Supporting POP and IMAP in PickPacket

A Thesis Submitted
in Partial Fulfillment of the Requirements
for the Degree of

Master of Technology

by
V V N Sudheer

to the

Department of Computer Science & Engineering

Indian Institute of Technology, Kanpur

June, 2005

Certificate

This is to certify that the work contained in the thesis entitled “Supporting
POP and IMAP in PickPacket”, by V'V N Sudheer, has been carried out under our

supervision and that this work has not been submitted elsewhere for a degree.

June, 2005

Qury Aol

e

(Dr. Dheeraj{ Sangh’i)

(Dr. Deepak\ﬁ{pta\)

Department of Computer Science & Department of Computer Science &
Engineering, Engineering,
Indian Institute of Technology, Indian Institute of Technology,

Kanpur.

Kanpur.

Abstract

Internet is a public medium for communication which can also be used for illegal
activities. Therefore, there is a need to monitor network traffic. However, this
monitoring should not compromise the privacy of individuals who are using the
Internet for legal purposes. PickPacket - a network monitoring tool developed at
ITT Kanpur can handle the conflicting issues of network monitoring and privacy
through its judicious use. It is a passive tool in the sense that it neither injects
any packet into the network nor delays any packet. PickPacket comprises of four
components - Configuration File Generator helps the users in configuring the filtering
parameters, Filter captures the packets from network, Post-Processor analyzes the
captured data and Data Viewer for interactive rendering of the captured sessions.

PickPacket has support for HT'TP, FTP, SMTP, Telnet, IRC and Yahoo-messenger
protocols. It can filter traffic belonging to these protocols, reconstruct the sessions
and display it to the user. POP and IMAP protocols are used to access the mails
on a server. There is a need to monitor traffic of these mail access protocols. This
thesis discusses an extension of PickPacket to IMAP and POP. The work involved in
changing all components of the tool for the support of new protocols. Various tests

were conducted to verify the correctness of the tool and to measure its performance.

Acknowledgments

I take this opportunity to express to place on record my gratitude towards my
thesis supervisors Dr. Dheeraj Sanghi and Dr. Deepak Gupta for their invaluable
guidance throughout my thesis work. It would have never been possible for me to
take this project to completion without their innovative ideas and encouragement.
The thesis is for a project that is financially supported by Ministry of Commu-
nications and Information Technology, Government of India. The support of the
Ministry of Communications and Information Technology is duly acknowledged.

I also thank the other team members involved with the development of Pick-
Packet for their cooperation especially Satya Srikanth helped me initially while
understanding the Architecture of PickPacket. I also thank my project partner,
Ananth, for his cooperation and innovative suggestions regarding the project. Ananth
helped me alot while testing the filter. I will never forget those sleep less nights that
we spent working and preparing things for the meetings. Devendar and Vinaya
helped in changing the output structure of the post processor and developping a
new web based GUI. I would like to thank Murthy for his valuable suggestions that
he gave at the starting stages of my thesis.

I also wish to thank whole heartily all the faculty members of the Department
of Computer Science and Engineering, IIT Kanpur for enhancing my knowledge.
I would like to thank all my classmates for the moments I shared with them.
Mtech2003 batch is one that I never forget in my life. I would also like to thank
everyone in the Prabhu Goel Research Center for providing a nice and challenging
work environment.

Finally, I would like to thank my parents and brother encouraging me all the

times and taking me to this stage in life.

Contents

1 Introduction
1.1 Network Monitoring Tools
1.2 PickPacket Lo
1.3 Organization of the Report,

2 PickPacket: Architecture and Design
2.1 Architecture L
2.2 Design e
2.2.1 PickPacket Configuration File Generator
2.2.2 The PickPacket Filter
2.2.3 PickPacket Post-Processor
2.2.4 PickPacket Data Viewer

3 Design and Implementation of the POP Filter in PickPacket
3.1 POP Protocol Overview
3.1.1 Authentication Mechanisms in POP Protocol
3.1.2 Transactions in POP Protocol
3.2 POP Filter: Objective 0o
3.3 POP Filter: Design and Implementation

4 Design and Implementation of the IMAP Filter in PickPacket
4.1 IMAP Protocol Overview
4.2 Differences between IMAP and POP
4.3 IMAP Filter: Objective.,

i

10
13
15

17
17
18
20
21
22

4.4 IMAP Filter: Design and Implementation
4.4.1 Parsing FETCH Response
4.5 IMAP Filter: Limitations

5 Post-Processor and Data Viewer for POP and IMAP
5.1 Post-Processor Design

5.2 Data Viewer Design Lo

6 Correctness Verification and Performance Evaluation
6.1 Testing o

6.2 Performance Evaluation

7 Conclusions and Future Work
7.1 Future Work

References

A Sample Configuration Files
A.1 Configuration File with Filtering Criteria (.pcfg)
A.2 Configuration File with Buffer Sizes(.bcfg)

B A Sample POP Session

il

36
36
38

43
43
44

47
48

49

51
ol
60

61

List of Tables

5.1 Format of meta-information file for POP and IMAP connections . . . 37

v

List of Figures

1.1
1.2

2.1
2.2
2.3
24

3.1
3.2
3.3

4.1
4.2

5.1
5.2
9.3
0.4
9.5

6.1

Working of Hub and Switch 2
Working of Switch with SPAN port 3
Architecture of PickPacket 8
Filtering Levels o 11
Basic Design of the PickPacket Filter 12
Post-Processing Design 14
POP State Diagram oo 18
Working of POP Filter 23
Connection match state diagram 25
IMAP State Diagram 27
Parser for Fetch Responce 33
Snapshot of Login Screen 38
Snapshot of Select Directory Screen 39
Snapshot of Select Connection Screen 39
Snapshot of Connection Filter Screen 40
Snapshot of Data Viewer for POP/IMAP connections 41
Test Setup for Performance Evaluation 45

Chapter 1
Introduction

The advent of the Internet has caused an ever increasing demand for computers in
the last few years with enormous amount of information transferred everyday. The
Internet has now become a major medium of communication all over the world.
With increasing availability of the Internet to common man, it has become easy
for criminals to exploit these resources and use them for illegal activities. This has
resulted in the need for tools that can monitor the network traffic to detect and
prevent such activities. Companies use these tools to safeguard their valuable data
and to stop it from falling into wrong hands. However, the use of these tools should
not compromise the privacy of individuals whose network communications are being
monitored.

Monitoring tools are also useful in evaluating and diagnosing performance prob-
lems of servers and network components.

Many such tools are available in commercial as well as public domains. A brief
discussion of network monitoring tools is presented in Section 1.1, along with a
survey of some existing tools. PickPacket is a tool that monitors network traffic and
stores those packets which match the user specified criteria. It provides a rich set
of criteria for filtering the packets. It has support for many application protocols
such as SMTP, HTTP, FTP, Telnet, IRC and Yahoo-Messenger. In this thesis,
we describe the incorporation of support for email protocols (POP and IMAP) in
PickPacket

1.1 Network Monitoring Tools

Network monitoring tools are also called sniffers. These tools are used to monitor
data flowing across the network. They capture the network traffic based on some
rules specified by the user. Network monitoring tools usually contain some protocol
analysis capabilities that allow users to decode the captured data and analyse it.
Monitoring tools can also be used to detect abnormal network activities or to find
and fix problems in network.

The host machine on which the network monitoring tool is running must receive
all network packets for it to filter. The network interface card, by default, would
copy only those packets which are addressed to itself. If we want to read all packets,
the interface card should operate in “promiscuous mode”. In this mode the interface
card will copy all the packets that come up to the machine.

The data stream that we wish to monitor must be copied and made available to
the sniffer host machine. In earlier LANs (Local Area Networks), where hubs were
used, this was simple to achieve since hubs would copy every packet to all its ports.
But, these days LANs use switches, which send the packet only on the port where
the host is connected. The functioning of hub and switch is depicted in Figure 1.1.
“Port mirroring” is a technique by which a port can be configured as a “span” port.
Switches with these ports can copy all data flowing through any one port of that
switch to this span port as shown in Figure 1.2. An alternate mechanism for this is
using Ethernet taps, a special hardware that will serve the purpose without causing

any interference in the data stream.

|y e _ s

i< PENG PR

data ‘ Sniffer data G

Hub Switch

Figure 1.1: Working of Hub and Switch

datat@ m mmp| Sniffer

Switch

Figure 1.2: Working of Switch with SPAN port

Ideally speaking these sniffers should not be detectable, as they are passive lis-
teners and do not inject any packet into the network. Sniffers should not affect the
performance of the network, they should not slow down the network speed or they
should not delay or drop any packet from the network.

Monitoring the network traffic should not compromise the privacy of individuals
who are accessing data through the network. Filtering the captured data solves this
problem. Filtering can be done ‘on-line’, while capturing, or ‘off-line’ after storing
on the disk. Both of these are having their own advantages and disadvantages.
For off-line filtering whole data flowing across the network has to be stored on the
disk. If the monitoring is on a high speed link the disk will be filled up soon. On-
line filtering helps in reducing storage required, but it needs machines with more
compute power and memory for its operation.

Nowadays, sniffers often come with an embedded filter that can filter packets
based on various criteria. The packets pass through different levels of filtering. The
first level looks at the network parameters like IP addresses, protocols, and port
numbers and drops the packets which do not match with the input parameters.
This is generally supported by the kernel. BPF [14] (Berkeley Packet Filter) is an
in-kernel packet filter that filters packets based on a directed acyclic Control Flow
Graph method. BPF uses an interpreter for executing the filter code that assumes
a pseudo machine with simple functionality akin to assembly language. The next
filtering level searches for the application specific criteria like email-ids , host names
etc. The final one looks at the application payload for a match in the content with

the keywords. Packets which pass through all level of filtering will be stored on the

disk. These sniffers often come bundled with their own post-capture analysis and
processing tools which extract meta information from the stored data and present
it in a human readable form.

Packets are stored on the disk in a standard format. Libpcap is a standard
packet capture library used to store packets on the disk. Many commercial and free
post-processing and rendering tools are available that can analyze the packets stored
by sniffers in the pcap format.

There are many sniffers which are available commercially and publicly. They
come in various flavors with different capabilities, and for different operating sys-
tems. The following is a brief description of some of them. Detailed description of

other tools is present in [18].

e Fthereal |4] can read packets either from the live network connection or from
an already captured file. It has rich protocol analysis capabilities. However,
it has limited filtering capabilities, it can filter packets based on IP addresses,
port numbers. It comes in both read-only (protocol-analyzer) version and a
capture (sniffing) version. The read-only version is used for analyzing data

which has been captured already. This runs on UNIX as well as Windows.

e Tcpdump [10] is a UNIX based network protocol analyzer. UNIX based sniffers
are generally built up on libpcap and/or BPF. Tepdump is based on libpcap
and BPF filters. The on-line filtering is limited, it can filter based on IP
addresses and port numbers. Windump [3] is a version of tcpdump for windows

that uses a libpcap-compatible library called WinCap.

e Ftherpeek [5] is a commercial tool that can perform traffic monitoring as well
as packet capture. Etherpeek can decode many application level protocols,
but this decoding is off-line. The operation of this tool is limited to Ethernet
networks. Gigapeek [6], an enhanced version of Etherpeek works at gigabit

speeds. But, it needs a specialized hardware for its operation.

e LANDecoder|13] is another commercial protocol analyzer. it has good protocol

analysis capabilities. The on-line filtering capabilities includes filtering based

on IP addresses and port numbers. User can also specify 32 bit patterns which

should be present at specified offsets of selected packets.

e Microsoft’s Win N'T' comes with an in-built program called “Network Monitor”.
This has been provided as a service called “Network Monitor Tools and Agent”.
It has the capabilities to capture frames coming from or going to the server

and capture broadcast and multi-cast packets.

e Carnivore |7, 8, 20|, a packet capturing system, has been developed by FBI.
It is designed to collect information about the electronic communication to or
from a specific user targeted in the investigation. Carnivore is quite different
from other tools as it performs filtering of packet based on a wide range of
filtering criteria specific to application level protocols. It functions through
wire-taps across gateways and ISPs. It is capable of monitoring users who
work on dynamic IP address based networks. It has capabilities to search the

application-level content for specific strings.

These monitoring tools mainly focus on network management and trouble shoot-
ing aspects. Though they have good protocol analysis capabilities, they have limited
on-line packet filtering capabilities. Carnivore has good filtering abilities but, it is

not available to any one.

1.2 PickPacket

PickPacket is a Network Monitoring Tool that is being developed at Indian Institute
of Technology Kanpur for the last three years. PickPacket can scan the network
traffic and copy selected packets for further analysis. The selection criteria for
the packets has been greatly improved compared to other existing tools of similar
kind. The criterion can be specified at several layers of network protocol stack -
IP addresses that belong to Network Layer, Port Numbers in Transport Layer, and
application level parameters like email-ids, user names, URLs, and search strings.
PickPacket has support for application layer protocols like SMTP, Telnet, HT'TP,
FTP, RADIUS, IRC, Yahoo chat and instant messages. Users can specify criteria for

each application protocol separately. The basic frame work, design and implemen-
tation of application layer filters for Simple Mail Transfer Protocol (SMTP) and
Telnet has been discussed in [12]. The design and implementation of application
layer filter for Hyper Text Transfer Protocol (HTTP) and File Transfer Protocol
(FTP) has been discussed in [18], for text string search in MIME-Encoded data
in [1] and for application layer filter for the Remote Authentication Dial In User
Service (RADIUS) Protocol in [11].

There are two levels of granularity, also called modes of operation, at which
the PickPacket can capture the packets. The two modes of operation are called
“PEN” and “FULL”. The Full mode of operation stores the whole connection, while
in PEN mode a minimal amount of information about the connection is stored.
Using these features judiciously will protect the privacy of users. The data stored
on the disk is analyzed off-line and it is made available to the user with separate
files for each connection. The tool will show summary of all connections as well as
provide capability to view the details of each connection.

This thesis discusses the addition of support for the mail access protocols, POP
and IMAP, in PickPacket. The mails accessed using these protocols can be captured
based on user names, mail-ids and strings. The captured mails are reconstructed

and the user is provided with capabilities to download or view the mails.

1.3 Organization of the Report

This report describes the extension of PickPacket to include monitoring of Post
Office Protocol - Version3 (POP3) packets [17] and Internet Mail Access Protocol
- Versiond4 (IMAP4) packets |2] in detail. Chapter 2 discusses the architecture and
design of PickPacket. Chapter 3 describes the design and implementation of POP3
Filter. Chapter 4 discusses the design and implementation of IMAP Filter. Chapter
5 discusses about the post-processor and data viewer for handling POP and IMAP
connections. Chapter 6 discusses the testing and performance results. The final

chapter concludes the thesis with suggestions on future work.

Chapter 2

PickPacket: Architecture and Design

This chapter discusses the architecture and design of PickPacket. The design of each
component is described briefly. Design and implementation issues are discussed in
detail in References [1, 11, 12, 18].

2.1 Architecture

PickPacket can be viewed as an aggregate of four components ideally deployed on

four different machines. These components are as follows.

e PickPacket Configuration File Generatoris a JAVA based GUI for creating the
configuration file. It can run either on a Windows or a Linux machine. The
user can specify different criteria for filtering the data which is subsequently

written to configuration files in a format that is understood by the filter.

o PickPacket Filter is deployed on a Linux machine. It takes the configuration
file as input. It sniffs packets from the network and stores those packets which
match the criteria specified in the configuration file. Filtering is done at dif-
ferent levels based on criteria like IP addresses, port numbers and application

layer information.

e PickPacket Post-Processor runs on a Linux machine. It processes the packets

stored on the disk and retrieves the meta-information from them and creates

a directory structure which is used by the Data Viewer.

o PickPacket Data Viewer is a web based GUI. It can be deployed on the same
machine where the post-processor is running. It takes the directory created
by the post-processor as input and displays the data in an interactive manner.

The user can access the captured data through a web server.

An architectural view of PickPacket is shown in Figure 2.1 in which each of these
components along with data-flow is shown.

PickPacket Configuration ; ; PickPacket
File Generator GUI PickPacket Filter

< - - -
i
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|

|

-

PickPacket DataViewer

Conlf files iles > |
> T 7 Dump Files I I : ——
= | [——] |

Browser

i PickPacket
' \._Data Viewer

Web Server

,,,,,,,,,,,,,,,,,,,,,,,,

Figure 2.1: Architecture of PickPacket

2.2 Design

This section describes the design of each of the four components in PickPacket.

8

2.2.1 PickPacket Configuration File Generator

The PickPacket Configuration File Generator is a JAVA based graphical user inter-
face where the user can specify the criteria by which the packets should be filtered.
This will generate two files, one containing the filtering rules and the other contain-
ing the configuration parameters. Both of these files have the same base name with
a different extension. The format of these files is similar to HT'ML, but with extra
tags. Sample configuration files are given in Appendiz A.

The first file with an extension .pcfg has three sections:

e The first section contains the settings of output files to store packets by Pick-
Packet Filter. This section contains a File-Prefix which is used to generate the
names of output files. File-Prefix is suffixed with a time stamp at which the
file is generated. The names of output files will be generated automatically
by the PickPacket Filter. The output file is changed periodically, so that the
old output file can be transferred for further processing. The change of output
file can be controlled either by specifying time or maximum size of file. This
section can also contain the settings for multiple output file managers so that
the captured packets can be stored in formats other than the default pcap [21]

format.

e The source and destination IP addresses along with port numbers are there
in the second section. The transport layer protocol and the application layer
protocol for each of the different combinations are also indicated. These are

used to demultiplex packets among different application layer filters.

e The third section comprises of multiple subsections, each containing the cri-
teria corresponding to an application layer protocol. These criteria are used
for filtering the packets at the application level filters. Here, the criteria for
SMTP, HTTP, FTP, Telnet, IRC, YAHOO-chat and instant messenger proto-
cols can be given. There is a subsection for specifying the strings which will
be matched in the payload of all packets. The mode of operation of the filter,
either PEN or FULL, is also mentioned for each application.

The second file with the extension .bcfg contains the number of simultaneous con-
nections that can be monitored by the application filter and the maximum number
of packets that can be stored before the criteria matches. These values are used for
the allocation of buffers by the PickPacket Filter. The default value is set to 500 for
each application protocol. This value should be chosen such that the system does

not run out of memory and no connections are missed.

2.2.2 The PickPacket Filter

PickPacket Filter is the only on-line component. It sniffs packets from the network
and writes the filtered packets onto disk. It filters packets based on the user specified
criteria, packets that do not match the criteria will be ignored. Filter maintains
the state for each connection that it encounters and stores packets if there is a
match. When the data in a packet matches the criteria specified in the configuration
file, all the previous packets of the connection (which are in memory) and all the
future packets on this connection are going to be stored. Effectively, filter stores
the connections which match the criteria instead of individual packets. This section
briefly describes the design of PickPacket Filter.

Filtering of packets is done at various levels.

e Basic filtering on network parameters (IP addresses, port numbers).

e Application level filtering based on criteria like host names, user names, etc.
e Filtering based on content present in the application payload.

The use of in-kernel filters [14] made the basic filtering very efficient. Only those
packets which match the network parameters are copied to the user space from
the kernel space. Since the content of application can be best deciphered by the
application itself, next two levels of filtering are combined.

Figure 2.2 illustrates various levels of filtering. Basic filtering is done on network
parameters. Filter reads packets from the network and those packets which match

the criteria will be sent to higher levels of filtering. Application layer filters look at

10

Criteria Based on Network Application Specific
Parameters Criteria and text strings

Y Y

Packet

Packet Packet

Basic Filter Application Layer Filtey

Network
Storage

Figure 2.2: Filtering Levels

packets for application layer criteria as well as keywords. If there is a match they
will be stored on to disk.

Each of the application layer protocol has a separate filter module. It looks
for the corresponding application layer specific criteria. This design has an added
advantage that it is easy to enhance the filter by adding filters for new application
layer protocols. Demultiplexer module present between the basic filter and the
application layer filters decides which application filter should receive the packet
for further processing. The decision is made based on the rules present in the
configuration file.

Application specific filtering includes application parameters and keywords. Ap-
plication parameters are extracted from the packet and are checked for match. Key-
words are matched in the application payload of packets. In case of communication
over connection oriented protocol, this text search handles situations where the de-
sired text is split across two or more packets.

Out of order packets are handled by TCP Connection Manager module present
between demultiplexer and application filer. It maintains the sequence information
of each connection and sends it to application filter. The design is efficient, and
it will handle only those connections that are of interest to the application layer
filter. Application layer filter can alert connection manager to maintain the sequence

information for a connection.

11

Output File
Options

Output File :
Options Application Layer Protocol
IP addresses | _ : Specific Criteria
Transport | =0 : :
Layer Protocol B
Options & .
Application | & >(" Filter Generator :
Layer Protoco} @ :
Specific ~ :
Ctitoria 5 : 4 dditional Filter Parameters 5
=T X
~§ - BPF Code Socket :
g~ :
e Basic Fi
o asic Filter
L= T . .
g, 3 Connection Packet + Apphcapon
g Manager Connection| Layer Filter
e Information A
o (A)
=S
o
5
© o
> Demultiplexer Output File
Manager
Packet
Alerts
Packet
Application
Connection | Packet + Layer Filter
Manager Connection)
Information
Legend: Packet

-..> Data Flow
— Control Flow

> Components

Figure 2.3: Basic Design of the PickPacket Filter

12

Figure 2.3 shows the major modules in the PickPacket Filter. The module In:-
tialize is used for initialization of all other modules based on the configuration file.
The Filter Generator module is used for generating the in-kernel BPF code. A facil-
ity to change the BPF code on-the-fly has been provided. Some of the application
filters needs to change the BPF code during its operation. For example in FTP,
during “PASSIVE” mode of file transfers, FTP filter [18] changes the BPF code.
Application filters can call the functions that generate the filter code and change it.
The Qutput File Manager module is responsible for storing the packets on to the
disk. This module is responsible for changing the output file names periodically.
The Demultiplezer is provided with a facility of calling the Qutput File Manager
directly so that the filter directly store the packets without calling any application
filter. The Connection Manager can also directly store packets to the disk. This is
required if all the criteria are matched for a specific connection which is still open.
More details of these modules can be found in [12].

The output file manager stores the output packets in pcap [21] file format. Utili-
ties like tcpdump can also be used to view the captured data. This standard format
allows us to use other tools for further analysis. A pcap file starts with 24 bytes of
pcap file header and contains information related to pcap version and the network
from which the packets were captured. This is followed by zero or more chunks of
data. Every chunk has a packet header followed by the packet data. The packet
header has three fields — the length and time of the packet when it was read from
network and the length of the packet when it was saved to the disk.

PickPacket Filter provides a text string search library. This library uses the
Boyer-Moore [19] string matching algorithm for searching strings. This library pro-
vides functions for both case sensitive and case insensitive search for text strings in
packet data. This library is used by all the application filters for searching the text

strings as well as application parameters.

2.2.3 PickPacket Post-Processor

PickPacket Post-Processor processes the output file which is generated by Pick-

Packet Filter. It separates the packets in the output file into different connections

13

based on network layer and transport layer information. It also gathers the applica-

tion layer specific meta information from these files. The objectives of Post-Processor

are as follows:

e Packets in the output file which belong to connection should be separated

based on communication tuple.

e The meta information about connections should be extracted and saved in a

format understood by the user.

The Post-Processor has three modules: the Connection Breaker, the Session

Breaker and the Meta Information Gatherer. These are shown in Figure 2.4.

; o @ Connection

Output file /- »@ (Session Breaker ----- E S}pé?]césﬁc

Intermediate files

[aj

I
o eta Information) »/ Meta Informatioy
E‘ Gatherer Legend
- B Data Flow

. O Module

/] Data Files

Figure 2.4: Post-Processing Design

The Connection Breaker module reads the output file of PickPacket Filter and
separates it into different files based on the 4-tuple i.e. source and destination IP
addresses and port numbers. The Session Breaker module takes each of these files
and divides it further if more than one session exists with the same 4-tuple. This
writes the packets in sorted order based on time stamp value, that is, the time

at which the packets were read off the network. The Meta Information Gathering

14

Module takes configuration file and connection specific files as input. It retrieves the
meta information for every connection. This module generates separate directory
for each connection. The connection directory contains all the meta-information
about that connection. The “tcpipinfo” file contains the IP addresses, port numbers,
transport protocol, application level protocol and the matched keywords in that
connection. Depending on the application level protocol there is a file for storing
the application specific meta data like hostnames and URI in HTTP connections,
usernames and filenames for F'TP connections etc. There are some more files created
by this module which will be needed by PickPacket Data Viewer.

2.2.4 PickPacket Data Viewer

PickPacket Data Viewer is used for rendering the post-processed information. This
is a web based graphical user interface written in PHP [9]. It is deployed along
with a web server. Web server access the data through PHP scripts and serve the
user requests. Data viewer can be deployed either on the same machine where the
post-processing is done or on a different machine. This section gives a brief overview
of data viewer.

Data viewer is provided with an authentication screen. The user can login in
two modes “ADMIN mode” and “User mode”. Admin can add users, delete users
and change their passwords. Users can only change their passwords. The Data
Viewer has a configurable data directory parameter which contains all the high level
directories generated by PickPacket Post-Processor. After logging in a user can select
any of these high level directories. The Data Viewer reads the Meta information
from that and lists all the connections showing MAC addresses, IP addresses, port
numbers, Transport Protocol, Application Protocol, RADIUS User and keywords
matched from the output of Post-Processor. Connection list can be sorted on any of
these fields. User can change his configuration to show or remove some of of these
fields. User can save the changes that are made in the configuration.

User can search among the captured connections. The search criteria includes
network parameters, application parameters and keywords. User can search on all

the fields that he specified in the configuration file. When a user sets a connection

15

filter for displaying the connection only those connections that match the criteria
will be displayed. A User can get back all the connection by setting the connection
filter to null i.e no filtering would be done.

On selecting a connection from the list of connections, the details of the con-
nection are shown. The details include network parameters and application param-
eters. The Data Viewer provides user with facilities like downloading the e-mails,
web pages accessed etc. The dialogue between communicating hosts can also be
seen in a dialogue window. The configuration file used for the filtering can also be
viewed. The connection-specific output file for each of the connection can also be

downloaded separately.

16

Chapter 3

Design and Implementation of the
POP Filter in PickPacket

This chapter discusses the design and implementation of the application layer filter
for Post Office Protocol - Version3 (POP3) [17] in PickPacket. First, a brief overview
of the protocol is given, with a focus on those features that are important for de-
signing and implementing the filter. Then the design and implementation details of

application layer protocol filter are presented.

3.1 POP Protocol Overview

The Post Office Protocol - Version3 is intended to access a mailbox of a user, located
on a remote server. POP protocol allows a user to retrieve mails that the server is
holding for the user. POP clients normally download the mails to local host and are
deleted from the server. The clients can be configured not to delete the mails from
the server.

Clients establish a TCP connection with the server on port 110. Server starts
the session by sending a greeting message, followed by the client commands and
the server responses. The POP session runs through a number of states during its
lifetime. With the server greeting message, session enters the AUTHORIZATION

state. In this state, the client must identify itself to the server. After a successful

17

authentication, the session enters the TRANSACTION state. In this state, the
client requests actions on part of the POP server by sending various commands.
POP server responds to each client command, this response can be either positive
or negative. Eventually POP session enters the UPDATE state and session ends.

These states and transitions between them are shown in Figure 3.1.

AUTHORIZATION state;

|
|
N D D D D - - -

! QUIT command

Figure 3.1: POP State Diagram

Section 3.1.1 discusses some of the authentication mechanisms used by POP.
Transactions are the command-response pairs that occur in TRANSATION state.

POP transactions are briefly discussed in Section 3.1.2

3.1.1 Authentication Mechanisms in POP Protocol

POP client can authenticate to the server in a variety of ways. Following are some

of the authentication mechanisms used by POP clients.

18

e The first mechanism is sending the username and password in plain text using
“USER” and “PASS” commands.

USER <username>CRLF
PASS <password>CRLF

The client sends the USER command. If the server responds with a posi-
tive response, then the client issues a PASS command. Server uses username
and password pair to check whether the client should be given access to the

mailbox.

e APOP is a mechanism in which the client sends the username in plain text,
and the MD5 digest of a time stamp and a shared secret between the client

and the server.
APOP <username> <digest>CRLF

If the server supports APOP mechanism of authentication, it sends the time
stamp in the initial greeting message. The “digest” parameter is a 16-octet

value which is sent in hexadecimal format.

e AUTH [16] command specifies the authentication mechanism to be used with
the server. The authentication protocol exchange consists of a series of server
challenges and client responses that are specific to the authentication mecha-

nism.
AUTH <mechanism>CRLF

Some of the supported authentication mechanisms are Kerberos-V4, CRAMMDS5,
LOGIN and GSSAPI.

After successful completion of authentication, the client can enter into TRANS-
ACTION state. Before entering this state, the server opens and locks the mailbox

belonging to this user.

19

3.1.2 Transactions in POP Protocol

POP transactions occur only in the TRANSACTION state. Retrieving mails, delet-
ing mails from the mailbox, getting list of mails and asking for mailbox status,
are various transactions of POP. The client sends a request command, the server re-
sponds with a positive or negative response. The general format of a client command

is as follows:
<COMMAND> <zero or more arguments> CRLF

Some of the examples of client commands are “RETR”, “DELE”and “STAT”. “RETR”
command will retrieve a mail from the server, “DELE” command marks a mail as
deleted and “STAT” command requests the status of mailbox. The responses from

the server are of the form:
+0K/-ERR <additional information> CRLF

Server responses can be multi-line; each of the line is terminated by a CRLF pair.
The final line in the response consists of a termination octet (".", ASCII 46) and a
CRLF pair.

On a successful “QUIT” command from TRANSACTION state the session enters
into UPDATE state. In this state, the server does all its updations on the mail-
box like deleting the marked mails and closes the mailbox followed by closing the
connection. A QUIT command from AUTHORIZATION state directly closes the
connection without entering into UPDATE state. A sample POP session is discussed

in Appendiz B.

8 Retrieve Command and Retrieve Reply

Retrieve command is used to fetch a mail from the server. This command can fetch

one mail at a time. The format of retrieve command is as follows:
RETR <msg>CRLF

<msg> is message-number which the client is requesting. The server responds with

a retrieve reply. The retrieve replies are of the form:

20

+0K <size> octetsCRLF

<mail data>

Positive responses for a ‘retrieve command’ are called retrieve replies. These re-
sponses are multi-line, first line contains +OK and the size of the mail data in
octets. Here ‘octets’ string is mandatory by which we are finding the retrieve re-
ply. The subsequent lines contain the mail body ending with a line containing a

termination octet.

3.2 POP Filter: Objective

The POP Filter captures the POP packets flowing across the network according to
the user specified criteria. Provisions have been made to specify usernames used for
authentication, email-ids of users found in “To:” and “From:” addresses, and text
strings to be searched in the mail body, including attachments. Filter will monitor
POP connections based on these criteria.

POP uses a single connection to retrieve all the mails on the server. The main
goal of the POP Filter is to capture only those mails which match at least one
criteria. We first match the username. If username does not match, this connection
is not to be monitored. If username matches (or username is not specified in criteria,
meaning any username matches), then we look for addresses and strings. The mails
which match the email addresses and strings specified in the configuration file are
stored, rest are ignored.

The user can choose among the two modes of operation: “PEN” mode and
“FULL” mode. In FULL mode, if a match occurs then the whole mail will be
stored, but in PEN mode, only the mail envelopes will be stored. In PEN mode
the body part of a packet containing both the header and the body will be replaced
with ’X’. There is limit on the number of packet to be stored before any criteria

match occurs, which is specified by the user.

21

3.3 POP Filter: Design and Implementation

This section discusses the design and implementation of POP filter in PickPacket.
POP Filter needs to monitor more that one connection simultaneously. All packets
belonging to a single connection may not come in order. So, POP filter should
maintain some state information corresponding to each connection that it come
across. This state information is initialized with the first packet of the connection
that POP filter encounters. Whenever a packet arrives then the state information
corresponding to that connection is updated.

In POP filter, username matching is done in AUTHORIZATION STATE of
session. The usernames are retrieved from the authentication commands and are
searched for a match with the once specified in the configuration file. If there
is a match then the filter continues to monitor the connection, else it ignores the
connection. Then in the TRANSACTION STATE, the transfered mails are captured
based on mail-ids and strings. Only those mails which match the mail-ids and strings
are stored.

Working of POP filter is shown in Figure 3.2. For every packet POP filter finds
the type of command in the packet. If the command is an authentication command,
then the username is retrieved and matched with the criteria. Match state is updated
accordingly. After a username match, if a packet contains a ‘retrieve reply’ then filter
start monitoring a new mail. Filter checks for mail-ids and strings in this packet as
well as subsequent data packets. When ever there is a match the Mail Flag is set
and the whole mail is stored. Termination sequence in any packet ends the mail.

POP Filter maintains a structure for each connection. This structure contains
the state information pertaining to that connection. Important members of this
structure are a command _packet list, command dump_flagand conn_match_state.
The command packet list is a list of command packets stored before a match oc-
curs. The command dump_flag identifies whether the command packet needs to
be stored in the memory or written to the disk. The conn_match state indicates
the matched state of the connection with respect to each criterion.

Whenever filter sees a new connection, it will allocate a structure for that con-

nection and starts monitoring the connection. For every packet of that connection,

22

DATA_PKT
AUTH_CMD Packet Type ? =

iRETR_REPLY

Retrieve the Username
Match the Username
if a match occurs
Match = USER

Mail_Started ==

Mail_Started = Yes
Intialize Mail_Info

/ -
Store packet in
command packet lis
Yes . No
Mail_Flag == Yes

Retrieve the mail-ids and
match with the criteria
match the content with strings
Update the match state

|Mail_Started =No |

Write the Packet to disk

Mail_Flag = Yes
Write the Stored packets *

4 Yes

Mail_match == Fu

No

Yes .
' Termination sequence ?

Clear the stored packets * No

Mail_Started = No Store it in list of mail packets
Forget the
packet

Figure 3.2: Working of POP Filter

23

it finds the packet type. Depending on the packet type and the connection match
state it will take corresponding action.

Figure 3.3 shows how the match states are updated. There are two match states,
one for the whole connection and the other for mail. For a new connection matching
starts with the “Username”. If there is a match or the Username count is zero,
the connection is marked as Username matched i.e. conn match state is set to
USERNAME MATCHED. Otherwise, the channel manager is alerted to ignore
this connection. If the number of email-ids and number of strings turns out to be
zero, the channel manager is alerted to store all packets of this connection without
sending them to the filter. All command packets are stored in the command packet
list in the structure maintained for the connection. When the first mail that matches
the user specified criteria is stored, the command packets stored in the list are also
written to the disk and a command dump flag is set. Once this flag is set, all the
command packets are directly written to the disk and not stored in the list in main
memory.

The next phase is selection of mails among the transferred mails. Matching in
mail starts with a ‘retrieve reply’ and ends with a ‘termination octet’. Matched
mails are written to the disk. First, POP filter extracts the “To:”, “From:” and “Cc:”
fields from the mail envelope and searches for the user specified mail-ids. Mails
which fail the mail-id matching are ignored. The string matching is done in the mail
body. Encoded attachments are decoded and searched for the strings. If there is
match then the whole mail is stored, else the packet is stored in the list of history
packets for the mail. Meanwhile, if a termination octet appears in the mail body
then the mail is ignored and the history packets are freed. This process continues
until the connection is closed.

At any time the filter maintains information about a single mail for each POP
connection. The filter has been implemented in such a way that this can be extended
to maintain the information about more than one mail which would be able to handle

out-of-order packets from the server.

24

Match == User
[l User_count ==

lYes

mail_id_cnt==0
&& string_cnt ==

o

Wait until
A new retreive command
(or) A retreive reply is found

Reject the Connection

N

Clear the Information

/

Dump the whole connection

Y

mail_Match == Mail-ID
|l mail_id_cnt ==

Ignore this mail

mail_Match == String
|l string_cnt ==

Store this mail

Is this the end of mail?

Figure 3.3: Connection match state diagram

25

Chapter 4

Design and Implementation of the
IMAP Filter in PickPacket

This chapter discusses the design and implementation of the application layer filter
in PickPacket for Internet Message Access Protocol - Versiond (IMAP) [2]. A brief
introduction of IMAP protocol is given and the major differences between it and
POP protocol are stated. This is followed by the design and implementation details

of application layer protocol filter.

4.1 IMAP Protocol Overview

IMAP is a message access protocol used to access and manipulate electronic mail
messages on the server. The Figure 4.1 shows different states and transitions between
the states.

When a client establishes a TCP connection with IMAP server, the server sends
a greeting message to the client. There are three types of server greeting messages:
BYE, PREAUTH, and OK. BYE greeting tells the client that server is not accepting
the client request and the connection is closed. Server sends a PREAUTH greeting
if the client has already been authenticated by external means. Client need not
do any authentication after a PREAUTH greeting from the server. After an OK

greeting the client needs to authenticate itself to the server. Depending on the

26

BYE greeting

SELECT

|
|

|

|

or v

: EXAMINE
REAUTH greetin Comman LOGOUT Command
ey TP B (DS ()

| |A “
- A Rerose commang |
OK greetmgI LOGIN : : !
or | | | :
AUTHENTICATE Fy I |
Command ', _ _ _ _LOGOUTCommand _ _ _ I
LOGOUT Command
(1) TCP Connection Established State Legend
(2) Server greeting
(3) Non Authenticated State O State
(4) Authenticated State - Transition
(5) Selected State
(6) Logout State
(7) Connection Close

Figure 4.1: IMAP State Diagram

27

greeting message, the session enters Logout or Authenticated or Non-Authenticated
states respectively.

Clients authenticate to the server by sending either a LOGIN or an AUTHENTI-
CATE command. Clients enter Authenticated state from Non-Authenticated state
on a successful authentication. SELECT and EXAMINE commands are used to
select a mailbox on the server. On selecting a mailbox the state changes to Selected
state. Clients can access and manipulate messages in the mailbox in the Selected
state. CLOSE command closes an open mailbox. Client can select another mail-
box after closing a mailbox. The CLOSE command changes the client state from
Selected to Authenticated. Issuing a LOGOUT command from Non-Authenticated,
Authenticated or Selected states leads the client to Logout state followed by closing
of the connection.

All messages in a mailbox has a message sequence number. The first message has
a sequence number ‘1’; and every successive message is given the next number as the
sequence number. Message sequence numbers are always consecutive, if a message
is deleted in between then the message sequence numbers are updated accordingly.
All messages in a mailbox have an ‘unique identifier’; it is a 64-bit number which
is unique within that mailbox. Other attributes of messages include Message Flags,
Internal Date, Size, Envelope and Body Structure. The ‘Message Flags’ contains
flags like Seen, Deleted etc. Message flags are changed when ever a client accesses
the message. These message flags can be changed explicitly by the client.

The client-server interactions in IMAP consist of a client command, server re-

sponses, and a server command completion response.

C: <tag> client command
S: * responcel

S: * responce2

S: <tag> command completion response

e All the client commands are prefixed with a tag. A tag is a small alpha-
numeric string, which is used by the server while sending command completion

responses. Clients use different tags for different commands.

28

“*’_ The server responses are also known

e The server response is prefixed with a
as untagged responses. These are used by the server to send either data or
status to the client. The server response can be a command continuation
request response. This response is used to request data from the client, this is
prefixed with a ‘4+’. On receiving a command continuation request response,
client sends some data which does not contain any tags. These are generally

used for authentication.

e The server command completion responses are also known as tagged responses.

This response indicates to the client that the command is completed.

IMAP authentication is done using either a ‘LOGIN’ command or an ‘AUTHEN-

TICATE’ command. The formats of these commands are:

<tag> LOGIN <username> <password>CRLF
<tag> AUTHENTICATE <mechanism>CRLF

LOGIN command sends the username and password in plain text. AUTHENTI-
CATE command tells the server the mechanism to be used for authentication. There
are many authentication mechanisms like KERBEROS V4, LOGIN, CRAM _MD5
etc. These are discussed in [15]. After the AUTHENTICATE command there is
an exchange of messages between client and server by which the authentication is
completed.

IMAP has facility to access the messages in a variety of ways. Clients can request
for message headers, message body, and attachments seperately. Clients request the
server for messages or parts of messages using a FETCH command. The format of

which is as follows:
<tag> FETCH <message sequence numbers> (list of data-items)

Fetch command can be used to request the server for a variety of data-items for which
the server responds with those values. Some of the data-items that can be fetched
are BODY|[<section>|, UID, BODYSTRUCTURE, ENVELOPE, FLAGS, RFC822,
INTERNALDATE. BODYSTRUCTRE data-item gives a structure of body com-
puted by the server by parsing the header fields. The data-item BODY|<section>|

29

is used to retrieve the mail body, the section tells which part of body to retrieve.
This section can be empty, ‘BODY]|’, in which case the whole body along with
attachments will be fetched. UID will request the server for the unique identifier
of the message. Fetch responses are untagged data responses and contain pairs of
data-item names and their values in parenthesis. Examples of fetch commands and

responses are shown below:

(@}

: a001 FETCH 3 (FLAGS RFC822.SIZE)
: * 3 FETCH (FLAGS (\Seen,\Flagged) RFC822.SIZE 847)
S: a001 OK FETCH Completed

wn

C: a002 FETCH 3 (UID BODY[HEADER])
S: % 3 FETCH (UID 12543789 BODY[HEADER] (<mail header>))
S: a002 OK FETCH Completed

IMAP has a command called ‘UID’. UID is used with other commands like Fetch,
Store and Copy. But, here unique identifier is used instead of message sequence

numbers. An example of UID command with Fetch is:
<tag> UID FETCH 2345634 (FLAGS BODY[])

IMAP also supports some advanced features like using TLS for client-server
communication. With a ‘STARTTLS’ command there is a TLS negotiation between
the server and the client, all the communication followed by this command will be

encrypted.

4.2 Differences between IMAP and POP

Both mail access protocols, POP and IMAP, have their own advantages and dis-
advantages. The following are some of the primary differences between the two

protocols.

e The default behavior of POP clients is to delete accessed message from the
server. In case of IMAP, the messages have to be deleted explicitly. POP

clients have an option to tell the server to keep the message with it.

30

e POP server locks the mailbox while it is being accessed, no other client can
access it until the lock is released. IMAP locking mechanism is improved so
that mailbox can be accessed simultaneously and the integrity of mailbox is

maintained.

e IMAP has facility for accessing only the message headers which reduces the
time to notify the clients about new mail messages. POP clients can only

request for the whole message.

e In IMAP, clients can also upload some messages to the server. The IMAP
server’s mailbox will be synchronized with the client’s mailbox when ever the
client connects or disconnects from the server where this feature is not available
with POP. POP clients download all new messages to the local machine once

it connects to the server.

e IMAP supports more than one mailbox where POP server can have only one
mailbox “INBOX”. POP clients maintains folders locally which are not known

to server.

4.3 IMAP Filter: Objective

IMAP Filter captures packets of IMAP connections flowing across the network ac-
cording to the user specified criteria. User can specify ‘usernames’ used for authen-
tication, ‘email-ids’ of users found in “To:” and “From:” addresses, and ‘text strings’
as filtering criteria. IMAP filter captures connections in which the criteria matches.

IMAP uses a single connection to retrieve more than one message from the server.
The main goal of the IMAP Filter is to capture only those messages which match
the criteria. Once username is matched, then we are storing only those messages in
which we find an email-id and a string specified by the user.

The user can choose between the two modes of operation: “PEN” mode and
“FULL” mode. In FULL mode if a match occurs then whole message will be stored,

but in PEN mode only the mail headers will be stored. In PEN mode, if a packet

31

contains both the header and message body, the body part will be replaced with
X,
User can specify a limit on the number of packets that are stored before a match

OocCcurs.

4.4 IMAP Filter: Design and Implementation

For each connection, filter first checks for the username. If the username matches
with any one of the usernames specified by the user then the filter starts looking
for messages, else ignores the connection. When ever a message is retrieved by
the client, filter extracts the “To:” and “From:” addresses and checks for mail-id
match. Mails with mail-id match are searched for the keywords in mail body and
the decoded attachments. Fully matched emails are stored on the disk.

When ever a packet comes to the filter it finds the type of command in the packet.
Depending on the command, corresponding action is taken and the state information
is updated. If it is an authentication command, username is extracted from it and
checked for any match. Fetch responses and the mail data packets are handled by a
separate module which will check for email-id and string matching. These packets
will be sent to Fetch Response Parser which is discussed in the Section 4.4.1. The
sessions using TLS for communication cannot be checked for a match. STARTTLS
command indicates to the filter that session is encrypted and the connection can be
ignored.

The IMAP filter maintains a state information for each connection that it comes
across. Each packet that belongs to this connection changes the state of the con-
nection. This state information is initialized with the first packet in the connection.
The important items in the state information are the state of the IMAP session,
information about the mail that is being processed, and the matched state infor-
mation of the connection. There is a global flag “Criteria_with Zero Usernames”
which is set when there is at least one IMAP criteria without specifying username.

The username is matched when the connection is in Non-Authenticated state.

The flag Criteria_ with Zero Usernames is used to filter the connections in which

32

username is missing or we are unable to find username. For example, when the filter
starts looking at a session from middle (we cannot get username) then if the flag is

not set we can ignore the connection.

4.4.1 Parsing FETCH Response

Parsing fetch responses plays a key role while designing IMAP filter. The parser has
been designed with an assumption that fetch responses containing message data for
different messages come in different packets, i.e., fetch response with a message data
does not come along with message data of another mail. But, a packet can contain
more than one fetch response each containing no message data. In the subsequent
discussion this parser is referred to as FRParser. Figure 4.2 shows the working of
FRParser.

Y

conn_sub_state
==IMAP_PROCESSING_MAIL ?

data_item

]

I

]

: Get the next - - - - - — — — - i
I

1

! I

I

1

I
1 Yes
\l

conn_sub_state

I

|

I

|

I

|

! Get the mail data and look for = IMAP_PROCESSING_MAIL Yﬁ Ignore
\ mail-id match followed by A the packet
I

I

I

I

|

I

|

I

|

search string match

If there is a match store the mail

VNO

data_item ==
Mail_Data ?

;No

Y
Ignore -
the packet Skip the value | ---------
of data_item

Figure 4.2: Parser for Fetch Responce

33

There are two types of packets that come to the FRParser: the fetch responses
and the mail data packets. Fetch responses are parsed to obtain the data-items and
their values. If the data-item correspond to the mail data then the value contains
the message. Whenever the data-item is mail data the connection sub state is
set to “PROCESSING_MAIL _DATA”. The value part is mail content. Email-ids
are matched in the “To:”, “From:” and “Cc:” fields of mail envelope. Keywords
are matched in the mail body and decoded attachments. If the packet is a mail
data packet and the connection sub_state is PROCESSING MAIL DATA then
email-ids and keywords are matched. The mails which match both email-ids and
keywords are stored, the rest are ignored.

As IMAP client can request for mails in parts, we can combine them if they
come in successive fetch commands. If response contains an attachment of a mail,
the message sequence number and the unique identifier are compared with that of
previous mail. If either of them are same, it means that they belong to the same
mail. If the previous mail is stored then this attachment is also stored, otherwise it
is ignored.

The data-items BODY||, BODY|TEXT /<section id>|, RFC822, RFC822.TEXT
come under the category of mail data. The FRParser iterates on the packet until it
encounters a data-item that corresponds to the mail data. If the end of response is

reached, then the packet is ignored.

4.5 IMAP Filter: Limitations

The following are the limitations of IMAP filter.

e Clients can request for different parts of mail at different times. Clients can
request for the structure of mail, what attachments it has, what are the types
of attachments and the attachments themselves. Consider a scenario in which
a client requests for mail body and the MIME headers of attachments. Then
another mail is accessed, followed by the attachments of the earlier mail. In
this case, the attachments cannot be correlated with mail message, and hence

ignored.

34

e Usernames cannot be found if the authentication mechanism involves some en-
cryption. For example, username is encrypted in case of authentication mech-
anisms like KERBEROS and GSSAPI. However, the mechanisms in which
encoded usernames are sent, they are decoded to find a match. LOGIN mech-
anism uses Base64 encoding, which the filter can decode before checking for

usernames.

35

Chapter 5

Post-Processor and Data Viewer for
POP and IMAP

This chapter describes the design for post-processor and data viewer of POP and
IMAP packets. Post-processor retrieves meta-information for each connection, and
the data viewer displays the captured data. This chapter has two sections, one for

the post-processor and the other for data viewer.

5.1 Post-Processor Design

The Post-Processor reconstructs the whole connection and retrieves the meta infor-
mation. In case of POP and IMAP connections, the meta data includes the “To:”
addresses, “From:” addresses, Subject, matched keywords, and the mail content.
Each of the captured mails will be written into a separate file in a format that
is understood by mail clients. The meta information is written into a file named
“popinfo” and “imapinfo” for POP and IMAP connections respectively. These files
are in “.ini” file format which can be easily parsed by using standard libraries. The
matched keywords for the connection, which is the union of the matched keywords
per mail, are written into the “tcpipinfo” file. The format of both the files are similar
as shown in Table 5.1:

The Meta Information Gatherer module of the Post-Processor demultiplexes the

36

username — "<captured username>"

[maill]

to = "To addresses separated by spaces"

from = "From address"

cc = "Carbon copy addresses separated by spaces'
time = "time at which the message is captured"
mailfile = "filename.em]"

keywords = "matched keywords"

[mail2]

.[mailn]

Table 5.1: Format of meta-information file for POP and IMAP connections

connections among different meta-handlers. There is one meta-handler for each
supported protocol. POP meta-handler takes sorted connection-specific output file
as its input. It reads each packet from the file and then finds the type of packet. If
it is an authentication command, it will retrieve the username from that packet and
will write it in “popinfo” file. Whenever it finds a ‘retrieve’ command or a ‘retrieve’
reply, it starts writing a new e-mail file. It will consider all successive packets as the
mail data packets until it finds a "CR LF . CR LF" sequence (CR is Carriage Return
and LF is Line Feed) in a packet or a new client command. The mail content will be
decoded and checked for strings matched in the mail body as well as attachments.
At the end of each mail, “To:”, “From:”, “Cc:” and Subject are retrieved from the
e-mail file and written as a record in the “popinfo” file.

IMAP meta-handler behaves in a similar way, except that it will start a new
mail on ‘fetch response containing mail data’. The successive mail data packets
are considered as packets belonging to that mail. The mail is considered to have
ended when it comes across a packet that does not have mail content. All the
‘fetch responses containing mail data’ are not considered as a new mail. If the mail
content corresponds to an attachment, then it checks whether message sequence
number or unique identifier is same as previous mail. If either of the two matches

then this response is considered as a part of the previous mail and written in the

37

same email file. The username is found from the authentication commands: LOGIN
and AUTHENTICATE. This will write similar records in “imapinfo” file, along with

the username.

5.2 Data Viewer Design

In this section data viewer is explained in detail with snapshots. Explanation in-
cludes snapshots of each screen and usage of it. The italicized words in each screen
are hyper links to other screens.

When an user connects to the data viewer, he has to authenticate himself by
providing a username and password. Figure 5.1 is the snapshot of the login screen.
After logging in, user needs to select a output file among the list of files in the data

directory. As shown in Figure 5.2, output files in the data directory are listed.

PickPacket DataViewer (Web Edition)

Please login to start

Logm: []
Password: []

Figure 5.1: Snapshot of Login Screen

After selecting a output file, data viewer provides the user with a screen contain-
ing a list of all connections in the output file. Data viewer displays IP addresses,
port numbers, transport protocol, application protocol and the list of matched key-
words for each connection. User can select among the connections for details. User
can filter these connections by applying a Connection Filter. Connection Filter can
filter the stored connections based on all the criteria parameters specified in the
configuration file. We can restore all the connections by applying a null filter. The
snapshot of select connection screen is shown in Figure 5.3 and Connection Filter
screen in Figure 5.4. Once a connection is selected, the details of the connection are

displayed.

38

PickPacket DataViewer

You are logged in as admin

Logout Options

UserAdministration

You are here:.Select Dump

Help

Select Dump

You are here: $datadir

dumpl

e dump?2

e dump3
A% dump4

Figure 5.2: Snapshot of Select Directory Screen
PickPacket DataViewer

You are logged in as admin

You are curently examining dump pop_imap_dump

Logout Options

UserAdministration

Connection Filter

You are here: Select Dump B Select Connection

Help Filter Configuration

‘ Select Connection

Displaying connections 15 to 30 of 43 eligible connections.

Prev Next connections per page

Application Protocol Source IP Dest. IP Source Port | Dest.Port Start Time End Time Keywords
POP 172.27.2.5 | 172.27.16.2 55347 110 16/4/05 06:10:22| 16/4/05 06:10:42 | india pickpacket
IMAP
SMTP
HTTP

39

Figure 5.3: Snapshot of Select Connection Screen

PickPacket DataViewer
You are logged in as admin
You are curently examining dump pop_imap_dump

Logout Options UserAdministration

You are here: Select Dump W Select Connection ™= Connection Filter

Help Filter Configuration

Connection Filter

TCP/IP Level Filtering Options

Client IP addresses: I:l
Keywords EE—

Telnet connections? [
O IRC connections?
IMAP connections?

HTTP connections?

POP connections?
YAHOO connections? []
OTHER connections? [

Telnet Filtering Options

Userids: []

HTTP Filtering Options

Hoslnamel:l URlPathl:l
SMTP Filtering Options

Mail address| |
POP Filtering Options

Username[| Mailaddress[]
IRC Filtering Options

Nickname[| Channelnamd |
FTP Filtering Options

Username[| Filename[|
YAHOQO Filtering Options

Username [Yahoo o[

IMAP Filtering Options
Username L | Mailaddress]

Server IP addresses: I:l RADIUS Usersl:l

O SMTP connections? [
O FTP connections? O
O

Chawroom[]

Figure 5.4: Snapshot of Connection Filter Screen

40

We have added support for POP and IMAP in data viewer. The details of
POP/IMAP connection contains a list of mails with “To:” and “From:” addresses,
Subject, and a link to the email file that can be opened or downloaded. The Fig-
ure 5.5 shows a snapshot of data viewer for a POP connection. IMAP detail screen
is similar. The connection details screen consists of network parameters, meta in-
formation of application protocol and the keywords matched. Each row in the table
corresponds to a mail transfered in that connection. From the message column of

the table, the e-mail file can be downloaded.

PickPacket DataViewer

You are logged in as admin You are here: Select Dump B Select Connection B Connection Details
You are curently examining dump pop_imap_dump
Logout Options UserAdministration Help Filter Configuration

Connection Details

Transport Protocol: TCP Application Protocol: pop

Source MAC: 0:7:€9:9:26:12 Dest. MAC: 0:¢0:b0:64:71:17
RADIUS User: Source IP: 1722725

Dest. IP: 172.27.16.2 Source Port: 50837

Dest. Port: 110 Start Time: 8/8/04 04:02:00
End Time: 8/8/04 04:02:06 Keywords: Milind

View Connection Dialog ~ Download Packet Dump

POP specific connection details

Username: ananth

from to copy to blind copy to on subject g keywords

maill @xyz.com toaddress @xyz.com ccaddress@xyz.com | becaddress@xyz.com| This is subject | download| matched keywords|

Figure 5.5: Snapshot of Data Viewer for POP /IMAP connections

The user can search amongst the captured connections for the specific keywords
or email-ids or usernames. This feature increases the flexibility in using the data
viewer. The user can download the connection-specific output file (file that contains

the packets belonging to a single connection in peap [21]| format) by clicking on

41

Download Packet Dump, to use it with other publicly available tools. Data viewer
can show the application protocol conversation between the client and the server.
User can view it by clicking on View Connection Dialog. User can navigate amongst

the screens by clicking on links in the top right corner.

42

Chapter 6

Correctness Verification and

Performance Evaluation

In this chapter we discuss how we have tested the software after adding the new
modules. In the performance evaluation we have whether the software is able to
handle traffic at line speed on a 100 Mbps ethernet.

6.1 Testing

Correctness testing is done two phases. First one is to verify whether the new
application filters are working properly. In the second phase, the whole software is
tested for the correctness. Here, correctness means whether the packets stored by
the PickPacket Filter are as per the criteria specified.

In the first phase, various tests were conducted to ensure the correctness of the
newly added filters. POP and IMAP filters were tested specifying various criteria
for filtering the connections. Post-Processor is tested to check whether the captured
mails are reconstructed properly. Testing was done both for PEN mode and FULL
mode of operation.

All the tests were conducted in the lab. The test setup includes two machines.
One machine running PickPacket Filter. The other machine was used to generate

the traffic by access various mail servers. Both these machines are connected to

43

a hub to the outside network. Filtering parameters of POP and IMAP filters are
usernames, email-ids and keywords. Eight different types of criteria can be generated
depending on whether each parameter is present or absent. Different configuration
files are generated with all possible combinations of filtering parameters. We have
run the filter with each of the configuration parameters on the same traffic. For each
configuration, we know what connections are to be stored and what mails are to be
stored in each connection. We found that the filter is storing the expected data in
each test.

In the second phase, the tests conducted ensured that all components of soft-
ware are working properly. Filter is tested specifying filtering parameters of all
supported protocols. Traffic consisting of packets belonging to all supported proto-
cols is generated and Filter is tested on this traffic. Traffic consists of few thousands
of connections which we know apriori. Filtering criteria are specified such that a
known number of different connections are stored among them. The behavior of
filter on this traffic with the specified configuration is as expected, from this we
conclude that PickPacket filter is working properly. Post-processor is tested to en-
sure that the reconstruction and meta data extraction are done correctly. Both the

modes of operation are tested throughly.

6.2 Performance Evaluation

The experiments conducted for performance evaluation are similar to experiments
described in [12, 18]. If the packets read by PickPacket filter with some filtering
parameters and a sniffer which counts number of packets are same, then packets
are not dropped because of application filter load. PickPacket filter was run on two
machines simultaneously on the same network. First one simply counts the number
of packets and the second one filters the packets based on user specified criteria.
Two instances of PickPacket filter were run on two identical machines. The
configuration of both PCs was: Intel Pentium 3.6 G Hz CPU, 2GB RAM with
PCI-X bus architecture. Both the machines were running on Redhat Linux 9 with
2.4.20-8 kernel and were connected to a 100 Mbps hub. PickPacket filter was run

44

on one machine without any application layer filtering criteria. It simply writes the
packet to /dev/null. This is referred to as counting sniffer. PickPacket filter was
run on the other machine using a configuration file containing filtering criteria. This
is referred to as filtering sniffer. This instance was configured to write the packets

on to disk. Test setup is as shown in Figure 6.1

Clients generating HTTP,FTP,SMTP and Telnet traffic

alls]lc
A
Cli POP, IMAP Y
Acccle?slitlslg IRC and Yahoo |« UPlink Outside
Mail servers and Traffic Hub Network
Chat server 7 N
/ \
/ \
/ \
4 1
Legend Counting Filtering
<—= Two-way Traffic Sniffer Sniffer

-~ * One-way Traffic

Figure 6.1: Test Setup for Performance Evaluation

Instead of evaluating the performance of PickPacket Filter only on new protocols,
we have generated traffic that include packets of all supported protocols. We are
intended in evaluating the performance of the software on a typical mix of flows that
we find in Internet. Hence HT'TP, FTP and SMTP form a large fraction of traffic
generated. Traffic consisting of HT'TP, FTP, SMTP and Telnet traffic was generated
using scripts. POP and IMAP connections were opened from five different machines
whose packets passed through the hub. This traffic also included some IRC and
Yahoo Messenger packets.

Configuration files were generated containing the criteria specific for each sup-
ported protocol. The criteria for application protocols POP and IMAP included
100 usernames, 100 email-IDs and 100 keywords. The PickPacket Filter perfor-
mance was tested with these configuration files. Both the sniffers (counting sniffer
and filtering sniffer) are started manually at the same time and ran for the same

time (6 minutes). In one experiment Counting sniffer processed 3533100 packets

45

and filtering sniffer processed 3527900 packets. The small difference in number of
packets is due to the delay while starting the sniffers manually.

The testing is done generating traffic at slow rates and increasing the speed
of traffic. We have found that PickPacket filter can handle traffic without loss of
information at line speed on a 100 Mbps Ethernet segment. The line speed that can
be achieved on a 100 Mbps network segment is around 65 Mbps, which we were able
to handle. We have measured the usage of processor and memory while running the
filter and found that they were less than 50% utilized even at peak. Therefore, the

filter can easily run at much higher speeds.

46

Chapter 7
Conclusions and Future Work

PickPacket is a network monitoring tool that can capture packets flowing across the
network and store some of the packets which match the user specified criteria. The
criteria for filtering of packets ranges from network parameters like IP addresses and
Port Numbers to application level parameters like Usernames, Email-Ids, URLSs etc.
The tool can operate in two modes capturing the whole connection or only appli-
cation protocol meta information. Judicious use of PickPacket can help protect the
privacy of individuals by capturing only the packets which match the user specified
criteria. The storage format of packets is standard pcap format which is used by
many publicly and commercially available tools. This adds the flexibility of using
other processing and rendering tools, other than those provided by PickPacket.

We have added support for two mail access protocols “POP” and “IMAP” in all
components of PickPacket. User can specify the user names, email-ids, and keywords
as criteria based on which the PickPacket can capture emails. POP and IMAP
application filters are designed and implemented. The Post-Processor was extended
to extract meta-information and separates the mails accessed in a single POP /IMAP
connection. Data Viewer which renders the captured data is updated with the
support for new protocols. It provides the facilities to download the separated
mails.

Various tests were conducted to test the functionality of POP Filter, IMAP
Filter modules. We found that the PickPacket can handle traffic at line speed on a

47

100 Mbps Ethernet segment that is up to 70 Mbps. As CPU and memory are not

utilized exhaustively, the filter can work at much higher speeds.

7.1 Future Work

PickPacket has support for application layer protocols like HT'TP, FTP, SMTP, Tel-
net, IMAP, POP, IRC and Yahoo-messenger protocols. There is scope for extending
the support for more protocols. PickPacket currently works on IPv4 packets. As
use of IPv6 is growing, the support for this Internet Protocol needs to be added.
Nowadays, HTTP servers and clients are using compression for the data transfer,
i.e., servers are sending the requested data in a compressed format and clients will
decompress it on the fly and display it to the user. Currently the HT'TP module is
unable to handle compressed HT'TP data. As on-line compression becomes a norm
for web servers, this functionality will become crucial in near future. Currently we
support IRC and Yahoo chat protocols, MSN messenger is another popular chat
application. Support for this needs to be added.

48

References

[1] ApiTYA, S. P. “Pickpacket: ~ Design and Implementation of the
HTTP postprocessor and MIME parser-decoder”, Dec 2002. BTP,
Department of Computer Science and Engineering, IIT Kanpur,
http://www.cse.iitk.ac.in/research /btp2003,/98316.htmnl.

[2] CrisPIN, M. “Internet Message Transfer Protocol”. Tech. rep., 2003.
http://www.ietf.org/rfc/rfc3501.txt.

[3] DEGIOANNTI, L., Risso, F., AND VIANO, P. “Windump”. http://netgroup-

serv.polito.it/windump.
[4] ET AL., G. C. “Ethereal”. Available at http://www.ethereal.com.
[5] “Etherpeek nx”. http://www.wildpackets.com.
[6] “Gigapeek nx”. http://www.wildpackets.com.

[7] GRAHAM, R. “carnivore faq”. http://www.robertgraham.com/pubs/carnivore-
faq.html.

[8] “How Carnivore Works”. http://www.howstuffworks.com /carnivore.htm.
[9] “PHP:Hypertext Preprocesor”. http://www.php.net.

[10] JAcoBsoN, V., LERES, C., AND McCCANNE, S. “tcpdump : A Network
Monitoring and Packet Capturing Tool”. Available via anonymous FTP from

ftp:/ /ftp.ee.lbl.gov and www.tcpdump.org.

49

[11] JaiN, S. K. “Implementation of RADIUS Support in Pickpacket”. Master’s
thesis, Department of Computer Science and Engineering, IIT Kanpur, Apr
2003. http://www.cse.iitk.ac.in/research/mtech2001/Y111122.html.

[12] KAPOOR, N. “Design and Implementation of a Network Monitoring Tool”.

Master’s thesis, Department of Computer Science and Engineering, II'T Kanpur,
Apr 2002. http://www.cse.iitk.ac.in/research/mtech2000/Y011111.html.

[13] “LANDecoder”. http://www.triticom.com.

[14] McCANNE, S., AND JACOBSON, V. “The BSD Packet Filter: A New Ar-
chitecture for User-level Packet Capture”. In Proceedings of USENIX Winter
Conference (San Diego, California, Jan 1993), pp. 259-269.

[15] MYERS, J. “IMAP4 Authentication Mechanisms”. Tech. rep., 1994.
http://www.ietf.org/rfc/rfc1731.txt.

[16] MYERS, J. “POP3 AUTHentication command”. Tech. rep., 1994.
http://www.ietf.org/rfc/rfc1734.txt.

[17] MYERS, J., AND ROSE, M. “Post Office Protocol”. Tech. rep., 2001.
http://www.ietf.org/rfc/rfc1939.txt.

[18] PANDE, B. “Design and Implementation of a Network Monitoring Tool”. Mas-
ter’s thesis, Department of Computer Science and Engineering, IIT Kanpur,
Sep 2002. http://www.cse.iitk.ac.in/research /mtech2000/Y011104.html.

[19] R., B., AND MOORE, J. “A fast string searching algorithm”. In Comm. ACM
20 (1977), pp. 762-772.

[20] SmiTH, S. P., Jr., H. P., KrReENT, H., MENCIK, S., CRIDER, J. A,
SHYONG, M., AND REYNOLDS, L. L. “Independent Technical Review
of the Carnivore System”. Tech. rep., IIT Research Institute, Nov 2000.
http://www.usdoj.gov/jmd/publications/carniv_ entry.htm.

[21] V., J., C., L., AND S., M. “pcap - Packet Capture Library”, 2001. Unix man
page.

a0

Appendix A

Sample Configuration Files

A.1 Configuration File with Filtering Criteria (.pcfg)

This is a sample configuration file with filtering criteria
A hash(#) is used for comments

This file has several sections

Sections start and end with tags similar to HTML.

Tags within sections can start and end subsections or can be tag-value pairs.

#
#
#
#
#
All the tags that are recognized appear in this file.
First Section specifies the sizes and names of the dump files
The Second Section specifies the source and destination IP ranges
the source and destination ports, the protocol and the application
that should handle these IPs and ports
The next sections describe the application specific
input criteria.
HkrorokokkkokokkkkokkFLirst Sectiomskskkskskoskkskskskskskkok sk kkokoksk ok k k ok sk kK
<0utput_File_Manager_Settings>

<Default_Output_File_manager_Settings>
File_Prefix is the name used to generate the dump filename suffixed with
the time stamp at which the file is created

File_Prefix=generaltest

ol

If the dump file has to be changed based on size then this field is having
value yes

Size_Based=yes
This field exists when the Size_Based is yes this tell the size of dump

file in Mega Bytes
File_Size=100
Time_Based attribute tells if the change of dump file is based on time also

Time_Based=yes

+*

This field exists when the Time_Based is yes this tell the time period in

+*

minutes

Time_Period=60
</Default_Output_File_manager_Settings>
</0Output_File_Manager_Settings>

HrkkkkokkkkkkkkkEnd of First Sectiomkkskskskokskskskkskkskokskskskokkkkkkkk

C: RETR 1

S: +0K 120 octets

S: <the POP3 server sends message 1>

S:

HkrokkokkkokokkkkkkSecond Sect 1 omkkkskskkkskokkkkokskkkokk kK k ok ok kK Kok k
The basic criteria here are for the Device and
SrcIP1:SrcIP2:DestIP1:DestIP2:SrcP1:SrcP2:DestP1:DestP2:ProtoA:App
Should be read as For the range of source IP from SrcIP1 to SrcIP2

For associated ports from SrcPl to SrcP2

and For the range of destination IP from DestIP1 to DestIP2

and FOR Protocol ProtoA
monitor connections according to Application App
Protocols can be UDP or TCP

#
#
#
#
#
For associated ports from DestPl to DestP2
#
#
#
Applications for TCP are

#

SMTP, FTP, HTTP, TELNET, POP, IMAP, IRC, YAHOO, RADIUS, TEXT, DUMP_FULL, DUMP_PEN

92

Applications for UDP are
DUMP_FULL, DUMP_PEN

No further specs are required for DUMP kind of applications.

Do not mix too many applications for clarity

Take care that IPs Ports and applications do not conflict

<Basic_Criteria>
DEVICE=ethO
Num_0f_Criteria=10

Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.
Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.
Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.
Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.
Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.
Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.
Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.
Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.
Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.

</Basic_Criteria>

O O O O O O O O o
O O O O O O O O o

:1024-65535:
:1024-65535:
:1024-65535:
:1024-65535:
:1024-65535:
:1024-65535:
:1024-65535:
:1024-65535:
:1024-65535:

25-25:TCP: SMTP
20-20:TCP:FTP
21-21:TCP:FTP
110-110:TCP:POP
143-143:TCP: IMAP
23-23:TCP:TELNET
80-80:TCP:HTTP
143-143:TCP: TEXT
1024-65535: TCP: DUMP_FULL

#rkkxxkkokkkEnd of Second SectiomskskskskskskskskskskskkokkokskskskskskkokkkkokkkD>

rkokkokkkkkkkApplication Specific Specificationskkkkkk

Here the criteria corresponding to different application level

protocols are specified

#rkkkkkkkkkokkokk IMAP Specificationskkkxkx
<IMAP_Criteria>
NUM_of_Criteria=2
<Usernames>
Num_of_Usernames=1
Case-Sensitive=no

Username=sudheerv

a3

</Usernames>
<Search_Email_ID>
Num_of_email_id=2
Case-Sensitive=yes
E-mail_ID=ananth
E-mail_TID=deshaw
</Search_Email_ID>
<Search_Text_Strings>
Num_of_Strings=0
</Search_Text_Strings>
<Usernames>
Num_of_Usernames=1
Case-Sensitive=no
Username=sudheer
</Usernames>
<Search_Email_ID>
Num_of_email_id=1
Case-Sensitive=yes
E-mail_ID=deepak
</Search_Email_ID>
<Search_Text_Strings>
Num_of_Strings=2
Case-Sensitive=no
String=pickpacket
String=IMAP
</Search_Text_Strings>
</IMAP_Criteria>

rkokkokkokkokkokkkkEND of IMAP Specificationskkkkksk

ok kokkokkkkkkkxkxPOP Specifications******

<POP_Criteria>

o4

NUM_of_Criteria=2
<Usernames>
Num_of_Usernames=1
Case-Sensitive=no
Username=ananth
</Usernames>
<Search_Email_ID>
Num_of_email_id=2
Case-Sensitive=yes

E-mail_ID=sudheer

E-mail_ID=sybase

</Search_Email_ID>
<Search_Text_Strings>
Num_of_Strings=0
</Search_Text_Strings>
<Usernames>
Num_of_Usernames=1
Case-Sensitive=no
Username=jainbk
</Usernames>
<Search_Email_ID>
Num_of_email_id=1
Case-Sensitive=yes
E-mail_ID=dheeraj
</Search_Email_ID>
<Search_Text_Strings>
Num_of_Strings=2
Case-Sensitive=no
String=sachet
String=P0OP

</Search_Text_Strings>

99

</POP_Criteria>

#rorxkokkokokokkkkkEND of POP Specifications*kkkkk

krkkkkkkkkkkxkSMTP Specificationskkkkkx
<SMTP_Configuration>
<SMTP_Criteria>
NUM_of_Criteria=2
<Search_Email_ID>
Num_of_email_id=1
Case-Sensitive=yes
E-mail_TID=sudheerv@cse.iitk.ac.in
</Search_Email_ID>
<Search_Text_Strings>
Num_of_Strings=1
Case-Sensitive=yes
String=PickPacket
</Search_Text_Strings>
<Search_Email_ID>
Num_of_email_id=2
Case-Sensitive=yes
E-mail_ID=ananth@iitk.ac.in
E-mail_ID=jainbk@hotmail.com
</Search_Email_ID>
<Search_Text_Strings>
Num_of_Strings=0
</Search_Text_Strings>
</SMTP_Criteria>
Mode_0f_Operation=full
</SMTP_Configuration>

#rrorkkkkkkkEND of SMTP Specificationskkkkksk

o6

rrrkkkkkkkFTP Specificationskkkkxkx
<FTP_Configuration>
<FTP_Criteria>
NUM_of _Criteria=1
<Usernames>
Num_0Of_Usernames=2
Case-Sensitive=no
Username=puneetk
Username=jainbk
</Usernames>
<Filenames>
Num_0Of_Filenames=1
Case-Sensitive=no
Filename=test.txt
</Filenames>
<Search_Text_Strings>
Num_0f_Strings=1
Case-Sensitive=yes
String=book secret
</Search_Text_Strings>
</FTP_Criteria>
Monitor_FTP_Data=yes
Mode_of_Operation=full
</FTP_Configuration>

#rrxokkkokkkEND of FTP Specificationskokkkxx

#rkkkkxkxkrokkkHTTP Specificationskkkkxk
<HTTP_Configuration>
<HTTP_Criteria>
NUM_of_Criteria=1

<Host>

o7

Num_0Of_Hosts=1
Case-Sensitive=no
HOST=http://www.rediff.com
</Host>
<Path>
Num_0f _Paths=1
Case-Sensitive=yes
PATH=cricket
</Path>
<Search_Text_Strings>
Num_of_Strings=1
Case-Sensitive=no
String=neutral venu
</Search_Text_Strings>
</HTTP_Criteria>
<Port_List>
Num_of_Ports=1
HTTP_Server_Port=80
</Port_List>
Mode_0f_Operation=full
</HTTP_Configuration>

#rrxkokkkkkEND of HTTP Specificationskokkkxx

#rkokkkkkkkTELNET Specificationskkskxkx
<TELNET_Configuration>
<Usernames>
Num_of_Usernames=1
Case-Sensitive=yes
Username=ankanand
</Usernames>

Mode_0f_Operation=full

28

</TELNET_Configuration>
#xxxxxEND of TELNET Specifications*ikkx
#xkkxokkkkTEXT SEARCH Specifications*skkkk
<TEXT_Configuration>
<Search_Text_Strings>
Num_of_Strings=1
Case-Sensitive=no
String=timesofindia
</Search_Text_Strings>
Mode_0f_Operation=pen
</TEXT_Configuration>
#xxxxxEND of TEXT SEARCH Specificationsikkkxx

#rkrkkkkkkkEnd Application Specific Specificationskkkk

29

A.2 Configuration File with Buffer Sizes(.bcfqg)

The file contains the number of connections to open simultaneously

for some applications

and the number of packets to be stored per connection before a match

occurs

<NUM_CONNECTIONS>
NUM_CONNECTIONS=10
NUM_SMTP_CONNECTIONS=500
NUM_FTP_CONNECTIONS=500
NUM_HTTP_CONNECTIONS=500
NUM_TELNET_CONNECTIONS=500
NUM_TEXT_CONNECTIONS=500
NUM_RADIUS_CONNECTIONS=500
NUM_POP_CONNECTIONS=500
NUM_IMAP_CONNECTIONS=500
NUM_IRC_CONNECTIONS=500
NUM_YAHOO_CONNECTIONS=500

</NUM_CONNECTIONS>

Num_of _IMAP_Stored_Packets=100

Num_of_POP_Stored_Packets=100

Num_of _SMTP_Stored_Packets=100

Num_of _FTP_Stored_Packets=100

Num_of _HTTP_Stored_Packets=100

Num_of _TEXT_Stored_Packets=100

60

Appendix B

A Sample POP Session

This is a sample POP session which gives a brief description of POP protocol.
If the line starts with a ’#’ means some explanation.
S: means Server reply (or) Server status

C: means a command send by client (or) Client status

S: <waiting on port 110 for connection>
C: <open a new connection with server>
S: +0K POP3 mailhost v2001.78rh server ready

The server listens on TCP port 110 and when the connection is open it sends a
greeting message that the server is ready
Now the client is in AUTHORIZATION State

C: AUTH LOGIN

S: + VXN1ciBOYW11lAA== # ‘‘User Name’’ in base64
C: c3VkaGVlcnY=

S: + UGFzc3dvcmQA # ‘‘Password’’ in base64

C: cGFzc3dvcmQ=

S: +0K Mailbox open, 192 messages

61

This is an AUTH command with LOGIN as mechanism,

#
#
#

n

#* #H

wn

+*

n n n Q

in this mechanism the server

requests for Username first followed by password and the client send both.

The whole conversation happens base64 encoded
The Client enters the TRANSACTION State

STAT
+0K 192 32577696

The client asks for the status of the mailbox and the server reply with +0K

and number of messages and mailbox size

LIST

+0K Mailbox scan listing follows

1 7818
2 338656

192 325846

Followed by the listing of messages, observe that there is a single ’.’

in a line indicates the end of server response.

RETR 1 # RETR command

+0K 7818 octets # RETR reply format is +0K <message size> octets

<message 1>

This RETR command is to request the server for a message.

This client request and the corresponding server

response form a single transaction.

62

(@}

DELE 1

wn

+0K message 1 deleted

This will mark the message 1 as deleted.
RETR 2

+0K 338656 octets

<message 2>

QUIT

n Q »nn 2 »nn Q

+0K Sayonara

now the server enters the UPDATE state and deletes the

messages marked as deleted

C: <close connection>

S: <wait for new connection>

63

