Gigabit PickPacket: A Network Monitoring Tool
for Gigabit Networks

A Thesis Submitted
in Partial Fulfillment of the Requirements
for the Degree of

Master of Technology

by
P Satya Srikanth

to the

Department of Computer Science & Engineering
Indian Institute of Technology, Kanpur

May, 2004

Certificate

This is to certify that the work contained in the thesis entitled “Gigabit Pick-

Packet: A Network Monitoring Tool for Gigabit Networks”, by P Satya Srikanth, has

been carried out under our supervision and that this work has not been submitted

elsewhere for a degree.

May, 2004

(Dr. Dheeraj Sanghi)

Department of Computer Science &
Engineering,

Indian Institute of Technology,

Kanpur.

(Dr. Deepak Gupta)

Department of Computer Science &
Engineering,

Indian Institute of Technology,

Kanpur.

Abstract

The extensive use of computers and networks for exchange of information has
also had ramifications on the growth and spread of crime through their use. Law
enforcement agencies need to keep up with the emerging trends in these areas for
crime detection and prevention. Among the several needs of such agencies are the
need to monitor, detect and analyze undesirable network traffic. However, the mon-
itoring, detecting, and analysis of this traffic may be against the goal of maintaining
privacy of individuals whose network communications are being monitored. Also,
the bandwidth at network backbones and Internet Service Providers is increasing
rapidly due to the increase in network usage. This increase in bandwidth imposes
an additional requirement on Network Monitoring Tools to monitor traffic at very
high speeds without losing any relevant information.

PickPacket — a network monitoring tool that can handle the conflicting issues
of network monitoring and privacy through its judicious use, is discussed in Refer-
ences [1, 8, 9, 12]. This thesis discusses the design and development of a network
monitoring tool called Gigabit PickPacket, an enhanced version of PickPacket for
monitoring network at Gigabit speed. This tool effectively uses the support of mul-

tiprocessor and/or multiple machines for monitoring traffic at very high speeds.

Acknowledgments

I take this opportunity to express my sincere gratitude towards my thesis su-
pervisors Dr. Dheeraj Sanghi and Dr. Deepak Gupta for their invaluable guidance.
It would have never been possible for me to take this project to completion with-
out their innovative ideas and encouragement. [also thank the other team members
involved with the development of PickPacket for their cooperation and support. San-
jay Jain helped me initially to understand the PickPacket architecture thoroughly.
Ramesh helped me at every point in the development of Gigabit PickPacket. Sudheer
and Ananth helped me by implementing a splitter and explained me the problems
associated in building a splitter at software level. I would like to thank BrajeshlJi,
for being cooperative and allowing me to use the figures in his thesis report.

I also wish to thank whole heartily all the faculty members of the Department
of Computer Science and Engineering, IIT Kanpur for enhancing my knowledge. T
also wish to thank Navpreet SinghlJi for helping me to sniff on the CC network. 1
would like to thank whole of the mtech2002 batch for the times I shared with them.
My special thanks to Saradhi for helping me whenever I faced problems in using any
tool in Linux. I would like to thank everyone in the Prabhu Goel Research Centre
for providing a nice and challenging work environment. I would also like to thank

the Prabhu Goel Research Centre for sponsoring my work.

Contents

1 Introduction
1.1 Smiffers
1.2 Need for Gigabit Sniffers oL
1.3 Organization of the Report

2 PickPacket: Architecture and Design
2.1 Architecture
2.2 Design e
2.2.1 The PickPacket Configuration File Generator
2.2.2 PickPacket Filter
2.2.3 The PickPacket Post-Processor
2.2.4 The PickPacket Data Viewer

3 Design of Gigabit PickPacket
3.1 Multi-threaded Design L.
3.2 Distributed Designo
3.2.1 Hub based approach
3.2.2 Splitter based approach L.

4 Implementation of Gigabit PickPacket
4.1 Configuration File Generator
4.2 Filter.
4.2.1 Multi-threaded Implementation
4.2.2 Clustered Implementation

il

11
13

14
15
21
21
23

4.2.3 Signature for Dumpfiles

4.2.4 Optimization of Filter

4.3 PickPacket PostProcessor

5 Testing

5.1 Correctness Testing

5.2 Performance Testing

5.2.1 Effect of Multiple Threads/Processors
5.2.2 Effect of Optimizations
5.2.3 Effect of Traffic Patterns
5.2.4 Performance of Hub Based Approach

5.2.5 Effect of Packet Sizes

5.2.6 Performance of Splitter Based Approach

6 Conclusions

6.1 Further Work

Bibliography

A A Sample Configuration File

iii

34
34
35
36
37
38
39
40
41

42
43

45

46

List of Tables

5.1
5.2
5.3
5.4
5.9
5.6

Effect of number of Processors on Gigabit PickPacket’s performance . 36

Effect of Optimizations on Gigabit PickPacket’s performance 37
Effect of traffic pattern on Gigabit PickPacket’s performance 39
Effect of number of machines on hub based approach’s performance . 39
Effect of Packet size on sniffer’s performance 40
Effect of number of machines on splitter based approach’s performance 41

iv

List of Figures

2.1
2.2
2.3
24

3.1
3.2
3.3

4.1

Architecture of PickPacket L. 7
Filtering Levels o 9
The Basic Design of the PickPacket Filter 10
Post-Processing Design 12
The Architecture of Hub based approach 22
Packet handling in Hub based approach 24
The Architecture of Splitter based approach 25
Configuration File Generator: Thread Manager Tab 29

Chapter 1
Introduction

There has been a tremendous growth in the amount of information being transferred
between computers with the advent of Internet. Internet has now become the major
medium of communication for people all over the world. Unfortunately, criminals
are just as quick to exploit new technologies as any other section of the people. They
are increasingly relying on the Internet for communication and exchange of informa-
tion pertaining to unlawful activity. Consequently law enforcement agencies need to
monitor the data flowing across the net to detect and prevent such activities. Com-
panies that want to safeguard their recent developments and research from falling
into the hands of their competitors also resort to intelligence gathering. Monitoring
tools are also useful in evaluating and diagnosing performance problems of servers
and network components. Monitoring tools should however, not compromise the
privacy of individuals whose network communications are being monitored.

With the increase in use of computers and networks, the bandwidth at network
backbones and Internet Service Providers is also increasing rapidly. For monitoring
traffic at such busy segments of the network, there is a need for monitoring tools
that can work at gigabit speeds without losing any relevant information. Such tools

are also useful for monitoring Gigabit Ethernet LANs.

1.1 Sniffers

Network sniffers are software applications that are often bundled with hardware
devices and are used for eavesdropping on network traffic. Sniffers usually provide
some form of protocol-level analysis that allows them to decode the data flowing
across the network according to the needs of the user. A sniffer may be used to
understand and fix problems in network traffic or to detect abnormal activities, and
unfortunately one may also be used by an attacker to steal critical information.

Sniffers on a LAN often means monitoring the traffic on the Ethernet. Ethernet
was built around a shared principle: all machines on a local network share the
same wire. FEthernet card (the standard network adapter) is hard-wired with a
particular MAC address and ignores all traffic not intended for that address. The
primary mechanism of sniffing in Ethernet is by putting the Ethernet hardware into
“promiscuous mode” that turns off the filtering mechanism of the hardware chip on
the network adapter and causes it to collect all frames irrespective of the destination
MAC address. In a switched network, all machines do not receive all the packets as
the switch sends a packet on only one outgoing port depending on the destination
MAC address of the packet . Most switches allow “port mirroring” where a port can
be configured as a “monitor” or “span” port that will get a copy of some or all of the
traffic going across the switch. These ports can be used by sniffers. Alternatively,
Ethernet taps can be used that allow us to examine network traffic without causing
any data stream interference.

The amount of information that flows across the network is very high. A simple
sniffer that just captures all the data flowing across the network and dumps it to
the disk soon fills up the entire disk if placed on a busy segment of the network.
Analysis of this data for different protocols and connections also takes considerable
time and resources. Moreover, it would be desirable to gather data so that the
privacy of individuals who are accessing and dispensing data through the network
is not compromised. It is therefore necessary to filter, on-line, the data gathered by
the sniffer.

Current day sniffers often come coupled with a filter that can filter packets based

on various criteria. Three levels of filtering can be applied on these packets. The

first level of filtering is based upon network parameters like IP addresses, protocols
and port numbers. This level of filtering is generally supported at the kernel level
also. The second level of filtering is based on application specific criteria like email-
id for SMTP, hostname for HT'TP etc. The third level of filtering is based on the
content present in the application pay load. Sniffers also come bundled with their
own post-capture analysis and processing tools which extract information from the
dump and present it in a human-readable form.

Several commercially and freely available sniffers exist currently. Sniffers come
in different flavors and capabilities for different Operating Systems. Ethereal [4]
and WinDump [2]| are two such popular tools for Windows. On UNIX sniffers are
generally based upon libpcap and/or BPF [10] (Berkeley Packet Filter). Libpcap
is a standard packet capture library used to store packets on the disk. Many com-
mercial and free post-processing and rendering tools are available that can analyze
the packets stored by sniffers in the pcap format. BPF is an in-kernel packet filter
that filters packets based on a directed acyclic Control Flow Graph method. BPF
uses an interpreter for executing the filter code that assumes a pseudo machine with
simple functionality akin to assembly language. Two popular sniffer tools on Unix
are tcpdump [7] and Ethereal [4]. Tepdump is based on libpcap and BPF filters.
WinDump is a version of tcpdump for Windows that uses a libpcap-compatible
library called WinCap.

Carnivore [5, 6, 14] is a network monitoring tool developed by FBI. It can be
thought of as a tool with the sole purpose of directed surveillance. This tool can
capture packets based on a wide range of application-layer based criteria. It func-
tions through wire-taps across gateways and ISPs. Carnivore is also capable of
monitoring dynamic IP address based networks. The capabilities of string searches
in application-level content seems limited in this package. It can only capture email
messages to and from a specific user’s account and all network traffic to and from a
specific user or IP address. It can also capture headers for various protocols.

PickPacket is a network monitoring tool that can address the conflicting issues of
network monitoring and privacy through its judicial use. This tool has been devel-

oped as a part of the research project sponsored by the Department of Information

Technology, MCIT, New Delhi. The basic frame work for this tool and design and
implementation of application layer filter for Simple Mail Transfer Protocol (SMTP)
and Telnet has been discussed in Reference [9]. The design and implementation of
application layer filter for Hyper Text Transfer Protocol (HTTP) and File Transfer
Protocol (FTP) has been discussed in Reference [12]. The design and implementa-
tion of text string search in MIME-Encoded data has been discussed in Reference [1].
The design and implementation of application layer filter for the Remote Authenti-
cation Dial In User Service (RADIUS) Protocol has been discussed in Reference [8].

1.2 Need for Gigabit Sniffers

In the past few decades, use of computer networks for information exchange has
increased rapidly. Also the number of users and the amount of information being
transferred across the network have increased proportionately. With this surging
demand for data, the bandwidth at the network backbones and Internet Service
Providers has also increased. Bandwidth growth has been explosive in the Local area
networks also, propelled by the availability and deployment of Gigabit Ethernet.

With this increase in bandwidth, a need for sniffers, that can monitor traffic at
such high speeds, arises. A simple sniffer that captures all the data flowing across
the network and dumps it to the disk soon fills up the entire disk especially if placed
on a busy segment of the network. Moreover, it would be desirable to gather data
flowing across the network so that the privacy of individuals who are accessing data
through the network is not compromised. Thus it is necessary to filter on-line the
data using various criteria. Filtering packets using complex criteria at very high
speeds results in packet drops as packets arrive much faster at the interface card
than they are handled by the sniffer. Once the buffers get filled, packets will be
dropped at various levels starting from application to interface card. Thus there is
a need for fast sniffers that can monitor traffic at high speeds based on complex set
of criteria without dropping any packets.

Several commercial sniffers exist that claim to handle gigabit traffic. Sniffer

Portable [15] by Network Associates and Unispeed Netlogger [17] are two such tools

developed for Windows. Reference [3] describes ring sockets, that can be used to
improve the passive packet capture performance in Linux. nProbe/nFlow [11] is
recently released for Linux that uses the technology described in Reference [3| to
handle near gigabit sniffing. It provides accounting and performance information
of a network by storing samples of traffic information in a standard flow format.
Sniffing at gigabit speed on Linux is still not a matured technology.

In this work we have developed Gigabit PickPacket, a new version of PickPacket
that can effectively use multiprocessor machines, cluster of machines and their com-
bination to monitor gigabit traffic. Instead of just providing performance and ac-
counting information of a network, Gigabit PickPacket can reconstruct the whole
connection of interest without sacrificing the features provided in the original Pick-
Packet.

1.3 Organization of the Report

This thesis focuses in detail on Gigabit PickPacket, a Network Monitoring Tool that
can handle one gigabit per second traffic. Chapter 2 describes the high level archi-
tecture and design of the original PickPacket. Chapter 3 describes the design aspects
of Gigabit PickPacket. Chapter 4 describes in detail various implementation issues
and optimizations used in Gigabit PickPacket. Chapter 5 describes testing setup
and performance results. The final chapter concludes the thesis with suggestions for

future work.

Chapter 2

PickPacket: Architecture and Design

This chapter discusses the architecture and design of PickPacket. First, the archi-
tecture of PickPacket and its various components are described. Then design of
each component is described briefly. Detailed design and implementation details are

discussed in Reference [9].

2.1 Architecture

PickPacket can be viewed as an aggregate of four components ideally deployed on

four different machines. These components are

1. PickPacket Configuration File Generator is a JAVA GUI deployed on a Win-
dows/Linux machine. It is used to specify the criteria for capturing the pack-

ets. The criteria specified by the user are stored in a configuration file.

2. PickPacket Filter, deployed on a Linux machine, uses the configuration file
as input, filters and stores the packets that match the specified criteria. Fil-
tering is done based on criteria corresponding to IP addresses, port numbers,
application layer protocol parameters and content present in the application

payload.

3. PickPacket PostProcessor, deployed on a Linux machine, processes the packets

stored offline and retrieves the meta information from them.

4. PickPacket Data Viewer is a GUI deployed on a Windows machine. It reads
the meta information generated by the PostProcessor and displays it to the

user.

An architectural view of PickPacket is shown in Figure 2.1 where these compo-

nents are shown in rectangles.

PickPacket Configuration PickPacket Filter PickPacket Post-Processor| | PickPacket Data Viewer
File Generator GUI GUI

ﬂ U ﬂ ﬂ

Conf files Dump files GUI files
=l =L

Figure 2.1: Architecture of PickPacket

2.2 Design

This section briefly describes the design of each component of PickPacket.

2.2.1 The PickPacket Configuration File Generator

The PickPacket Configuration File Generator is a Java based graphical user interface
(GUI) that is used for specifying the rules for capturing the packets. These rules
are saved in configuration file that is used as input for PickPacket filter. This file is
a text file with HTML like tags. A sample configuration file is given in Appendiz A.

This file has four sections:

1. The first section contains specifications of the output files that are created
by the PickPacket Filter for storing captured packets. There is no restriction
on the number of output files. The last file can have a size of “0” meaning
potentially infinite size. A feature in the configuration file is the support for
different output file managers. This feature would be useful if captured packets

have to be stored in formats other than the default pcap [18] style format.

2. The second section contains criteria for filtering packets based on source and
destination TP addresses, transport layer protocol, and source and destina-
tion port numbers. The application layer protocol that handles packets that
match the specified criteria is also indicated. This information is required for

demultiplexing packets to the correct application layer protocol filter.

3. The third section specifies the maximum number of simultaneous connections
that can be monitored for any application. This is used for memory alloca-
tion. The default value set by the configuration file generator is 500 for each
application protocol. A very large value may cause the system to run out
of memory, and thus behave unpredictably. A small value may cause some

connections to be missed.

4. The fourth section comprises of multiple subsections, each of which contains
criteria corresponding to an application layer protocol. Based on these crite-
ria the application layer data content of the packets are analyzed. Filtering
criteria for SMTP, HT'TP, FTP and Telnet protocols can be specified in these
subsections. An application layer protocol subsection also specifies the mode
of operation of the filter (“PEN” or “FULL”) for the protocol. In PEN mode,
packet data till and including the transport layer protocol header is saved

whereas in FULL mode, the entire packet is saved.

2.2.2 PickPacket Filter

PickPacket Filter reads packets from the network and processes them to find if they

match any of the criteria specified by the user. If a match occurs, the packet is

saved onto the disk for further analysis. This section briefly describes the design of
the PickPacket Filter.

The PickPacket filter can filter packets at three levels.
1. Filtering based on network parameters (IP addresses, port numbers, etc).

2. Filtering based on application layer protocol specific criteria (hostnames, email-
ids, etc).

3. Filtering based on content present in the application payload.

The first level of filtering has been made very efficient through the use of in-kernel
filters [10], as only packet which matches the network level criteria are copied from
kernel space to user space. Since the content of application can be best deciphered

by the application itself, the second and third levels of filtering are combined.

Criteria based on Network Application Specific
Parameters Criteria and text strings
Packet Basic Filter K Application Layer Filter K

Figure 2.2: Filtering Levels

Figure 2.2 illustrates the various levels of filtering. Basic filter reads packets
from the network and filters them based on the network parameters specified in the
configuration file. It passes only those packets that satisfy the criteria to the next
level. Application level filter further filters the packets received from basic filter
based on application specific criteria.

Since it would be convenient to have a separate filter for each application layer
protocol, application level filtering is split into multiple filters — one for each proto-
col. This design has the advantage that it is easy to enhance the filter by adding

new application layer filters. A demultiplexer is provided between basic filter and

application level filters. It decides which application filter should receive the packet
for further processing based on its own set of criteria.

Application specific filtering reduces to text search in the application layer data
content of the packets. In case of communication over connection oriented protocol,
this text search handles situations where the desired text is split across two or more
packets before being transmitted on the network. It also handles the case where
packets are received out of sequence. TCP Connection Manager is present between
demultiplexer and application layer filters to find whether a packet is out of order.
It is designed in such a way that it will handle only those connections that are of
interest to the application layer filter. Application layer filter can alert it so as to

maintain the sequence information for a connection.

Configuration

File _
Output File T e Initialize) :
Options % T Application Layer Protocol : Output File
1P adldresses, Specific Criteria Options
Transport
Layer Protocol | = _ Additional Filter
Options -% ----------- Filter Generator
Application] L Application
Layer Protocol| — ! gprCode Connection Layer Filter
Specific % Manager
Ciitea__| Basic Filter Racket
g g
S
= Output File
P M anager
Legend: Application
— Control Flow anager @
Components
Packet

Figure 2.3: The Basic Design of the PickPacket Filter

Figure 2.3 shows the major modules in the PickPacket Filter. The module Initial-

ize is used for initializations dependent on the configuration file. Another module,

10

the Qutput File Manager, is responsible for dumping filtered packets to the disk.
The Filter Generator module is used for generating the in-kernel BPF code. Hooks
are provided for changing the BPF code on-the-fly. Functions that can generate the
filter code based on changed parameters can be called by application level filters
such as FTP during “PASSIVE” mode of file transfers. The Demultiplezer can also
call the Qutput File Manager directly so that the filter can directly dump packets
without resorting to application layer protocol based filtering, if necessary. The
Connection Manager can also directly dump packets to the disk. This is required
when all criteria have matched for a specific connection and the connection is still
open. More details of these components can be found in Reference [9].

The output file manager stores output files in the peap [18] file format. This file
starts with a 24 byte pcap file header that contains information related to version of
pcap and the network from which the file was captured. This is followed by zero or
more chunks of data. Every chunk has a packet header followed by the packet data.
The packet header has three fields — the length of the packet when it was read from
the network, the length of the packet when it was saved and the time at which the
packet was read from the network. The data stored in pcap file format can also be
viewed using utilities like tcpdump. This standard format also allow us to use other
tools for analysis of captured data.

The PickPacket Filter contains a text string search library. This library is exten-
sively used by application layer filters in PickPacket. This library uses the Boyer-
Moore [13] string-matching algorithm for searching text strings. This algorithm can
be used for both case sensitive and case insensitive search for text strings in packet
data.

2.2.3 The PickPacket Post-Processor

The PickPacket PostProcessor processes the packets stored by the filter in a dumpfile

offline and separates the packets based on transport layer and application layer

information. The detailed description of Post Processor is given in Reference [9).
The Post Processor has three components — the Sorter, the Connection Breaker,

and the Meta Information Gatherer. These are shown in Figure 2.4.

11

Sorted @ Connection
o] o/] s L] [
: Files

¥ Mealnformation)y Meta—lnformatiop/
> Gatherer
Legend

—————— > Data Flow
> Module

/]/ DataFiles

Figure 2.4: Post-Processing Design

The packets present in the output file may not be in the order they were transmit-
ted on the network. Therefore the Sorter module is used to sort the packets present
in the output file generated by the packet filter based on the time stamp value
corresponding to the time the packets were read off the network. The Connection
Breaker module reads the sorted output file and retrieves the connection information
from the packets belonging to a connection oriented protocol and separates them
into different files. Internally connection breaking is accomplished by a TCP state
machine based process. Packets belonging to a connectionless protocol like UDP
are separated based on the communication tuple. The Meta Information Gathering
Module reads these connection specific files and retrieves the meta-information of
every connection. Each application requires different meta-information and packets
belonging to a particular application are processed by meta-information gathering
modules for that application. The meta-information of application layer protocols
includes important fields present in the data content such as e-mail addresses for
SMTP connections, usernames for FTP connections, URLs for HTTP, etc. The

meta-information for different application layer protocols is stored separately.

12

2.2.4 The PickPacket Data Viewer

The PickPacket Data Viewer is used for rendering the post-processed information.
This is a Visual Basic based GUI and runs on Windows. The choice of this platform
was made for rapid prototyping and the rich API (Application Program Interface)
library that is provided in Windows for rendering content belonging to an applica-
tion. The Data Viewer reads the meta-information files and lists all connections by
application type, source and destination IP addresses, and other such fields based on
the meta-information that has been provided by the Post-Processor. These connec-
tions can be sorted and searched based on these fields. The Data Viewer also allows
examining the details of a connection and can show the data for that connection
through appropriate user agents commonly found in the Windows environment such
as Outlook Express, Internet Explorer, etc. The dialogue between communicating
hosts can also be seen in a dialogue box. User can also view the configuration file

used by the packet filter.

13

Chapter 3

Design of Gigabit PickPacket

PickPacket can filter packets based on network and TCP/UDP level criteria as well
as application level criteria for SMTP, FTP, HTTP and Telnet protocols. PickPacket
also supports monitoring dialup users who are allocated dynamic IP addresses by
the Internet Service Provider with the RADIUS support included in it [8]. The
major earlier version of PickPacket was designed for operation at 100 Mbps. It can
not handle packets when they are received at a very high speed. When the packets
are arriving at a very high speed, PickPacket filter that runs on-line should process
the packets fast enough in order to avoid dropping any packet. Analyzing the packet
for specified criteria and storing the packet to a file takes more time than the rate at
which packets arrive in gigabit networks. So, the PickPacket Filter starts dropping
the packets. This problem can be tackled by using a parallel architecture, where
filtering can be parallelized. But the current design does not support this feature
and thus it does not scale to gigabit networks.

Gigabit PickPacket is an enhanced version of PickPacket that induces parallelism
into the filtering component of the PickPacket thus enabling it to monitor gigabit
traffic. This chapter discusses the design of this tool. Two mechanisms for achieving

parallelism are described in the rest of this chapter.

14

3.1 Multi-threaded Design

Multi-threaded and distributed computing are gaining a wide popularity in the area
of high performance computing. Availability of high speed computer networks and
sophisticated software environments are allow performing parallel /concurrent com-
puting on commodity hardware. Recently, threads have become powerful entities
to express parallelism on these shared memory multiprocessors (SMP) systems. On
a multiprocessor machine, multiple threads may be distributed across multiple pro-
cessors, which can dramatically improve throughput. This is often the case with
powerful multiprocessor web servers, which can distribute large numbers of user
requests across CPUs in a program that allocates one thread per request. These
factors have given an impetus for further popularity of multi-threading.

In the past, high-performance multi-threading has been used only in super-
computing, real-time control and multi-user server applications for achieving high
throughput. The idea of dividing a computationally intensive program into multi-
ple concurrent threads to speed up execution on multiprocessor computers is well
established. However, this kind of high-performance multi-threading has made very
little impact in mainstream business and personal computing, or even in most areas
of science and engineering. The reason has been the rarity and high cost of multi-
processor computer systems. With the advent of inexpensive multiprocessor PCs,
multi-threading is poised to play an important role in all areas of computing.

PickPacket filter is the most crucial component of the PickPacket architecture
that monitors traffic on-line at a very high speed. To handle such traffic, the filter
should take decision about a packet as soon as possible. Thus, multi-threading is
introduced in the filter component to enable it to use multiprocessor support. Even
though it is clear that multi-threading will improve the performance, it is not a
trivial exercise to convert PickPacket into a multi-threaded application.

The PickPacket Filter can be parallelized in different ways:

1. We can have one thread for each application layer protocol and all the packets
corresponding to this application protocol can be handled by this thread. This
method is easy to implement but is not efficient when packets belonging to one

application protocol dominates the other application protocols, which is quite

15

common in practice. In that case, work load will not be uniformly distributed
across all the threads. In real life, HTTP traffic is more than the combined
traffic of all the other application protocols.

2. We can create fixed number of threads and allocate packets to threads in
round-robin manner or using any other load balancing algorithm. In this
case, packets belonging to the same connection may be handled by different
threads. In that case, we need to protect connection specific data structures
and application level information stored for a connection from race condition.
We can use locks to achieve this, but this is not an efficient design as these
data structures are used so often in filter that efficiency achieved by using

multiple threads will be compromised by the contention for locks.

3. We can use another method where one thread is created for each new connec-
tion that handles all the packets belonging to this connection and destroyed
when the connection is closed. In this method thread management overhead
and context switches will be significant and nullify the advantage of using

multi-threading.

As all these methods have some bottlenecks, we use a different approach where
a fixed number of threads are created and instead of distributing individual packets
among these threads, different connections are distributed among them in the desired
ratio. All packets belonging to a particular connection will always be handled by the
same thread. This design achieves load balancing at a much finer level than approach
1 above, as packets are distributed based on connections rather than on application
layer protocol. Also it solves the contention problem of approach 2 as we need not
protect all the connection specific data structures from race condition, because each
connection is always handled by the same thread. Problems in approach 3 will not
be present here as we use a fixed and small number of threads. Ideally this number
should be equal to the number of processors on this machine for achieving the best
performance.

We use a hash function on four tuple (Source IP Address, Destination IP Address,

Source Port and Destination Port) to distribute packets among multiple threads in

16

the desired manner. Four tuple is chosen for calculating hash function because all
packets belonging to a connection have the same four tuple. We categorize threads
in our model into two different types based on the task that they perform. They
are reading threads and processing threads. A reading thread reads packets from
the network and handles it or enqueues it for other thread to handle based on the
hash function. A processing thread on the other hand does not read any packet but
processes packets that are read by other threads. Each processing thread maintains
a buffer called pending queue in which packets are inserted by the reading threads
on hash index match. As packet reading time is lesser than packet handling time,
generally we require fewer reading threads compared to processing threads. We can
use all reading threads and no processing threads if the load is to be shared equally
among all the threads.

The Psuedocode for reading thread follows.

reading_thread
{
while(1)
{
read a packet from the network;
search dynamic demultiplexer table for entry;

if (entry found)

{
thread_index = thread index present in the entry;
insert into pending queue of target thread whose
index range matches thread_index;
if target thread is a processing thread and its
pending queue was empty before insertion then
send signal to that thread;
continue;
¥

17

search static demultiplexer table for entry;
if (entry found)
{
thread_index = hash(four tuple);
insert into pending queue of target thread whose

index range matches thread_index;

if target thread is a processing thread and its
pending queue was empty before insertion then

send signal to that thread;

continue;

else

discard packet;

while(pending queue is non-empty)
{
remove packet from pending queue;

process_packet () ;

Packets after being copied from the network are checked against the criteria
based on the application layer data content present in them. For this the packet
filter determines to which application layer protocol the packet belongs and passes
it to the respective filtering module. In other words packets are demultiplexed on
the basis of the application layer protocol they belong to. We use demultiplexer
tables for maintaining this information. Each table contains tuples representing the
basic criteria specified in the configuration file. The packet is sent to the appropriate

connection manager and application filter based on the information in these tuples.

18

There can be a situation where an application might require addition of new
tuples in the demultiplexer table apart from the tuples corresponding to the basic
criteria specified in the configuration file. An example of such a situation is passive
FTP. In a passive file transfer, the FTP client contacts the server on the standard
FTP command port and issues a PASV command. The FTP server replies with
its own IP address and a port to which the client is supposed to connect for data
connection. This port when sent from the server is a non-standard port and hence
cannot, be determined beforehand. For monitoring such connections, the in-kernel
BPF code i.e., the BPF code, needs to be modified.

For this purpose the demultiplexer maintains its tables in two separate parts,
a static table and a dynamic table. The static table contains information about
the basic criteria specified in the configuration file. Whenever an application layer
protocol filter desires a modification in the BPF code, it adds a new entry into the
dynamic demultiplexer table and removes the existing BPF code from the kernel.

On reading a packet from the network, a reading thread first searches in the
dynamic demultiplexer table for an entry corresponding to this packet. If an entry
is found, packet is inserted in the pending queue of the appropriate thread. If an
entry for this packet is not found in the dynamic demultiplexer table, the static
demultiplexer table is searched. If an entry is found in this table, packet is inserted
in the pending queue of the appropriate thread whose index is calculated by applying
hash function on the four tuple of this packet. After inserting packet in pending
queue of the other thread, the target thread is signaled if it is a processing thread
and its pending queue was empty before this insertion. Signal is not sent for other
reading threads and processing threads with non empty pending queues as they will
eventually check their pending queues and process this packet. If the entry is not
found even in the static table then this packet is discarded. Now if pending queue of
current thread is non empty, packets are dequeued and processed until it becomes
empty.

Dynamic demultiplexer entries use different thread index for packet handling
than the one calculated by applying hash function on four tuple of the packet. In

FTP, control and data connections share the same data structures throughout the

19

application filter processing. To avoid contention here, FTP control and data con-
nections are handled by the same thread. When an F'TP control connection is being
handled, FTP filter adds an entry in the dynamic demultiplexer table correspond-
ing to the FTP data connection. Index of the thread handling control connection
is added in the dynamic demultiplexer table along with the basic criteria informa-
tion. This index is later used to deliver the data connection to the same thread that
handled the control connection.

The Psuedocode for processing thread follows.

processing_thread()

{
while(1)
{
if (pending queue is empty)
{
wait for signal;
On receiving a signal continue;
}
else
{
remove packet from pending queue;
process_packet () ;
}
}
}

A processing thread waits for signal on finding that its pending queue is empty.
If the queue is not empty, it removes a packet from the queue and processes it. After
processing, it will again check for any packets in the pending queue. On receiving a
signal in the waiting state, it checks for packets in pending queue.

This model gives fine control over dividing the load among different threads in the

desired ratio. Also, it is scalable for any number and type of processors. Fine tuning

20

of ratios, number and type of threads is required to achieve maximum performance

for given hardware.

3.2 Distributed Design

Distributed computing solves a large problem by dividing it into small problems,
solving them at many computers and finally combining the partial solutions into
a solution for the original problem. Recent distributed computing projects have
been designed to use the computers of hundreds of thousands of volunteers all over
the world connected through Internet for solving many computationally intensive
problems. Distributed computing can be effectively used to get the most out of
multicomputer systems in solving computationally intensive problems. MPI/PVM
is used for message passing between different computers.

This technique is used in Gigabit PickPacket to effectively use the power of
multi-computer systems in monitoring gigabit traffic. This section describes two

variations of our design in using distributed computing.

3.2.1 Hub based approach

In this approach, multiple machines run the monitoring tool in parallel and com-
putation overhead is distributed among these machines in a desired ratio. We do
not need any message passing between these machines. We can either use single
threaded or multi-threaded PickPacket at each machine. At each machine, only a
subset of the incoming packets are handled and the remaining packets are discarded.
A hash function calculated on the four tuple (Source IP Address, Destination IP Ad-
dress, Source Port, Destination Port) of the packet is used to find this subset. Hash
function is chosen in such a way that all packets belonging to a connection are han-
dled by the same machine and a packet is not discarded by all the machines. Hash
index generated by the hash function lies in the index range of one and only one
machine. Figure 3.1 shows the architecture of hub based approach.

For handling FTP and RADIUS protocols, some deviations from the original

design are required. In Passive FTP, four tuple of the data connection is known

21

GigabitSNitch| | | | | | | Li Monitoring Port

e [T]

ABCD ABC ABCD BCD

PickPacket Filter PickPacket Filter PickPacket Filter PickPacket Filter

Figure 3.1: The Architecture of Hub based approach

only at the time of handling control connection. FTP filter dynamically changes the
BPF code and recompiles it to prevent in kernel filtering of data connection packets
by Linux Socket Filter. It also adds an entry in the dynamic demultiplexer table
for the new data connection. The BPF code and dynamic demultiplexer entries are
changed only on the machine where corresponding FTP control connection is being
handled. Thus FTP data packets reach the application layer, without being filtered
out by the BPF filter, only on this machine and they should be handled by this
machine without filtering based on the hash function. Because of these reasons,
FTP should be handled with special care to prevent hash function from discarding
data connection packets on the machine where control connection is being monitored.

In RADIUS protocol, authentication and accounting packets are the control
packets that will instantiate new connections. All the packets corresponding to a
RADIUS control connection should be handled by the same machine as we maintain
state information corresponding to the control packets received. But these packets

may be having different four tuples as authentication and accounting servers run on

22

different ports and possibly on different machines. Thus RADIUS control packets
should be exempted from hash function and special care should be taken while han-
dling them. Similar to FTP, RADIUS control packets add entries in demultiplexer
table and recompile BPF code to enable monitoring of RADIUS instantiated con-
nections. So, packets belonging to RADIUS instantiated connections will reach the
application layer only on the machine where RADIUS control connection is handled.
Thus, RADIUS data packets should not be discarded on this machine based on hash
function and they should be handled similar to FTP data packets.

To solve the above problems, FTP data packets and RADIUS packets should be
handled before discarding them based on hash function. Figure 3.2 shows the data
flow diagram of Gigabit PickPacket with special care for FTP and RADIUS.

Every UDP packet is first checked for whether it is a RADIUS packet. If it is
a RADIUS packet, it is handled without calculating hash function. Thus, RADIUS
control packets are handled by all the machines and BPF Filter on every machine is
changed to accept packets belonging to RADIUS instantiated connections. Dynamic
demultiplexer table is divided into FTP and RADIUS demultiplexer tables to avoid
searching RADIUS entries of demultiplexer on every machine for all the received
packets. On receiving a TCP packet, FTP demultiplexer table is searched for an
entry corresponding to this packet. If an entry is found, this packet is handled
without discarding based on hash function. Otherwise RADIUS demultiplexer table
and static demultiplexer table are searched in order for an entry corresponding to
this packet. If it is found in any of these tables, it is handled normally and discarded
otherwise. With this approach, RADIUS instantiated connections are distributed

among all the machines based on the same hash function.

3.2.2 Splitter based approach

Even though hub based approach improves the performance of PickPacket to some
extent, it is still limited by the kernel level overhead as all packets are handled by
the kernel on every machine. The Hub based approach distributes the application
level overhead but not the kernel level overhead. In this section, we discuss another

approach where kernel level packet overhead can also be distributed.

23

Start

—ﬂ Read Packet i ‘
‘ Drop Packet
IsTCP No IsUDP _ No |
Packet? Packet?
Yes Yes
If entry found Yes Yes
in FTP demultiplexer @ IsRADIUS pkt?
table
No
No } Calculate Hash ‘
If Hash No
match occurs?
‘ Yes If entry found
| ProcessPacket ‘% in RADIUS demultiplexer
table
Yes If entry found No

in Static demultiplexer
table

Figure 3.2: Packet handling in Hub based approach

24

GigabitSNitch| | | | | | | Li Monitoring Port

s |][]

== = ==

PickPacket Filter PickPacket Filter PickPacket Filter PickPacket Filter

Figure 3.3: The Architecture of Splitter based approach

Load balancing switches can be used to split the traffic to be monitored among
multiple machines in such a way that all packets belonging to a connection are sent
to the same machine. Figure 3.3 shows the architecture of splitter based approach.
IDS load balancers are available [16] that can split traffic based on round robin and
weighted least connections algorithms. We can use the architecture shown in the
figure, where a load balancing switch will divide the traffic to be monitored among
multiple machines running PickPacket. By this approach kernel level overhead is
also distributed. This approach is scalable to very high speed networks.

This approach has the disadvantage that FTP and RADIUS can not be handled.
As we have already seen, a simple hash function that discards all the packets that do
not match the hash index is not enough for handling FTP and RADIUS protocols.
Special care need to be taken to handle FTP control and data connections at the
same machine. Similarly RADIUS control and data packets should be handled by
the same thread. A general load balancing switch may not handle these variations.

A customized splitter can be built with special care to handle these protocols.

25

Various approaches for parallelizing the filter component of Gigabit PickPacket
have been discussed in this chapter. Multi-threaded approach effectively uses the
power of multiprocessor machines to distribute the application load among multiple
processors. It allows binding a thread to a particular processor and controlling the
load on various threads for achieving the best performance. The Hub-based ap-
proach distributes the application load among multiple machines in a desired ratio
and thus improves the performance of filter. It is used when multiple machines are
available for monitoring the traffic. Multi-threaded and hub-based approaches can
be used together when multiple multiprocessor machines are available. Both these
approaches distribute the application load but not the kernel load among multiple
processing units. So, they are useful when complex criteria are used for filtering,
where application overhead is more than kernel overhead. In both these approaches,
as all packets are handled at the kernel level, kernel limitation in handling max-
imum traffic speed limits the maximum speed that can be monitored by Gigabit
PickPacket.

In the splitter based approach, kernel level packet handling is also distributed
among multiple machines. So, Gigabit PickPacket with this approach is not limited
by the kernel limitation in handling high speed traffic. The only limitation of this
approach is that hardware splitter needs to be customized to support FTP and
RADIUS protocols.

Current implementation of Gigabit PickPacket includes support for all three
approaches. By changing the configuration specification, any combination of these
approaches can be obtained. Uniprocessor version can be obtained by setting number

of threads and hash index to one.

26

Chapter 4

Implementation of Gigabit
PickPacket

This chapter discusses the implementation details of Gigabit PickPacket. First the
enhancements made to configuration file generator are described. Then the imple-

mentation of filter and changes for postprocessing are described briefly.

4.1 Configuration File Generator

The configuration file generator of PickPacket is enhanced so that users can also
specify the criteria for multi-threading and hash function calculation. For multi-
threaded approach, configuration file should contain thread-specific information such
as load on each thread, type of thread, its processor binding and pending queue
length. Load on each thread can be varied by user to reduce the load on a thread
running on a processor that performs kernel level packet handling. Threads can be
bound to processors to prevent unnecessary context switches that result in unpre-
dictable overheads. The pending queue length of each thread needs to be controlled
for best performance. A very high value will cause the system to run out of memory,
whereas a very small value may cause dropping of packets at the pending queue.
For the hub-based approach, hash index values need to be specified in the con-

figuration file. Users should be able to control the load on various machines and

27

threads in any ratio. We use the total hash index to represent the total load on the
system and hash start and end values for each machine represent the hash index
range of the current machine. If the hash value calculated by the hash function falls
in the hash range of a machine, then it will handle the packet.

A new section is added in the configuration file before the application level criteria
sections called thread info. This section contains information about hash index,
num_threads, hash start value, hash end value and subsections containing in-
formation specific to each thread. Hash index is the value of total load that is being
shared by all threads on all the machines, num _threads is the number of threads that
are going to be created on this machine, hash start value and hash end value
specify the range of hash index for this machine. A subsection is created for each
thread that contains information about type of thread, load on this thread, processor
binding and length of the pending queue. Appendix A shows a sample configuration
file for Gigabit PickPacket.

A panel called Thread Manager Panel is added in the Configuration File Gener-
ator GUI for specifying the new criteria. Figure 4.1 shows the new GUI screen for
specifying the criteria added in Gigabit PickPacket.

According to the specifications in Figure 4.1, this is one machine in the cluster
that takes half of the total load as its hash range is half of the total hash value.
Two threads are created where one thread is a reading thread binded to processor
0 that reads all the packets but processes only 25% of them and the other thread is
a processing thread binded to processor 1 that handles 75% of the packets read by
reading thread with a pending queue length of 1000 packets.

4.2 Filter

This section discusses the implementation details of various design methodologies ex-
plored in the previous chapter. Some optimizations in the filter component and dig-
ital signature implementation for protecting dumpfile’s integrity are also described

briefly.

28

SMTP FTP Telnet HTTP OTHER File Manager Thread Manager
—— Thread Manager
Thread Type Processor Binding L oad Pending Queue L ength
Reading 0 1 1
_ Add
Processing 1 3 1000
M odify
Remove

Total Hash Value: ‘ 8

Hash Start Value: |0

Hash End Value: ‘ 3

Figure 4.1: Configuration File Generator: Thread Manager Tab

29

4.2.1 Multi-threaded Implementation

We used standard POSIX thread library on Linux for creation and management
of threads. The Filter reads thread-specific information from the configuration file
and creates as many threads as specified in the configuration file. It starts reading
packets from the network only after all the threads are properly initialized. Each
thread uses a structure called thread specific_ data for maintaining thread specific
information such as pending queue pointers and information about current packet
being handled by this thread.

As we have multiple threads running simultaneously and sharing some global
data structures, we need to protect these data structures from race conditions. De-
multiplexer tables, tcp active and free lists, application level free lists are some global
data structures shared by all threads that need to be protected from simultaneous
access by multiple threads. Each thread spends very little time executing the code in
critical sections involving these data structures as the critical sections are small and
each thread is ideally scheduled on its own processor. So, we use spinlocks for pro-
tecting these critical sections rather than blocking locks. Non-blocking read/write
locks are also implemented on top of basic spinlocks for protecting data structures

like dynamic demultiplexer, where reads are frequent and writes are rare.

4.2.2 Clustered Implementation

In clustered implementation, traffic should be distributed among all the machines
running PickPacket in the desired ratio and all packets belonging to the same connec-
tion should always be handled by the same machine. The hash function is calculated
on the four tuple (Source IP Address, Destination IP Address, Source Port, Desti-
nation Port) of each packet as all packets belonging to a connection have the same
four tuple. As it is possible to have different machines with different power, we need
to divide the load between these machines any desired ratio. For providing this,
we used hash index range for each machine and thread instead of single hash index
value. Hash value is calculated as sum of all the items in four tuple modulo total
hash index range of all the machines. Only that machine whose hash range includes

this value accepts this packet, while all the other machines discard it except for some

30

variations in FTP and RADIUS. This method distributes all the connections in the

desired ratio as the hash is calculated on connection information basis.

4.2.3 Signature for Dumpfiles

For providing authenticity and integrity to dumpfiles, a digital signature is generated
for each dumpfile generated by the filter. A message digest is a special number that
is effectively a hash code produced by a function that is very difficult to reverse. A
digital signature is a message digest encrypted with someone’s private key to certify
the contents. This process of encryption is called signing. This digital signature can
later be decrypted using a publicly known key to verify that it is signed with this
private key.

The most common digital signature in use today is the combination of the MD5
message digest and the RSA encryption. We used this combination to generate
digital signature for all the dumpfiles generated by filter. Incremental MD5 is used
to generate message digest when each packet is stored to dumpfile and the message
digest is finally encrypted while closing dumpfile. Private key is input to the filter
process by a safe medium such as a removable disk.

The digital signatures thus generated for dumpfiles are sent to the postprocessor
where verification of message digests is done. Digital signature is decrypted using
a public key, that is known to the world, to generate the message digest. Message
digest of the dumpfile is calculated now and it is compared with the decrypted
message digest. If a mismatch occurs between them, it means that the dumpfile has
been changed before postprocessing and thus its integrity is lost. This mechanism

of digital signatures thus protects the integrity of dumpfiles.

4.2.4 Optimization of Filter

Filter can be optimized by using memory mapped I/O on sockets for reading packets.
This will reduce the packet reading time by eliminating a memory copy from kernel
space to user space. A ring buffer of memory is allocated and attached to the

raw socket and the socket is configured so that kernel will use this ring buffer for

31

reading packets into memory for this socket. The same buffer is shared by kernel and
application for processing the packet. After processing the packet, application sets
a flag in this packet indicating that this memory space can be reused by kernel. The
application should process the packets fast enough to prevent kernel from dropping
packets due to lack of empty frames in the ring buffer. As mmap saves a memory
copy for all the packets reaching the application layer, it reduces the overall kernel
level packet handling overhead by a major factor.

Latest Ethernet drivers compiled with NAPI support are used in machines run-
ning PickPacket for better performance. NAPI is a device polling technology intro-
duced from Linux 2.4.20 that controls the interrupt rate by polling the device for
packets at regular intervals thus improving the performance of operating system in
handling high traffic rate. NAPI reduces the kernel overhead in handling interrupts
by polling for interrupts at regular intervals rather than device sending an interrupt
after receiving packets. When large number of packets have been received, multiple
packets can be handled in a single poll in an efficient manner. Kernel level packet
handling overhead is reduced a lot by using this technique as the time spent in
handling interrupts for each packet is not present here.

Another optimization is to prevent the sniffed packets from reaching the TCP /TP
stack of the machine running Gigabit PickPacket as the sniffed packets are not
destined for applications running on this machine. This further reduces the load on
kernel level packet handling as expensive operations like TP checksum calculation
and routing table lookup are eliminated by not allowing a packet from reaching
TCP/IP stack on the machine. This can be accomplished using a kernel module
that acts as an IP_ PRE__ ROUTING _HOOK in the Linux kernel.

4.3 PickPacket PostProcessor

PickPacket PostProcessor has been changed to postprocess multiple dumpfiles gen-
erated by various machines in Gigabit PickPacket. A new program is added to
postprocessor before the sorter module that will verify the integrity of individual

dumpfiles and concatenate them into a single dumpfile. This single dumpfile is

32

given to sorter program for further postprocessing. For verification of signature, we
recalculate message digest for each dumpfile using MD5 and compare this message
digest with the one obtained by decrypting the signature for this dumpfile using
public key. If both the message digests do not match, then the post processing
stops, giving an error message. Otherwise, it checks all the dumpfiles for integrity
and finally concatenates all of them into a single dumpfile. While concatenating, 24
byte pcap header is removed from all the dumpfiles except the first one. If the pcap
output files are generated using different versions of the pcap library, then an error

message is generated and the dumpfiles should be postprocessed separately.

33

Chapter 5
Testing

In this chapter we describe the test setup used for testing Gigabit PickPacket. The
essential idea of these experiments was to determine the peak bandwidth at which
Gigabit PickPacket monitors the network without dropping any packet. Perfor-
mance is evaluated by specifying complex set of application level criteria and various

traffic patterns were monitored with these criteria.

5.1 Correctness Testing

Functional testing of Gigabit PickPacket was carried out by varying the number of
reading threads, handling threads and by testing all the control paths of application
level filters with various criteria. Effect of multiple threads and usage of locks were
thoroughly tested for correctness. For testing Gigabit PickPacket at high speeds
with live traffic, a gigabit hub was required to sniff the packets by putting the
interface in promiscuous mode. Due to unavailability of a gigabit hub, we changed
the Linux kernel to set the destination MAC address of every outgoing packet to
the Ethernet broadcast address. At the receiver, we changed the kernel to receive
these MAC broadcast packets and send upto application layer without dropping
them. We used three machines with 2.4 GHz CPU, 256 MB RAM running the
changed Linux kernel connected through a gigabit switch as both clients and servers

for various application layer protocols. Gigabit PickPacket was tested on two dual

34

processor Xeon machines with 2.0 GHz CPU, 1.0 GB RAM and running the Linux
kernel 2.4.20-8smp connected to the same switch as traffic generating machines. We
used some scripts on all these traffic generating machines to generate to generate a
large number of connections varying in number of packets, duration of connection,
speed, amount of data transferred and application protocol. Gigabit PickPacket was

successfully tested and it captured all the packets of interest.

5.2 Performance Testing

Performance testing was carried out with a different setup than the one used for
correctness testing. Test setup used for correctness testing did not really simulate
the behaviour of a real network as only three machines were generating all the traffic
and they were limited in speed due to various problems. Also, it was not easy to
control the speed of the generated traffic with this setup. We tried to conduct the
experiment on a real network where many users from different machines can be
monitored. But the maximum bandwidth at the busiest link available for us was
only 50 Mbps. For monitoring high and controlled speeds, we stored these packets
coming at 50 Mbps to disk and later replayed them at desired speed by reading them
from the disk. As one machine was not able to replay the traffic at required speed,
we used multiple machines for replaying this data and evaluated the performance of
Gigabit PickPacket.

Various metrics were used for evaluating the performance of Gigabit PickPacket.
We used five different configuration files which covers all kinds of criteria specifica-

tion. They are

1. normal_ appl tests all possible combinations of application level criteria speci-
fication with one criteria for each combination, but does not store any packets
to disk.

2. normal_ dump is similar to normal _appl and it also stores around 10% packets
to disk.

3. dumpall stores every packet to disk.

35

4. heavy appl tests all possible combinations of application level criteria specifi-
cation with multiple (around 20) criteria for each combination, but does not

store any packets to disk.

5. heavy dump includes all criteria in heavy appl and some extra criteria to

store around 10% of the read packets.

The first three configuration files put less load on Gigabit PickPacket when compared

to the last two configuration files.

5.2.1 Effect of Multiple Threads/Processors

Performance of Gigabit PickPacket by varying the number of processors were carried
out using a dual processor Xeon machine with hyper-threading. In all the tests,
maximum bandwidth at which Gigabit PickPacket handled all the packets without
any packet drop was measured. Table 5.1 shows the results obtained by varying
the number of processors. The number of reading threads and processing threads,
their processor binding and load on each thread are fine tuned in each case to give
the maximum performance. The case of four processors was tested by using a dual

processor machine with hyper-threading enabled.

Maximum Speed | Maximum Speed | Maximum Speed
Configuration File | achieved with achieved with achieved with
one processor two processors four processors
(in Mbps) (in Mbps) (in Mbps)

normal appl 275 300 350
normal dump 250 275 325
dumpall 150 250 325
heavy appl 125 200 260
heavy dump 100 180 250

Table 5.1: Effect of number of Processors on Gigabit PickPacket’s performance

It can be observed from the results that on increasing the number of proces-

sors, performance improved drastically in configurations with heavy load on Gigabit

36

PickPacket, while there is only a slight improvement in configurations with less load.
Adding more processors did not improve performance much in configurations with
less load due to two reasons. We use multiple threads to distribute application over-
head among multiple processors when a single processor cannot handle the entire
traffic. Here, as application load was not very high to be shared by multiple proces-
sors, we did not see much improvement in performance. The second reason is that
Uniprocessor Linux kernel performs better than SMP Linux kernel in kernel level
packet handling, as contention resolution in latter kernel is very costly. In configu-
rations with heavy load, there was enough load to be shared by multiple processors
and the improvement achieved due to concurrency at the application level was much
more than the overhead at kernel level. When we increased number of processors
from two to four, performance did not double as hyper-threading does not double

the performance of processors, but only improves it by around 30% to 50%.

5.2.2 Effect of Optimizations

Table 5.2 shows the results obtained with multiple threads for the same configuration
files and traffic patterns used in 5.1 but with optimized Gigabit PickPacket. NAPI
for device polling, mmap to save a packet copy from kernel space to user space
and a kernel module to prevent TCP/IP stack processing for each packet are the

optimizations used here.

Maximum Speed | Maximum Speed | Maximum Speed
Configuration File | achieved after achieved after achieved after
optimizations optimizations optimizations
with 1 processor | with 2 processors | with 4 processors
(in Mbps) (in Mbps) (in Mbps)
normal appl 325 325 400
normal dump 300 300 375
dumpall 175 250 350
heavy appl 125 210 275
heavy dump 125 200 260

Table 5.2: Effect of Optimizations on Gigabit PickPacket’s performance

37

NAPT reduces the kernel overhead in handling interrupts by polling for inter-
rupts at regular intervals rather than device sending an interrupt after receiving
packets. When a large number of packets have been received, multiple packets can
be handled in a single poll in an efficient manner. Mmap saves a copy of packet
from user space to memory space for each packet reaching the application layer. By
preventing a copy from kernel space to user space for all the packets, kernel level
packet handling overhead is reduced a lot. As the sniffed packets are not destined
to reach the TCP /TP stack of the machine running the sniffer, we can safely discard
them before they reach this level. This further reduces the load on kernel level
packet handling. As all the optimizations result in reducing the kernel overhead
rather than application overhead, performance improvement is more in configura-
tions with less application load. In configurations with heavy load, the ratio of
application overhead to kernel overhead in handling a packet is so high that the

effect of optimizations does not significantly improve the overall performance.

5.2.3 Effect of Traffic Patterns

We tested Gigabit PickPacket with three different kinds of traffic patterns to find
the effect of traffic pattern on performance. d25, d50 and d100 are the three traffic
files used in this experiment. 25% of the packets in d25 belongs to the application
protocols being monitored by Gigabit PickPacket, thus reach our sniffer without
being filtered by the in-kernel BPF filter. Similarly d50 and d100 contains 50%
and 100% packets respectively that reach the application level. Table 5.3 shows the
results obtained with different traffic patterns with heavy dump as configuration
file.

It can be observed from the table that lesser the load on Gigabit PickPacket,
better the performance. In d25, as 75% of the total packets are discarded at the
kernel level, it gave the best possible results. As we used heavy dump as the config-
uration file, packet handling time at the application layer was very high. Thus the
difference in performance between different traffic patterns is quite high. A simple
configuration file like normal _appl will not show much difference in performance be-

tween different traffic files. In general, we will most often see the d50 traffic pattern.

38

Traffic Pattern file

Maximum Speed
achieved with
1 processor

Maximum Speed
achieved with
2 processors

Maximum Speed
achieved with
4 processors

(in Mbps) (in Mbps) (in Mbps)
d25 225 300 425
ds0 125 200 260
d100 80 140 180

Table 5.3: Effect of traffic pattern on Gigabit PickPacket’s performance

Thus d50 is used in all the remaining tests.

5.2.4 Performance of Hub Based Approach

Performance of Gigabit PickPacket with hub based approach was measured using
Xeon 2.0 GHz machine running Uniprocessor Linux 2.4.20-8. A single machine was
used for this experiment. By varying the hash index from 1 to 16, load on this
machine was varied from 1 to 1/16 of the total load. By scaling one machine’s

performance upto 16, performance results for upto 16 machines were calculated.

Table 5.4 shows the results.

Maximum | Maximum | Maximum | Maximum | Maximum
Configuration Speed Speed Speed Speed Speed
File achieved achieved achieved achieved achieved
with 1 with 2 with 4 with 8 with 16
machine | machines | machines | machines | machines
(in Mbps) | (in Mbps) | (in Mbps) | (in Mbps) | (in Mbps)
normal appl 325 450 275 650 650
normal dump 300 375 450 275 600
dumpall 175 500 600 650 650
heavy appl 125 225 400 500 600
heavy dump 125 225 400 500 600

Table 5.4: Effect of number of machines on hub based approach’s performance

Multiple machines in hub based approach performed better than equal number of

39

processors in multithreaded approach as the kernel overhead in resolving contention
is not present here. After the number of machines crossed certain limit, there is
a very limited or no performance gain. In hub based approach, multiple machines
share the application load but kernel load for handling all the packets is present
in all the machines. Once we reach enough number of machines for sharing the
application load, it is the kernel overhead that prevents us from achieving better

speeds. Thus there is no performance improvement after certain level.

5.2.5 Effect of Packet Sizes

Even with a mixed approach of multithreading and hub based approach, we could
not handle 1Gbps speed traffic constantly for all traffic patterns. We found that
kernel limitation in handling small packets is the reason for this behaviour. We
used a simple packet counting sniffer and evaluated the speed at which it started

dropping the packets for different packet sizes. Table 5.5 shows the results obtained.

Packet Size

Maximum Speed
achieved with

Maximum Speed
achieved with

packet counting Gigabit
sniffer PickPacket
(in Mbps) (in Mbps)
64 200 150
500 950 950
1500 1000 1000

Table 5.5: Effect of Packet size on sniffer’s performance

Table shows that even an optimized packet counter cannot handle traffic speed
above 200 Mbps when packet size is 64 bytes. Reference [3] discusses similar results
for small sized packets. With small sized packets, number of packets received at
1Gbps speed is too high to be handled by the kernel. As kernel handles packets of
different sizes in a similar manner, kernel level packet handling overhead is much
higher in case of small packets. At the hardware level, individual bits are handled

as signals and thus irrespective of packet sizes, hardware can handle 1Gbps traffic.

40

Thus we need to use a hardware splitter as described in the splitter based approach

for monitoring more than 1 Gbps speed with small packets.

5.2.6 Performance of Splitter Based Approach

Due to the unavailability of a hardware splitter, we obtained the results of the
Splitter approach by extrapolating the results of Gigabit PickPacket. Performance

results of four processor case were extrapolated to obtain the results in Table 5.6.

Maximum | Maximum | Maximum
Configuration Speed Speed Speed

File achieved achieved achieved
with 1 with 2 with 4

machine | machines | machines

(in Mbps) | (in Mbps) | (in Mbps)
normal appl 400 800 1600
normal dump 375 750 1500
dumpall 350 700 1400
heavy appl 275 550 1100
heavy dump 260 520 1040

Table 5.6: Effect of number of machines on splitter based approach’s performance

Assuming that the hardware splitter divides the load among machines running
Gigabit PickPacket in a uniform manner and it works fine at gigabit speeds without
dropping any packets, we can obtain the results shown in the Table. As load balanc-
ing switches handling Gigabit speed are available in the market, these performance

results can be obtained using them.

41

Chapter 6
Conclusions

This report discusses the filtering of packets flowing across the network based on
complex criteria involving application level protocols SMTP, FTP, HTTP, Telnet
and RADIUS instantiated connections at very high speeds by a network monitoring
tool called Gigabit PickPacket. Various approaches that improve the performance
of the monitoring tool by sharing the application processing load among multipro-
cessor machines and cluster of machines have been discussed. Several kernel and
application level optimizations for enhancing the network monitoring tool are also
discussed. Digital signature support has been added for protecting the integrity of
files that contain packets stored by the filter.

Several experiments have been conducted for evaluating the performance of Giga-
bit PickPacket based on various metrics such as complexity of the criteria specified,
traffic patterns and packet sizes. Results show that Gigabit PickPacket can mon-
itor upto 1 Gbps traffic under very complex criteria specification for large packet
sizes. In case of packets with small size, Gigabit PickPacket needs hardware splitter
support for handling 1 Gbps traffic due to inherent limitation of Linux kernel in
handling small packets at that speed. When complex filtering criteria are specified,
support of multiprocessors and /or multiple machines can be effectively used to share

the application processing overhead.

42

6.1 Further Work

We observed that Gigabit PickPacket could not monitor 1Gbps traffic for small sized
packets without using special hardware support like splitter. One possible way to
solve this problem is to use a hash function at the Network Interface Card and discard
packets at the hardware level in the hub based approach thus relieving kernel from
handling millions of small packets. Cost-benefit ratio of hardware splitter approach
and NIC level hash function needs to be compared. Gigabit PickPacket currently
does not support PASV FTP and RADIUS protocols in splitter based approach. It
can be extended to support these protocols. One interesting research work would be
to look at the limitations of Linux kernel in handling small packets at high speeds

and propose an optimized solution to this problem.

43

References

[1] S. Prashant Aditya. “Pickpacket: Design and Implementation of the
HTTP postprocessor and MIME parser-decoder”, Dec 2002. BTP,
Department of Computer Science and Engineering, IIT Kanpur,
http://www.cse.iitk.ac.in/research /btp2003/98316.html.

[2] Loris Degioanni, Fulvio Risso, and Piero Viano. “Windump”. http://netgroup-

serv.polito.it/windump.

[3] Luca Deri. “Improving Passive Packet Capture: Beyond Device Polling”.
http://luca.ntop.org/Ring.pdf.

[4] Gerald Combs et al. “Ethereal”. Available at http://www.ethereal.com.

[5] Robert Graham. “carnivore faq”. http://www.robertgraham.com/pubs/carnivore-

faq.html.
[6] “How Carnivore Works”. http://www.howstuffworks.com /carnivore.htm.

[7] Van Jacobson, Craig Leres, and Steven McCanne. “tcpdump : A Network
Monitoring and Packet Capturing Tool”. Available via anonymous FTP from

ftp://ftp.ee.lbl.gov and www.tcpdump.org.

[8] Sanjay Kumar Jain. “Implementation of RADIUS Support in Pickpacket”. Mas-
ter’s thesis, Department of Computer Science and Engineering, I[IT Kanpur,
Apr 2003. http://www.cse.iitk.ac.in/research /mtech2001/Y111122.html.

44

[9] Neeraj Kapoor. “Design and Implementation of a Network Monitoring Tool”.
Master’s thesis, Department of Computer Science and Engineering, ITT Kanpur,
Apr 2002. http://www.cse.iitk.ac.in/research /mtech2000/Y011111.html.

[10] Steve McCanne and Van Jacobson. “The BSD Packet Filter: A New Architec-
ture for User-level Packet Capture”. In Proceedings of USENIX Winter Con-
ference, pages 259-269, San Diego, California, Jan 1993.

[11] “nprobe nflow”. http://www.ntop.org/nFlow/.

[12] Brajesh Pande. “Design and Implementation of a Network Monitoring Tool”.
Master’s thesis, Department of Computer Science and Engineering, II'T Kanpur,
Sep 2002. http://www.cse.iitk.ac.in/research/mtech2000/Y011104.html.

[13] Boyer R. and J Moore. “A fast string searching algorithm”. In Comm. ACM
20, pages 762-772, 1977.

[14] Stephen P. Smith, Henry Perrit Jr., Harold Krent, Stephen Mencik, J. Allen
Crider, Mengfen Shyong, and Larry L. Reynolds. “Independent Technical Re-
view of the Carnivore System”. Technical report, IIT Research Institute, Nov

2000. http://www.usdoj.gov/jmd/publications/carniv_entry.htm.
[15] “Sniffer Portable by Network Associates”. http://www.networkassociates.com/.
[16] “TopLayer IDS load balancers”. http://www.toplayer.com.
[17] “Unispeed Netlogger”. http://www.unispeed.com/.

[18] Jacobson V., Leres C., and McCanne S. “pcap - Packet Capture Library”, 2001.

Unix man page.

45

Appendix A

A Sample Configuration File

#This is a sample configuration file
#Be very careful if you edit a configuration file manually

#
#
#

The syntax should be preserved
A hash(#) is used for comments
This file has several sections

#Sections start and end with tags similar to HTML.
#Tags within sections can start and end subsections or can be tag-value pairs.
#A11l the tags that are recognized appear in this file.

#
#
#
#
#
#
#
#
#
#

First Section spcifies the sizes and names of the dump files

The Second Section specifies the source and destination IP ranges

the source and destination ports, the protocol and the application

that should handle these IPs and ports

The third sections specifies the number of connections to open simultaneously
for some applications

The fourth section specifies the thread specific information and hash values.
The next sections describe the application specific

input criteria.

This file has a fixed format Careful!!

ook kokokkokokkokkkkFI1T 8T S C 1 Ok kok skok ok sk ok ok sk ok ok sk ok ok sk ok ok sk ok ok sk ok ok sk ok ok sk

<Output_File_Manager_Settings>

<Default_Output_File_manager_Settings>

#number of specified files

Num_0Of_Files=2

#the full file name relative/absolute will do

File_Path=dumpl.dump

#the file size in MB

File_Size=12

46

File_Path=dump2.dump
#the 0 file size means that file can be of max available size
#only the last file can have File_Size=0.
File_Size=0
</Default_Output_File_manager_Settings>
</Output_File_Manager_Settings>
#xokokkkokckkkkokokkEnd First Sectiomskskskskskokskskskokskokkoksk ok kskskosk ok k kok ok

ok ok kokokkkokkkkkkSacond Sect 1 Omskk ok kok sk ok sk k ok ok sk k ok sk xk ok ok %k 5k ok %k 3k ok %k Kk k
The basic criteria here are for the Device and
SrcIP1:SrcIP2:DestIP1:DestIP2:SrcP1:SrcP2:DestP1:DestP2:ProtoA:App
Should be read as For the range of sorce IP from SrcIPl1 to SrcIP2
For associated ports from SrcPl to SrcP2
and For the range of desitnation IP from DestIP1 to DestIP2
For associated ports from DestPl to DestP2
and FOR Protocol ProtoA
monitor connections according to Application App
Protocols can be UDP or TCP
Applications for TCP are
SMTP, FTP, HTTP, TELNET, RADIUS, TEXT, DUMP_FULL, DUMP_PEN
Applications for UDP are
DUMP_FULL, DUMP_PEN
No further specs are required for DUMP kind of applications.
Do not mix too many applications for clarity
Take care that IPs Ports and applications do not conflict
Important: Some old NAS/RAS sends packets assuming RADIUS Auth Server port
as 1645 and Accounting Server port as 1646. So for this type of RAS/NAS we
need to change server port
in configuration file as mentioned in next two lines.
Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:1645-1645:UDP:RADIUS
Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:1646-1646:UDP:RADIUS
<Basic_Criteria>
DEVICE=ethO
Num_0f _Criteria=10

Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:25-25:TCP:SMTP
Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:20-20:TCP:FTP
Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:21-21:TCP:FTP
Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:23-23:TCP: TELNET
Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:80-80:TCP:HTTP
Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:143-143:TCP: TEXT
Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:1024-65535:TCP:DUMP_FULL

Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:1024-65535:UDP :DUMP_FULL
Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:1812-1812:UDP:RADIUS
Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:1813-1813:UDP:RADIUS
</Basic_Criteria>
HkkkokkkkkkkEnd Second Sect i om sk kskksksksk sk sk sk sk sk sk sk ok sk 5k 5k %k sk ok >k 5k 5k k k >k k

#rkokokokokkokkkkkThird Sect ionskeskskkkkskskskoksk sk k kokkokskskok sk ok ok k ok k
Has tunable number of connections that should be monitored
by some applications of interest SIMULTANEQUSLY
<NUM_CONNECTIONS>
NUM_CONNECTIONS=5
NUM_SMTP_CONNECTIONS=500
NUM_FTP_CONNECTIONS=500
NUM_HTTP_CONNECTIONS=500
NUM_TELNET _CONNECTIONS=500
NUM_RADIUS_CONNECTIONS=500
</NUM_CONNECTIONS>
#rrxrokokokokkkEnd Third Sectionskskskskskskskskskokskskkkokkokskskoksk ok ok ko kkk
Fhkokskokskokskokskokkok ko kFOUTth SeCt 1 011k sk sk ok sk ok sk ok sk ok sk 5k sk 3k ok 3k ok 5k ok 5k ok 5 ok ok ok 5k ok
Information regarding hash values and hash range for this
machine are present here. Each subsection contains information
about one thread. As many subsections as the number of
threads to be created are present in this section.
<THREAD_INFO>
HASH_INDEX=8
NUM_THREADS=2
HASH_START_VALUE=0
HASH_END_VALUE=3
<Thread>
Type=Processing
Processor=0
Load=1
Pending_Queue_Length=1000
</Thread>
<Thread>
Type=Reading
Processor=1
Load=3
Pending_Queue_Length=1000
</Thread>
</THREAD_INFO>

48

#rkkkkkkkkkENd FOurth SeCtion ks sk kskkskkkkk ok kk 4k kK k4 ok 4k k k

#rorrokkkokkokkkkxkApplication Specific Specificationskkkkxx
#If there are RADIUS Specific criteria then those criteria comes first in this file
#xrkkxrkkkkokkkkRADIUS Specificationskkkxkk
<RADIUS_Configuration>
Num_0f _Criteria=3
Criteria=skjaincs:no:0.0.0.0-0.0.0.0:1024-65535:1-65535:TCP:DUMP_FULL
Criteria=vijayg:no:0.0.0.0-0.0.0.0:1024-65535:25-25:TCP:SMTP
Criteria=vijayg:no:0.0.0.0-0.0.0.0:1024-65535:23-23:TCP: TELNET
</RADIUS_Configuration>
HxokkkxckkkokokkkxkSMTP Specificationskkkkk
<SMTP_Configuration>
<SMTP_Criteria>
NUM_of_Criteria=2
<Search_Email_ID>
Num_of _email_id=1
Case-Sensitive=yes
E-mail_ID=skjaincs@cse.iitk.ac.in
</Search_Email_ID>
<Search_Text_Strings>
Num_of_Strings=1
Case-Sensitive=yes
String=book
</Search_Text_Strings>
<Search_Email_ID>
Num_of_email_id=2
Case-Sensitive=yes
E-mail_ID=skjaincs@iitk.ac.in
E-mail_ID=brajesh@hotmail.com
</Search_Email_ID>
<Search_Text_Strings>
Num_of _Strings=0
</Search_Text_Strings>
</SMTP_Criteria>
Num_of_Stored_Packets=750
Mode_0f _Operation=full
</SMTP_Configuration>
#rkkkokokokokokokEND SMTP Specificationsskskkkx

#rrrkkkokkFTP Specificationskkkkkx

49

<FTP_Configuration>
<FTP_Criteria>
NUM_of_Criteria=1
<Usernames>
Num_0f_Usernames=2
Case-Sensitive=no
Username=ankanand
Username=nmangal
</Usernames>
<Filenames>
Num_0f_Filenames=1
Case-Sensitive=no
Filename=test.txt
</Filenames>
<Search_Text_Strings>
Num_0f_Strings=1
Case-Sensitive=yes
String=book secret
</Search_Text_Strings>
</FTP_Criteria>
Num_of_Stored_Packets=750
Monitor_FTP_Data=yes
Mode_of_Operation=full
</FTP_Configuration>
fxxokkxokkkkkEND FTP Specifications******

ok ok kkok ok kokxkkxHTTP Specifications******
<HTTP_Configuration>
<HTTP_Criteria>
NUM_of_Criteria=1
<Host>
Num_0f_Hosts=1
Case-Sensitive=no
HOST=http://www.rediff.com
</Host>
<Path>
Num_0f_Paths=1
Case-Sensitive=yes
PATH=/cricket
</Path>
<Search_Text_Strings>

20

Num_of_Strings=1
Case-Sensitive=no
String=neutral venu
</Search_Text_Strings>
</HTTP_Criteria>
<Port_List>
Num_of _Ports=1
HTTP_Server_Port=80
</Port_List>
Num_of_Stored_Packets=750
Mode_0f _Operation=full
</HTTP_Configuration>
#rrrkco0okEND HTTP Specificationsksksksksksk

#rrrkxokokxTELNET Specificationssokskskksk
<TELNET_Configuration>
<Usernames>
Num_of_Usernames=1
Case-Sensitive=yes
Username=ankanand
</Usernames>
Mode_0f _Operation=full
</TELNET_Configuration>
#xxxxxEND TELNET Specificationsi ks

#rxxrokokokokkTEXT SEARCH Specificationskkokokkxk
#These have to be added manually

<TEXT_Configuration>
<Search_Text_Strings>
Num_of_Strings=1
Case-Sensitive=no
String=timesofindia
</Search_Text_Strings>
Mode_0f _Operation=pen
</TEXT_Configuration>
#1644 END TEXT SEARCH Specifications*kkkxx

#rkkkkckokokokkEnd Application Specific Specificationskkksk

ol

