT'TPMail session,

remember the referrer of the request.

. Link the attachment found in the above step to other attachments found in

this session. This is because a mail can have multiple attachments.

. If an entry with content type x-www-form-url-encoded is found, it contains
the POST email data (i.e., the addresses, subject and content of the mail).
We now look for the Compose page that generated this data.

. Go through the entries in the current HTTPMail session and look for an entry
with the same URL as the referrer of the first attachment (found in step 2).

We are looking for the entry corresponding to the Browse page.

. If such an entry is found, extract the referrer of the HT'TP Request for that

entry.

. Go through the entries in the current HT'TPMail session again and look for
an entry with the same URL as the referrer found in the step above. Now we
look for the entry corresponding to the referrer of the Browse page, i.e., the

Compose page.

. If such an entry is found, it represents the Compose page for the mail.

4.3.3 Correlating POST Data with the Fields

Once we have the Compose page and the POST data generated by submitting the

page, we need to populate the input fields in the Compose page with values from

POST data. POST data of type x-www-form-url-encoded is basically a collection

of name value pairs of the form

name; = value,&names = values&names = values. . .

where name; is the name of an input field of the form submitted

value; is the value of that field.

31

To display a composed mail, we are interested in extracting values for To, Cc, Bcc,
Subject and the mail body. However, since each web-based mail service has different
names for these fields, we cannot scan the POST data looking for specific values of
name;. To develop a more general solution, we observe that to display a composed
mail we only need to worry about fields of type input and text area. This is because
the user can enter values only into these fields. JavaScript provides methods using
which we can retrieve a list of all elements of a particular type on a page. Using this
method, we can write code to fill up the compose page with values from the POST

data using Algorithm 1.

Algorithm 1 Correlating POST values with Input fields

1: Extract all name value pairs from the POST data into a list
2: Get a list of all elements of type input and text area in the page
3: for all elements e do

4: if e.type != hidden then

5 for all name value pairs (n,v) do
6 if e.name —= n then

7 e.value = v

8 break

9 end if

10: end for

11: end if

12: end for

The above algorithm is implemented using JavaScript and PHP and written into
every Compose page found using the procedures described in Section 4.3.2. When
the PickPacket user views the Compose page using the Data Viewer, this code gets
executed (partly on the Data Viewer web server, partly on the browser) and the

Compose page fields get filled with values from POST data.

4.4 Handling AJAX Based Services

As described in the previous chapter, AJAX based email servers do not transfer

entire HTML pages to the client. Instead, the server simply sends data for the

32

page. The AJAX engine on the client side is responsible for formatting the data and
displaying it to the user. The data exchanged between the server and the client has
no standard format and can be displayed only by the email service provider’s own
AJAX engine.

To reconstruct web pages that use AJAX in PickPacket, we first need to be
able to detect pages that contain AJAX data. These pages can have content type
“text/xml” or “text/html”, so the content type does not help in detection. The
approach used in PickPacket is to add the URL that refers to AJAX pages to the
httpmail configuration file (httpmail.cfg). Any page whose URL contains the AJAX
URL in httpmail.cfg contains AJAX data.

Once we have the page that contains AJAX data, we need to call the display
engine for that email service to display the data. To be able to do this, we store
a (suitably modified) copy of the display engine for each AJAX based mail service.
When we come across a page that contains AJAX data, we insert a call to the
display engine, passing the path of the captured file that contains AJAX data as a
parameter. When the PickPacket user views an AJAX page using the Data Viewer,
this inserted code that makes a call to the display engine get executed. The display

engine formats the data and displays it.

4.5 Uninteresting Pages

In case of web-based email services, PickPacket captures all the data that is trans-
ferred between the email server and the client. This results in a lot of unnecessary
pages being captured and displayed to the PickPacket user. For example, advertise-
ment pages, the page that is displayed after an email is sent, the browse page used
to upload attachments etc. In order to reduce the number of pages that the user
has to go through, we have implemented a method for automatic classification of

web-based email data.

33

4.5.1 Classifiers

One simple way of classifying the captured data is to use URLs. For each web-based
email service, we can remember the URL for each interesting page. For example, the
URL for an opened mail, an opened attachment, the compose page etc. However,
this approach has several problems. Firstly, it is neither general nor immune to
change. Secondly, in several mail services the same URL refers to different pages at
different times. Thus, a more general approach is needed.

Naive Bayes classifiers are among the most successful and popular algorithms for
classifying text documents. They have been very successfully used in filtering out
unsolicited email or spam [4]. The conventional approach to automatic classification
of text documents using naive Bayes classifier calculates how much each word that
occurs in the document affects the class of the document. This calculation is carried
out using the training set, which is a collection of documents along with their classi-
fication. The Top N words found using the above calculation are the keywords that
are used to classify unknown samples. Generally the occurrence of a word is treated
as a binary feature, i.e., the classifier only cares about whether a particular word
occurs in a document or not. Lemmatizers can also be used to make the classifier
more efficient by treating different forms of a word as the same word. We use the
naive Bayes classifier implementation available from University of Magdeburg|15] to

implement automatic classification of email pages in PickPacket.

4.5.2 Selecting Keywords

While the overall classification approach adopted in PickPacket follows the con-
ventional method, there are several differences in the details. The training set in
PickPacket is a collection of mail sessions belonging to different web-based email ser-
vices. The training set thus consists of all HI'TP connections established between
the web-based email server and the email client from the time the email user logs in
to the time he logs out. The procedure for selecting keywords in PickPacket varies
from that used in the conventional approach. We discuss below our approach and

the considerations that led to it.

34

1. Instead of considering each and every word that occurs in the training set, we
start with a possible set of words that are most likely to affect the class of a
document. This is possible in case of PickPacket because we know what the
pages belonging to various classes look like and hence can guess what words

will occur in those pages.

2. For most words, it is sufficient to check whether the word occurs in a document
or not. In a few cases however, the number of occurrences of words gives a
better estimate of the class. For example, consider the Inbox of an email
user. For every mail displayed on the page, there is a checkbox by clicking
on which the user can select the mail and then perform some action on the
mail. While one or two checkboxes can occur in other pages too, if the count
of checkboxes on a page exceed some threshold, it is extremely likely that the
page is the Inbox of some user. Hence in this case, the number of occurrences

of a particular word gives a better estimate of the class.

3. Another choice to be made is whether a word should be counted if it occurs as
part of a bigger word. For example, if the keyword is “Send”, should “Sender”
be counted as an occurrence of Send? We found that the answer depends on
the keyword in question. For most keywords, the accuracy of classification
improves if only the occurrence of the entire word is counted. For a few words
however, this is not the case. For example, the Inbox of any email service
generally contains a link called “’prev” which can be used to view the previous
set of messages. In some email services, this link is called “prev” while others
use the whole word “previous”. If we use “prev” as the keyword and count only
entire occurrences of it, then we miss out on email services that use the word

“previous”. A few more examples of such words are “attach” and “spell”.

Thus for each keyword, we have two features - whether the number of occurrences
of that keyword need to be counted and whether only occurrences of the entire word
need to be counted. After experimentation with the list of keywords and the values
for these two features, we finalized on a list of 31 keywords. The keywords as well

as the values for the above attribute are listed in httpmail.cfg, which can be found

35

in the Appendix.

4.5.3 Target Classes
We define the following target classes into which Mail Session pages can be classified.

1. Welcome: This class consists of the first page that a web-based email user
sees on logging in. It contains, among other email service specific things, the
name of the user and the number of messages (read as well as unread) that

are present in the user’s Inbox.

2. Inbox: Pages that display a list of mails form this class. For example, the page
that displays a list of all messages in the user’s Inbox. Pages that display list
of messages in any folder (whether pre-created by the web-based email service

or created by the email user) fall into this category.

3. Masl: This class consists of pages that display an opened mail. Even mails
that are loaded in the same page as the Inbox (as happens in the case of AJAX

based mail services) form part of this class.

4. Compose: Pages in which the email user types in a mail form this class. Newly

created mails, replies and forwards are included in this class.

5. Other: All other pages in a Mail Session are a part of this class. Some examples
are - the page that gets displayed after the email user sends a mail stating that
the mail has been sent, the Browse page that is displayed when the user uploads
an attachment. Basically all pages that are not likely to be of interest to the

PickPacket user are dumped into this class.

The keywords selected are such that the pages that fall into the Other class will

have the least number of keywords.

4.5.4 Training the Classifier

In order to train a naive Bayes classifier to classify Mail Session pages, we represent

each page in the training set by a vector (X, X, X3,...X3,C) where each X;

36

corresponds to one of the 31 keywords and C represents the target class of the page.

For keywords whose occurrences need not be counted,
X; = 0 if the keyword does not occur in the page

= 1 if the keyword occurs in the page

For keywords whose occurrence needs to be counted,

X; = number of times the keyword occurs in the page

We call the vector corresponding to a page the pattern for the page.

We trained a naive Bayes Classifier by feeding it patterns for over 200 pages
from Mail Sessions belonging to different email services. On test pages, we got a
classification accuracy of over 90 percent. On analyzing the misclassification, we
found that all of them involved pages belonging to the Other class. This is because
while the remaining classes have well defined and distinguishable patterns, the Other
class is a collection of widely varying patterns. This class is meant for all sorts of
miscellaneous documents that don’t have much in common except that they do not
have too many of the keywords occurring in them. We use this fact to improve
the classification accuracy. We split the classification process into two steps i.e. we
train and use two naive Bayes classifiers. The first one simply classifies documents
into two classes - Useful and Not Useful. Pages that belong to the Other class fall
into Not Useful while all other pages are classified as Useful. The second classifier
works only on pages in the Useful class and further classifies them into the remaining
categories described above. The classification accuracy goes up remarkably using
this method. We observed that only the following documents from our test set were

misclassified.

e Welcome pages belonging to certain web-based email services. This is because
the welcome page format varies widely across mail services. It is difficult to

find keywords that are common to the page across email services.

e Folders with no messages. Checkbox count plays an important part in classify-

ing a page as “Inbox”. Since folders with no messages have a very low checkbox

37

count, such pages are likely to be misclassified.

Since the misclassified pages are not likely to be of paramount importance to the

PickPacket user, we decided not to tweak the classifier strings further.

4.5.5 Extracting Keywords

When the trained classifier is run as part of PickPacket, it needs to be supplied with
the keyword vector corresponding to the page being classified. In order to search the
page for keywords, some pattern matching algorithm needs to be used. We settled

on the Aho-Corasick pattern matching algorithm |2] for the following reasons:
e [t is among the fastest known algorithms for matching multiple patterns.

e It is recommended for use in scenarios where the same set of patterns is to be

searched for in multiple texts.

e Since the strings to be searched for are not likely to change, the initial portion

of the algorithm needs to be executed only once.

The Aho-Corasick algorithm works by constructing a finite state machine out
of the patterns to be matched. Every state of the FSM has a name and an array
of transitions. Elements of the array contain the next state for each input symbol.
Certain states of the FSM also have outputs associated with them. Every such state
indicates that some pattern(s) has matched. The FSM is applied to the input text
in which the patterns are to be matched (Mail Session pages in our case). Whenever
the FSM reaches a state which has an associated output, it means the corresponding
pattern(s) has been found in the input text. The algorithm runs in O(n) time where
n is the length of the input text and takes O(m) space in the worst case where m is
the sum of the lengths of all the patterns.

In PickPacket, the FSM is constructed only once, the first time a Mail Session
page needs to be classified. After that, the FSM resides in memory and is used for

classification of remaining pages.

38

4.6 HTTP Requests From Captured Pages

Captured HTTP pages when viewed in a browser might generate HT'TP requests.
We need a solution that prevents such requests. One solution would be to replace all
URLs in the captured page with local URLs. However, if this is done the hyperlinks
on the page will no longer work. We want the solution to preserve hyperlinks since
since hyperlinks do not generate HT'TP requests unless the user clicks on them.
Analysis of captured HT'TP pages shows that HT'TP Requests are generated for the

following reasons:
1. To display an image
2. To include a page that contains client side scripting code
3. To include a stylesheet
4. To load a new page in the same window

The URL of the image, script or stylesheet can either be absolute or relative.
When a captured page is viewed from the Data Viewer, relative URLs will not
generate HT'TP Requests to the the web-based email service provider’s HT'TP server.
Hence we need to worry only about absolute URLs i.e. URL starting with the string
“http://”.

In order to stop HT'TP Requests from being generated for the first three reasons
listed above, we scan the entire page for the string “http://”. If the string is found,
we verify that it is not part of a hyperlink tag. We then replace the absolute URL by
a URL relative to the path of the captured document. This relative URL points to a
special folder called “img” which is created by the PostProcessor and into which the
PostProcessor stores all images, scripts and stylesheet files captured by PickPacket
Filter. Thus when the captured page is viewed in the Data Viewer all HT'TP requests
generated are to the Data Viewer’s web server. If the image, script or stylesheet in
the request has been captured by the Filter, it will be returned by the Data Viewer’s
web server.

Some web-based mail services load a new page in the same window if some

conditions are not met. This not only generates an HT'TP Request, but also prevents

39

the PickPacket user from viewing the captured page. To prevent this, we scan the
captured page for the pattern “window.open” and comment out the line where the
pattern occurs. Note that replacing the URL of the page being loaded by a local
URL will not really help. While this will prevent an HTTP request to the service
provider’s server from being generated, the PickPacket user will still not be able to
view the captured contents, since the page corresponding to the replaced local URL
will be loaded.

The Boyer Moore algorithm [5], implemented as part of PickPacket’s string
matching library, is used to search the captured pages for the two patterns dis-
cussed above. This algorithm is among the fastest known algorithms for single

pattern search.

40

Chapter 5
Tests and Conclusion

In this chapter we first discuss how we have tested PickPacket after adding the new

functionality. We then state our conclusions and provide pointers for future work.

5.1 Testing

Reconstruction of captured web-based email data was carried out for the following

web-based email services:
1. Yahoo!
2. Rediffmail
3. Hotmail
4. Indiatimes

We captured Mail Sessions of email users belonging to each of the above email ser-
vices. The captured data contained pages that represent a wide range of email user
actions. For example sending and retrieving mails (with and without attachments),
replying, forwarding and deleting mails, opening various mail folders, address book
lookups, mail setting modifications. For each captured session, we verified the fol-

lowing;:

41

All pages belonging to the above email services are captured when the Filter
is run with the configuration file generated using the modified Configuration

File Generator.

Mail sessions are correctly identified, especially in the case of multiple users

logging in into the same mail service from the same client machine.
Mail sessions that are not of interest to the PickPacket user are not displayed.

The captured contents are visible when the PickPacket user views a page
using the Data Viewer. This is specially important for pages belonging to
mail services like Yahoo! which load the Yahoo Mail home page if certain

cookies are not set in the browser.

The captured page does not make any HTTP requests for image, script or
stylesheet files to the website’s HT'TP server.

When viewed in the Data Viewer, the input fields in Compose pages are filled
with POST data from the corresponding HT'TP Request.

Pages belonging to AJAX based mail services are correctly displayed. Rediff-

mail pages were used for testing this.

Mail Session pages are correctly classified.

In case of classification of captured data, we found that except for some Wel-

come pages and pages corresponding to empty folders, all other pages were correctly

classified.

5.2 Conclusion

PickPacket is a very useful tool for capture and analysis of network traffic. It has

a built-in support for a large number of application-level protocols which not only

gives the PickPacket user more flexibility in specifying filtering criteria for those

protocols but also makes it easier for the user to analyze data belonging to those

42

protocols. In this thesis, we have attempted to extend this flexibility and ease of
analysis to web-based email traffic. The PickPacket user can specify the web-based
email addresses that he wishes to monitor and PickPacket will capture all mails
sent to and from that mail address. This captured data is further processed so
that the PickPacket user gets to see exactly what the email user must have seen on
his screen, minus some images. Composed mails, sent and retrieved attachments,
pages that contain AJAX data are all reconstructed and displayed in a much more
user friendly and accessible format. We also classify the captured pages to indicate
captured data that is likely to be of interest to the user. We have seen that this
classification greatly reduces the amount of data that the PickPacket user has to go
through. We have noted a reduction of 20 to 80 percent depending on the web-based

email service in question.

5.3 Future Work

e Currently PickPacket reconstructs pages belonging to only one AJAX based
email service (Rediffmail). The reconstruction logic can be extended to ac-

commodate others, prominently Gmail.

e An email user might view the same page several times in a Mail Session.
Currently PickPacket captures and displays the page each time the user views
it. Some mechanism could be developed for detection of duplicate pages which

will further reduce the amount of data that the PickPacket user has to analyze.

43

Bibliography

[1] ApiTYA, S. P. “Pickpacket: ~ Design and Implementation of the
HTTP postprocessor and MIME parser-decoder”, Dec 2002. BTP
Department of Computer Science and Engineering, IIT Kanpur,
http://www.cse.iitk.ac.in /research /btp2003/98316.html.

Y

[2] AHO, A. V., AND CORASICK, M. J. Efficient string matching: an aid to
bibliographic search. Commun. ACM 18, 6 (1975), 333-340.

[3] “AJAX: A new approach to web development”.
http://adaptivepath.com /publications/essays/archives/000385.php.

[4] ANDROUTSOPOULOS, I., PALIOURAS, G., KARKALETSIS, V., SAKKIS, G.,
SPYROPOULOS, C. D., AND STAMATOPOULOS, P. Learning to filter spam

e-mail: A comparison of a naive bayesian and a memory-based approach, 2000.

[5] BOYER, R. S., AND MOORE, J. S. A fast string searching algorithm. Commun.
ACM 20, 10 (1977), 762-772.

[6] DEGIOANNI, L., RIssO, F., AND VIANO, P. “Windump”. http://netgroup-

serv.polito.it/windump.
[7] ET AL., G. C. “Ethereal”. Available at http://www.ethereal.com.

[8] GRAHAM, R. “carnivore faq”. http://www.robertgraham.com/pubs/carnivore-
faq.html.

[9] “How Carnivore Works”. http://www.howstuffworks.com /carnivore.htm.

44

[10] “HTML 4.01 Specification ”. http://www.w3.org/ TR /html4 /interact /forms.html.

[11] JacoBsoN, V., LEREs, C., AND McCCANNE, S. “tcpdump : A Network
Monitoring and Packet Capturing Tool”. Available via anonymous FTP from

ftp://ftp.ee.lbl.gov and www.tcpdump.org.

[12] JaIN, S. K. “Implementation of RADIUS Support in Pickpacket”. Master’s
thesis, Department of Computer Science and Engineering, II'T Kanpur, Apr
2003. http://www.cse.iitk.ac.in/research /mtech2001/Y111122.html.

[13] KAPOOR, N. “Design and Implementation of a Network Monitoring Tool”.
Master’s thesis, Department of Computer Science and Engineering, ITT Kanpur,
Apr 2002. http://www.cse.iitk.ac.in/research /mtech2000/Y011111.html.

[14] McCANNE, S., AND JACOBSON, V. “The BSD Packet Filter: A New Ar-
chitecture for User-level Packet Capture”. In Proceedings of USENIX Winter
Conference (San Diego, California, Jan 1993), pp. 259-269.

[15] “Full and Naive Bayes Classifiers”. http://fuzzy.cs.uni-
magdeburg.de/ borgelt/doc/bayes/bayes.html.

[16] PANDE, B. “Design and Implementation of a Network Monitoring Tool”. Mas-

ter’s thesis, Department of Computer Science and Engineering, IIT Kanpur,
Sep 2002. http://www.cse.iitk.ac.in/research/mtech2000/Y011104.html.

[17] SmiTH, S. P., Jr., H. P., KReENT, H., MENCIK, S., CRIDER, J. A,
SHYONG, M., AND REYNOLDS, L. L. “Independent Technical Review
of the Carnivore System”. Tech. rep., II'T Research Institute, Nov 2000.
http://www.usdoj.gov/jmd/publications/carniv__entry.htm.

45

Appendix A

Sample Configuration File

A.1 Configuration File with Filtering Criteria (http-
mazil.cfq)

Number of web based email services that PickPacket handles

Num_0Of_Mail_Services=4

Maximum number of HTTPMail connections stored per Mail Session

Max_httpmail_conns=100

This section contains web based email service specific details.

Service_Name: Name of the web based email service

Login_Uri: The URI used by email users to log into their web based
email account

Logout_Uri: The URI that indicates that an email user has logged out

of his account

Num_Uri: Number of URI’s that belong to this web based email service

(apart from login and logout)

Num_Ignore_Uri: Number of URIs to be ignored. In some cases, certain

URIs are used only for doenloading images or scripts.

H O HF H OH O HF OH OH O H H O H =

PickPacket need not capture connections from these URIs.

46

Num_Ajax_Mail_Uri: Number of URIs that correspond to pages containing
AJAX data
Ajax_Mail_Filename: The name of the file that contains the (modified)

AJAX display engine for the web based email service.

<Mail_Service>
Service_Name=Yahoo
Login_Uri=mail.yahoo.com
Logout_Uri=login.yahoo.com
Num_Uri=0

Num_Ignore_Uri=0
Num_Ajax_Mail_Uri=0
</Mail_Service>
<Mail_Service>
Service_Name=Rediff
Login_Uri=in.rediff.com
Logout_Uri=login.rediff.com
Num_Uri=2
Uri=mail.rediff.com
Uri=f2check.rediff.com
Num_Ignore_Uri=1
Uri=immail.rediff.com
Num_Ajax_Mail_Uri=1
Uri=bn/ajaxmail.cgi
Ajax_Mail_Filename=rediff_mail.html
</Mail_Service>
<Mail_Service>
Service_Name=Indiatimes
Login_Uri=in.indiatimes.com
Logout_Uri=integra.indiatimes.com

Num_Uri=1

47

Uri=infinite.indiatimes.com
Num_Ignore_Uri=1
Uri=favicon.ico
Num_Ajax_Mail_Uri=0
</Mail_Service>
<Mail_Service>
Service_Name=Hotmail
Login_Uri=login.passport.net
Logout_Uri=loginnet.passport.com
Num_Uri=2
Uri=hotmail.msn.com

Uri="64.

Num_Ignore_Uri=0
Num_Ajax_Mail_Uri=0

</Mail_Service>

List of patterns for classification of HTTPMail pages. Each pattern has two
attributes:

Count_Occurences: Whether the number of occurences of the pattern

need to be counted

Match_Whole_Word: Whether only occurence of the entire pattern should

be considered

<Pattern_List>
Num_0f_Strings=31
String=From
Count_0Occurences=No
Match_Whole_Word=Yes
String=Sender
Count_0Occurences=No
Match_Whole_Word=Yes
String=Subject

48

Count_0Occurences=No
Match_Whole_Word=Yes
String=Date
Count_0Occurences=No
Match_Whole_Word=Yes
String=Size
Count_0Occurences=No
Match_Whole_Word=Yes
String=First
Count_0Occurences=No
Match_Whole_Word=Yes
String=Prev
Count_0Occurences=No
Match_Whole_Word=No
String=Next
Count_0Occurences=No
Match_Whole_Word=Yes
String=Last
Count_0Occurences=No
Match_Whole_Word=Yes
String=Delete
Count_0Occurences=No
Match_Whole_Word=Yes
String=Reply
Count_0Occurences=No
Match_Whole_Word=Yes
String=Reply All
Count_0Occurences=No
Match_Whole_Word=Yes
String=Forward

Count_0Occurences=No

49

Match_Whole_Word=Yes
String=To:
Count_0Occurences=No
Match_Whole_Word=Yes
String=From:
Count_0Occurences=No
Match_Whole_Word=Yes
String=Subject:
Count_0Occurences=No
Match_Whole_Word=Yes
String=Date:
Count_0Occurences=No
Match_Whole_Word=Yes
String=Sent:
Count_0Occurences=No
Match_Whole_Word=Yes
String=prev
Count_0Occurences=No
Match_Whole_Word=no
String=next
Count_0Occurences=No
Match_Whole_Word=Yes
String=Cc:
Count_0Occurences=No
Match_Whole_Word=Yes
String=Bcc:
Count_0Occurences=No
Match_Whole_Word=Yes
String=Send
Count_0Occurences=No

Match_Whole_Word=Yes

a0

String=Cancel
Count_0Occurences=No
Match_Whole_Word=Yes
String=Spell
Count_0Occurences=No
Match_Whole_Word=No
String=Save
Count_0Occurences=No
Match_Whole_Word=Yes
String=Draft
Count_0Occurences=No
Match_Whole_Word=Yes
String=Welcome
Count_0Occurences=No
Match_Whole_Word=Yes
String=checkbox
Count_0Occurences=Yes
Match_Whole_Word=Yes
String=textarea
Count_0Occurences=Yes
Match_Whole_Word=Yes
String=ttach
Count_0Occurences=Yes
Match_Whole_Word=No

</Pattern_List>
Filename of the naive bayes classifier that classifies pages into
"‘Useful"’ and "‘Not Useful"’.

Basic_Classifier_Filename=basic_classifier.nbc

Filename of the naive bayes classifier that further classifies "‘Useful"’

ol

pages

Advanced_Classifier_Filename=adv_classifier.nbc

Name of the file containing names of columns of the classifier pattern

Classifier_Header_Filename=classify.hdr

92

Appendix B

HTTP Requests

B.1 Sample HTTP Request with z-www-form-url-
encoded POST Data

POST http://us.£332.mail.yahoo.com/ym/Compose?YY=37103&order=down
&sort=date&pos=1 HTTP/1.1

Host: us.f332.mail.yahoo.com

User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.2.1) Gecko/20030225
Accept: text/xml,application/xml,application/xhtml+xml,text/html;
q=0.9,text/plain;q=0.8,video/x-mng,image/png,image/jpeg,image/gif;
q=0.2,text/css,*/*;q=0.1

Accept-Language: en-us, en;q=0.50

Accept-Encoding: gzip, deflate, compress;q=0.9

Accept-Charset: IS0-8859-1, utf-8;9=0.66, *;q=0.66

Keep-Alive: 300

Proxy-Connection: keep-alive

Proxy-Authorization: Basic dmluYX1hbjpwYWFyY2gxMjM=

Referer: http://us.f332.mail.yahoo.com/ym/Compose?YY=18545
&order=down&sort=date&pos=1

Cookie: B=bkutevtlr71ij&b=2;F=a=xwKo...

Content-Type: application/x-www-form-urlencoded

93

Content-Length: 441

SEND=&SD=&SC=&CAN=&docCharset=is0-8859-1&PhotoMailUser=
&PhotoToolInstall=&0penInsertPhoto=&PhotoGetStart=0&
SaveCopy=yes&PhotoMailInstallOrigin=&.crumb=3rzjJYNDOCL
&box=&FwdFile=&4FwdMsg=&FwdSubj=&FwdInline=&0riginalFrom=
&0riginalSubject=&InReplyTo=&NumAtt=0&AttData=&UplData=
&01dAttData=&01dUplData=&FName=&ATT=1&VID=&showcc=&showbcc=
&AC_Done=&AC_ToList=&AC_CcList=&AC_BccList=
&To=canjali%40iitk.ac.in&Cc=&Bcc=&Subj=&Body=This+is+the+mail+body%2

B.2 Sample HTTP Request with multipart/form-
data POST Data

POST http://by22fd.bay22.hotmail.msn.com/cgi-bin/doattach HTTP/1.1
Host: by22fd.bay22.hotmail.msn.com

User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.2.1) Gecko/20030225
Accept: text/xml,application/xml,application/xhtml+xml,text/html;
gq=0.9,text/plain;q=0.8,video/x-mng,image/png,image/jpeg,image/gif;
g=0.2,text/css,*/*;q=0.1

Accept-Language: en-us, en;q=0.50

Accept-Encoding: gzip, deflate, compress;q=0.9

Accept-Charset: IS0-8859-1, utf-8;9=0.66, *;q=0.66

Keep-Alive: 300

Proxy-Connection: keep-alive

Proxy-Authorization: Basic dmluYX1hbjpwYWFyY2gxMjM=

Referer: http://by22fd.bay22.hotmail.msn.com/cgi-bin/premail
Cookie: MSNADS=UM=; HMSatchmo=0; MSPAuth=7rbcpEp6IF3ZShDZLjIDi6. ..

Content-Type: multipart/form-data;
boundary=------------------—- - 10846777401547433821321324151

Content-Length: 3695

————————————————————————————— 10846777401547433821321324151

Content-Disposition: form-data; name=""

————————————————————————————— 10846777401547433821321324151

Content-Disposition: form-data; name="curmbox"

F000000001

————————————————————————————— 10846777401547433821321324151

Content-Disposition: form-data; name="HrsTest"

----------------------------- 10846777401547433821321324151

Content-Disposition: form-data; name="a"

4635ee47b81fedf232a638e4fc0047¢c91455023bf0173d9545bca793553e¢019d

----------------------------- 10846777401547433821321324151

Content-Disposition: form-data; name="attachmentfilename"

————————————————————————————— 10846777401547433821321324151

Content-Disposition: form-data; name="attachorcancel"

----------------------------- 10846777401547433821321324151

%)

Content-Disposition: form-data; name="userfilename"

————————————————————————————— 10846777401547433821321324151

Content-Disposition: form-data; name="contentType"

————————————————————————————— 10846777401547433821321324151

Content-Disposition: form-data; name="smsg"

ddk_2005.saved

----------------------------- 10846777401547433821321324151

Content-Disposition: form-data; name="attfiles"

----------------------------- 10846777401547433821321324151

Content-Disposition: form-data; name="attlistfile"

----------------------------- 10846777401547433821321324151

Content-Disposition: form-data; name="badattfiles"

————————————————————————————— 10846777401547433821321324151

Content-Disposition: form-data; name="ref"

————————————————————————————— 10846777401547433821321324151

96

Content-Disposition:

Content-Disposition:

compose

Content-Disposition:

About an idiot

Content-Disposition:

form-data; name="RTEbgcolor"

————————— 10846777401547433821321324151

form-data; name="from"

————————— 10846777401547433821321324151

form-data; name="subject"

————————— 10846777401547433821321324151

: form-data; name="oldattfile"

————————— 10846777401547433821321324151

: form-data; name="_HMAction"

————————— 10846777401547433821321324151

form-data; name="attfile"; filename="dump.gif"

Content-Type: image/gif

GIF89a8

<GIF data ...>

o7

