
Gigabit Pi
kPa
ket: A Network Monitoring Toolfor Gigabit Networks
A Thesis Submittedin Partial Ful�llment of the Requirementsfor the Degree ofMaster of Te
hnology

byP Satya Srikanth

to theDepartment of Computer S
ien
e & EngineeringIndian Institute of Te
hnology, KanpurMay, 2004

Certi�
ate
This is to
ertify that the work
ontained in the thesis entitled �Gigabit Pi
k-Pa
ket: A Network Monitoring Tool for Gigabit Networks�, by P Satya Srikanth, hasbeen
arried out under our supervision and that this work has not been submittedelsewhere for a degree.May, 2004
(Dr. Dheeraj Sanghi)Department of Computer S
ien
e &Engineering,Indian Institute of Te
hnology,Kanpur.

(Dr. Deepak Gupta)Department of Computer S
ien
e &Engineering,Indian Institute of Te
hnology,Kanpur.

Abstra
tThe extensive use of
omputers and networks for ex
hange of information hasalso had rami�
ations on the growth and spread of
rime through their use. Lawenfor
ement agen
ies need to keep up with the emerging trends in these areas for
rime dete
tion and prevention. Among the several needs of su
h agen
ies are theneed to monitor, dete
t and analyze undesirable network tra�
. However, the mon-itoring, dete
ting, and analysis of this tra�
 may be against the goal of maintainingpriva
y of individuals whose network
ommuni
ations are being monitored. Also,the bandwidth at network ba
kbones and Internet Servi
e Providers is in
reasingrapidly due to the in
rease in network usage. This in
rease in bandwidth imposesan additional requirement on Network Monitoring Tools to monitor tra�
 at veryhigh speeds without losing any relevant information.Pi
kPa
ket � a network monitoring tool that
an handle the
on�i
ting issuesof network monitoring and priva
y through its judi
ious use, is dis
ussed in Refer-en
es [1, 8, 9, 12℄. This thesis dis
usses the design and development of a networkmonitoring tool
alled Gigabit Pi
kPa
ket, an enhan
ed version of Pi
kPa
ket formonitoring network at Gigabit speed. This tool e�e
tively uses the support of mul-tipro
essor and/or multiple ma
hines for monitoring tra�
 at very high speeds.

A
knowledgmentsI take this opportunity to express my sin
ere gratitude towards my thesis su-pervisors Dr. Dheeraj Sanghi and Dr. Deepak Gupta for their invaluable guidan
e.It would have never been possible for me to take this proje
t to
ompletion with-out their innovative ideas and en
ouragement. I also thank the other team membersinvolved with the development of Pi
kPa
ket for their
ooperation and support. San-jay Jain helped me initially to understand the Pi
kPa
ket ar
hite
ture thoroughly.Ramesh helped me at every point in the development of Gigabit Pi
kPa
ket. Sudheerand Ananth helped me by implementing a splitter and explained me the problemsasso
iated in building a splitter at software level. I would like to thank BrajeshJi,for being
ooperative and allowing me to use the �gures in his thesis report.I also wish to thank whole heartily all the fa
ulty members of the Departmentof Computer S
ien
e and Engineering, IIT Kanpur for enhan
ing my knowledge. Ialso wish to thank Navpreet SinghJi for helping me to sni� on the CC network. Iwould like to thank whole of the mte
h2002 bat
h for the times I shared with them.My spe
ial thanks to Saradhi for helping me whenever I fa
ed problems in using anytool in Linux. I would like to thank everyone in the Prabhu Goel Resear
h Centrefor providing a ni
e and
hallenging work environment. I would also like to thankthe Prabhu Goel Resear
h Centre for sponsoring my work.

i

Contents
1 Introdu
tion 11.1 Sni�ers . 21.2 Need for Gigabit Sni�ers . 41.3 Organization of the Report . 52 Pi
kPa
ket: Ar
hite
ture and Design 62.1 Ar
hite
ture . 62.2 Design . 72.2.1 The Pi
kPa
ket Con�guration File Generator 72.2.2 Pi
kPa
ket Filter . 82.2.3 The Pi
kPa
ket Post-Pro
essor 112.2.4 The Pi
kPa
ket Data Viewer 133 Design of Gigabit Pi
kPa
ket 143.1 Multi-threaded Design . 153.2 Distributed Design . 213.2.1 Hub based approa
h . 213.2.2 Splitter based approa
h . 234 Implementation of Gigabit Pi
kPa
ket 274.1 Con�guration File Generator . 274.2 Filter . 284.2.1 Multi-threaded Implementation 304.2.2 Clustered Implementation . 30ii

4.2.3 Signature for Dump�les . 314.2.4 Optimization of Filter . 314.3 Pi
kPa
ket PostPro
essor . 325 Testing 345.1 Corre
tness Testing . 345.2 Performan
e Testing . 355.2.1 E�e
t of Multiple Threads/Pro
essors 365.2.2 E�e
t of Optimizations . 375.2.3 E�e
t of Tra�
 Patterns . 385.2.4 Performan
e of Hub Based Approa
h 395.2.5 E�e
t of Pa
ket Sizes . 405.2.6 Performan
e of Splitter Based Approa
h 416 Con
lusions 426.1 Further Work . 43Bibliography 45A A Sample Con�guration File 46

iii

List of Tables5.1 E�e
t of number of Pro
essors on Gigabit Pi
kPa
ket's performan
e . 365.2 E�e
t of Optimizations on Gigabit Pi
kPa
ket's performan
e 375.3 E�e
t of tra�
 pattern on Gigabit Pi
kPa
ket's performan
e 395.4 E�e
t of number of ma
hines on hub based approa
h's performan
e . 395.5 E�e
t of Pa
ket size on sni�er's performan
e 405.6 E�e
t of number of ma
hines on splitter based approa
h's performan
e 41

iv

List of Figures2.1 Ar
hite
ture of Pi
kPa
ket . 72.2 Filtering Levels . 92.3 The Basi
 Design of the Pi
kPa
ket Filter 102.4 Post-Pro
essing Design . 123.1 The Ar
hite
ture of Hub based approa
h 223.2 Pa
ket handling in Hub based approa
h 243.3 The Ar
hite
ture of Splitter based approa
h 254.1 Con�guration File Generator: Thread Manager Tab 29

v

Chapter 1Introdu
tionThere has been a tremendous growth in the amount of information being transferredbetween
omputers with the advent of Internet. Internet has now be
ome the majormedium of
ommuni
ation for people all over the world. Unfortunately,
riminalsare just as qui
k to exploit new te
hnologies as any other se
tion of the people. Theyare in
reasingly relying on the Internet for
ommuni
ation and ex
hange of informa-tion pertaining to unlawful a
tivity. Consequently law enfor
ement agen
ies need tomonitor the data �owing a
ross the net to dete
t and prevent su
h a
tivities. Com-panies that want to safeguard their re
ent developments and resear
h from fallinginto the hands of their
ompetitors also resort to intelligen
e gathering. Monitoringtools are also useful in evaluating and diagnosing performan
e problems of serversand network
omponents. Monitoring tools should however, not
ompromise thepriva
y of individuals whose network
ommuni
ations are being monitored.With the in
rease in use of
omputers and networks, the bandwidth at networkba
kbones and Internet Servi
e Providers is also in
reasing rapidly. For monitoringtra�
 at su
h busy segments of the network, there is a need for monitoring toolsthat
an work at gigabit speeds without losing any relevant information. Su
h toolsare also useful for monitoring Gigabit Ethernet LANs.
1

1.1 Sni�ersNetwork sni�ers are software appli
ations that are often bundled with hardwaredevi
es and are used for eavesdropping on network tra�
. Sni�ers usually providesome form of proto
ol-level analysis that allows them to de
ode the data �owinga
ross the network a

ording to the needs of the user. A sni�er may be used tounderstand and �x problems in network tra�
 or to dete
t abnormal a
tivities, andunfortunately one may also be used by an atta
ker to steal
riti
al information.Sni�ers on a LAN often means monitoring the tra�
 on the Ethernet. Ethernetwas built around a shared prin
iple: all ma
hines on a lo
al network share thesame wire. Ethernet
ard (the standard network adapter) is hard-wired with aparti
ular MAC address and ignores all tra�
 not intended for that address. Theprimary me
hanism of sni�ng in Ethernet is by putting the Ethernet hardware into�promis
uous mode� that turns o� the �ltering me
hanism of the hardware
hip onthe network adapter and
auses it to
olle
t all frames irrespe
tive of the destinationMAC address. In a swit
hed network, all ma
hines do not re
eive all the pa
kets asthe swit
h sends a pa
ket on only one outgoing port depending on the destinationMAC address of the pa
ket . Most swit
hes allow �port mirroring� where a port
anbe
on�gured as a �monitor� or �span� port that will get a
opy of some or all of thetra�
 going a
ross the swit
h. These ports
an be used by sni�ers. Alternatively,Ethernet taps
an be used that allow us to examine network tra�
 without
ausingany data stream interferen
e.The amount of information that �ows a
ross the network is very high. A simplesni�er that just
aptures all the data �owing a
ross the network and dumps it tothe disk soon �lls up the entire disk if pla
ed on a busy segment of the network.Analysis of this data for di�erent proto
ols and
onne
tions also takes
onsiderabletime and resour
es. Moreover, it would be desirable to gather data so that thepriva
y of individuals who are a

essing and dispensing data through the networkis not
ompromised. It is therefore ne
essary to �lter, on-line, the data gathered bythe sni�er.Current day sni�ers often
ome
oupled with a �lter that
an �lter pa
kets basedon various
riteria. Three levels of �ltering
an be applied on these pa
kets. The2

�rst level of �ltering is based upon network parameters like IP addresses, proto
olsand port numbers. This level of �ltering is generally supported at the kernel levelalso. The se
ond level of �ltering is based on appli
ation spe
i�

riteria like email-id for SMTP, hostname for HTTP et
. The third level of �ltering is based on the
ontent present in the appli
ation pay load. Sni�ers also
ome bundled with theirown post-
apture analysis and pro
essing tools whi
h extra
t information from thedump and present it in a human-readable form.Several
ommer
ially and freely available sni�ers exist
urrently. Sni�ers
omein di�erent �avors and
apabilities for di�erent Operating Systems. Ethereal [4℄and WinDump [2℄ are two su
h popular tools for Windows. On UNIX sni�ers aregenerally based upon libp
ap and/or BPF [10℄ (Berkeley Pa
ket Filter). Libp
apis a standard pa
ket
apture library used to store pa
kets on the disk. Many
om-mer
ial and free post-pro
essing and rendering tools are available that
an analyzethe pa
kets stored by sni�ers in the p
ap format. BPF is an in-kernel pa
ket �lterthat �lters pa
kets based on a dire
ted a
y
li
 Control Flow Graph method. BPFuses an interpreter for exe
uting the �lter
ode that assumes a pseudo ma
hine withsimple fun
tionality akin to assembly language. Two popular sni�er tools on Unixare t
pdump [7℄ and Ethereal [4℄. T
pdump is based on libp
ap and BPF �lters.WinDump is a version of t
pdump for Windows that uses a libp
ap-
ompatiblelibrary
alled WinCap.Carnivore [5, 6, 14℄ is a network monitoring tool developed by FBI. It
an bethought of as a tool with the sole purpose of dire
ted surveillan
e. This tool
an
apture pa
kets based on a wide range of appli
ation-layer based
riteria. It fun
-tions through wire-taps a
ross gateways and ISPs. Carnivore is also
apable ofmonitoring dynami
 IP address based networks. The
apabilities of string sear
hesin appli
ation-level
ontent seems limited in this pa
kage. It
an only
apture emailmessages to and from a spe
i�
 user's a

ount and all network tra�
 to and from aspe
i�
 user or IP address. It
an also
apture headers for various proto
ols.Pi
kPa
ket is a network monitoring tool that
an address the
on�i
ting issues ofnetwork monitoring and priva
y through its judi
ial use. This tool has been devel-oped as a part of the resear
h proje
t sponsored by the Department of Information3

Te
hnology, MCIT, New Delhi. The basi
 frame work for this tool and design andimplementation of appli
ation layer �lter for Simple Mail Transfer Proto
ol (SMTP)and Telnet has been dis
ussed in Referen
e [9℄. The design and implementation ofappli
ation layer �lter for Hyper Text Transfer Proto
ol (HTTP) and File TransferProto
ol (FTP) has been dis
ussed in Referen
e [12℄. The design and implementa-tion of text string sear
h in MIME-En
oded data has been dis
ussed in Referen
e [1℄.The design and implementation of appli
ation layer �lter for the Remote Authenti-
ation Dial In User Servi
e (RADIUS) Proto
ol has been dis
ussed in Referen
e [8℄.1.2 Need for Gigabit Sni�ersIn the past few de
ades, use of
omputer networks for information ex
hange hasin
reased rapidly. Also the number of users and the amount of information beingtransferred a
ross the network have in
reased proportionately. With this surgingdemand for data, the bandwidth at the network ba
kbones and Internet Servi
eProviders has also in
reased. Bandwidth growth has been explosive in the Lo
al areanetworks also, propelled by the availability and deployment of Gigabit Ethernet.With this in
rease in bandwidth, a need for sni�ers, that
an monitor tra�
 atsu
h high speeds, arises. A simple sni�er that
aptures all the data �owing a
rossthe network and dumps it to the disk soon �lls up the entire disk espe
ially if pla
edon a busy segment of the network. Moreover, it would be desirable to gather data�owing a
ross the network so that the priva
y of individuals who are a

essing datathrough the network is not
ompromised. Thus it is ne
essary to �lter on-line thedata using various
riteria. Filtering pa
kets using
omplex
riteria at very highspeeds results in pa
ket drops as pa
kets arrive mu
h faster at the interfa
e
ardthan they are handled by the sni�er. On
e the bu�ers get �lled, pa
kets will bedropped at various levels starting from appli
ation to interfa
e
ard. Thus there isa need for fast sni�ers that
an monitor tra�
 at high speeds based on
omplex setof
riteria without dropping any pa
kets.Several
ommer
ial sni�ers exist that
laim to handle gigabit tra�
. Sni�erPortable [15℄ by Network Asso
iates and Unispeed Netlogger [17℄ are two su
h tools4

developed for Windows. Referen
e [3℄ des
ribes ring so
kets, that
an be used toimprove the passive pa
ket
apture performan
e in Linux. nProbe/nFlow [11℄ isre
ently released for Linux that uses the te
hnology des
ribed in Referen
e [3℄ tohandle near gigabit sni�ng. It provides a

ounting and performan
e informationof a network by storing samples of tra�
 information in a standard �ow format.Sni�ng at gigabit speed on Linux is still not a matured te
hnology.In this work we have developed Gigabit Pi
kPa
ket, a new version of Pi
kPa
ketthat
an e�e
tively use multipro
essor ma
hines,
luster of ma
hines and their
om-bination to monitor gigabit tra�
. Instead of just providing performan
e and a
-
ounting information of a network, Gigabit Pi
kPa
ket
an re
onstru
t the whole
onne
tion of interest without sa
ri�
ing the features provided in the original Pi
k-Pa
ket.1.3 Organization of the ReportThis thesis fo
uses in detail on Gigabit Pi
kPa
ket, a Network Monitoring Tool that
an handle one gigabit per se
ond tra�
. Chapter 2 des
ribes the high level ar
hi-te
ture and design of the original Pi
kPa
ket. Chapter 3 des
ribes the design aspe
tsof Gigabit Pi
kPa
ket. Chapter 4 des
ribes in detail various implementation issuesand optimizations used in Gigabit Pi
kPa
ket. Chapter 5 des
ribes testing setupand performan
e results. The �nal
hapter
on
ludes the thesis with suggestions forfuture work.

5

Chapter 2Pi
kPa
ket: Ar
hite
ture and DesignThis
hapter dis
usses the ar
hite
ture and design of Pi
kPa
ket. First, the ar
hi-te
ture of Pi
kPa
ket and its various
omponents are des
ribed. Then design ofea
h
omponent is des
ribed brie�y. Detailed design and implementation details aredis
ussed in Referen
e [9℄.2.1 Ar
hite
turePi
kPa
ket
an be viewed as an aggregate of four
omponents ideally deployed onfour di�erent ma
hines. These
omponents are1. Pi
kPa
ket Con�guration File Generator is a JAVA GUI deployed on a Win-dows/Linux ma
hine. It is used to spe
ify the
riteria for
apturing the pa
k-ets. The
riteria spe
i�ed by the user are stored in a
on�guration �le.2. Pi
kPa
ket Filter, deployed on a Linux ma
hine, uses the
on�guration �leas input, �lters and stores the pa
kets that mat
h the spe
i�ed
riteria. Fil-tering is done based on
riteria
orresponding to IP addresses, port numbers,appli
ation layer proto
ol parameters and
ontent present in the appli
ationpayload.3. Pi
kPa
ket PostPro
essor, deployed on a Linux ma
hine, pro
esses the pa
ketsstored o�ine and retrieves the meta information from them.6

4. Pi
kPa
ket Data Viewer is a GUI deployed on a Windows ma
hine. It readsthe meta information generated by the PostPro
essor and displays it to theuser.An ar
hite
tural view of Pi
kPa
ket is shown in Figure 2.1 where these
ompo-nents are shown in re
tangles.
Conf files

PickPacket Configuration
File Generator GUI

PickPacket Filter PickPacket Data Viewer
GUI

PickPacket Post-Processor

GUI filesDump files

NETWORKFigure 2.1: Ar
hite
ture of Pi
kPa
ket
2.2 DesignThis se
tion brie�y des
ribes the design of ea
h
omponent of Pi
kPa
ket.2.2.1 The Pi
kPa
ket Con�guration File GeneratorThe Pi
kPa
ket Con�guration File Generator is a Java based graphi
al user interfa
e(GUI) that is used for spe
ifying the rules for
apturing the pa
kets. These rulesare saved in
on�guration �le that is used as input for Pi
kPa
ket �lter. This �le isa text �le with HTML like tags. A sample
on�guration �le is given in Appendix A.This �le has four se
tions: 7

1. The �rst se
tion
ontains spe
i�
ations of the output �les that are
reatedby the Pi
kPa
ket Filter for storing
aptured pa
kets. There is no restri
tionon the number of output �les. The last �le
an have a size of �0� meaningpotentially in�nite size. A feature in the
on�guration �le is the support fordi�erent output �le managers. This feature would be useful if
aptured pa
ketshave to be stored in formats other than the default p
ap [18℄ style format.2. The se
ond se
tion
ontains
riteria for �ltering pa
kets based on sour
e anddestination IP addresses, transport layer proto
ol, and sour
e and destina-tion port numbers. The appli
ation layer proto
ol that handles pa
kets thatmat
h the spe
i�ed
riteria is also indi
ated. This information is required fordemultiplexing pa
kets to the
orre
t appli
ation layer proto
ol �lter.3. The third se
tion spe
i�es the maximum number of simultaneous
onne
tionsthat
an be monitored for any appli
ation. This is used for memory allo
a-tion. The default value set by the
on�guration �le generator is 500 for ea
happli
ation proto
ol. A very large value may
ause the system to run outof memory, and thus behave unpredi
tably. A small value may
ause some
onne
tions to be missed.4. The fourth se
tion
omprises of multiple subse
tions, ea
h of whi
h
ontains
riteria
orresponding to an appli
ation layer proto
ol. Based on these
rite-ria the appli
ation layer data
ontent of the pa
kets are analyzed. Filtering
riteria for SMTP, HTTP, FTP and Telnet proto
ols
an be spe
i�ed in thesesubse
tions. An appli
ation layer proto
ol subse
tion also spe
i�es the modeof operation of the �lter (�PEN� or �FULL�) for the proto
ol. In PEN mode,pa
ket data till and in
luding the transport layer proto
ol header is savedwhereas in FULL mode, the entire pa
ket is saved.2.2.2 Pi
kPa
ket FilterPi
kPa
ket Filter reads pa
kets from the network and pro
esses them to �nd if theymat
h any of the
riteria spe
i�ed by the user. If a mat
h o

urs, the pa
ket is8

saved onto the disk for further analysis. This se
tion brie�y des
ribes the design ofthe Pi
kPa
ket Filter.The Pi
kPa
ket �lter
an �lter pa
kets at three levels.1. Filtering based on network parameters (IP addresses, port numbers, et
).2. Filtering based on appli
ation layer proto
ol spe
i�

riteria (hostnames, email-ids, et
).3. Filtering based on
ontent present in the appli
ation payload.The �rst level of �ltering has been made very e�
ient through the use of in-kernel�lters [10℄, as only pa
ket whi
h mat
hes the network level
riteria are
opied fromkernel spa
e to user spa
e. Sin
e the
ontent of appli
ation
an be best de
ipheredby the appli
ation itself, the se
ond and third levels of �ltering are
ombined.
Application Layer FilterBasic Filter

Application Specific
Criteria and text strings

Criteria based on Network
Parameters

PacketPacket PacketFigure 2.2: Filtering LevelsFigure 2.2 illustrates the various levels of �ltering. Basi
 �lter reads pa
ketsfrom the network and �lters them based on the network parameters spe
i�ed in the
on�guration �le. It passes only those pa
kets that satisfy the
riteria to the nextlevel. Appli
ation level �lter further �lters the pa
kets re
eived from basi
 �lterbased on appli
ation spe
i�

riteria.Sin
e it would be
onvenient to have a separate �lter for ea
h appli
ation layerproto
ol, appli
ation level �ltering is split into multiple �lters � one for ea
h proto-
ol. This design has the advantage that it is easy to enhan
e the �lter by addingnew appli
ation layer �lters. A demultiplexer is provided between basi
 �lter and9

appli
ation level �lters. It de
ides whi
h appli
ation �lter should re
eive the pa
ketfor further pro
essing based on its own set of
riteria.Appli
ation spe
i�
 �ltering redu
es to text sear
h in the appli
ation layer data
ontent of the pa
kets. In
ase of
ommuni
ation over
onne
tion oriented proto
ol,this text sear
h handles situations where the desired text is split a
ross two or morepa
kets before being transmitted on the network. It also handles the
ase wherepa
kets are re
eived out of sequen
e. TCP Conne
tion Manager is present betweendemultiplexer and appli
ation layer �lters to �nd whether a pa
ket is out of order.It is designed in su
h a way that it will handle only those
onne
tions that are ofinterest to the appli
ation layer �lter. Appli
ation layer �lter
an alert it so as tomaintain the sequen
e information for a
onne
tion.

Packet

Packet +
Connection
Information

IP addresses,
Transport

Layer Protocol
Options

Output File
Options

Configuration
File

Application
Layer Protocol

Specific
Criteria

Initialize

Filter Generator

IP addresses T
ransport layer Protocol O

ptions

Basic Filter

Demultiplexer

BPF Code Socket Connection
Manager

Packet

Packet

Application
Layer Filter

(A)

Application
Layer Filter

(Z)

Output File
Manager

Storage
Media

Packet +
Connection
Information

Packet

Packet

Packet

Packet

Application Layer Protocol
Specific Criteria

Output File
Options

Additional Filter
Parameters

Legend:
Data Flow
Control Flow
Components

Connection
Manager

Packet

Alerts

Alerts

Figure 2.3: The Basi
 Design of the Pi
kPa
ket FilterFigure 2.3 shows the major modules in the Pi
kPa
ket Filter. The module Initial-ize is used for initializations dependent on the
on�guration �le. Another module,10

the Output File Manager, is responsible for dumping �ltered pa
kets to the disk.The Filter Generator module is used for generating the in-kernel BPF
ode. Hooksare provided for
hanging the BPF
ode on-the-�y. Fun
tions that
an generate the�lter
ode based on
hanged parameters
an be
alled by appli
ation level �lterssu
h as FTP during �PASSIVE� mode of �le transfers. The Demultiplexer
an also
all the Output File Manager dire
tly so that the �lter
an dire
tly dump pa
ketswithout resorting to appli
ation layer proto
ol based �ltering, if ne
essary. TheConne
tion Manager
an also dire
tly dump pa
kets to the disk. This is requiredwhen all
riteria have mat
hed for a spe
i�

onne
tion and the
onne
tion is stillopen. More details of these
omponents
an be found in Referen
e [9℄.The output �le manager stores output �les in the p
ap [18℄ �le format. This �lestarts with a 24 byte p
ap �le header that
ontains information related to version ofp
ap and the network from whi
h the �le was
aptured. This is followed by zero ormore
hunks of data. Every
hunk has a pa
ket header followed by the pa
ket data.The pa
ket header has three �elds � the length of the pa
ket when it was read fromthe network, the length of the pa
ket when it was saved and the time at whi
h thepa
ket was read from the network. The data stored in p
ap �le format
an also beviewed using utilities like t
pdump. This standard format also allow us to use othertools for analysis of
aptured data.The Pi
kPa
ket Filter
ontains a text string sear
h library. This library is exten-sively used by appli
ation layer �lters in Pi
kPa
ket. This library uses the Boyer-Moore [13℄ string-mat
hing algorithm for sear
hing text strings. This algorithm
anbe used for both
ase sensitive and
ase insensitive sear
h for text strings in pa
ketdata.2.2.3 The Pi
kPa
ket Post-Pro
essorThe Pi
kPa
ket PostPro
essor pro
esses the pa
kets stored by the �lter in a dump�leo�ine and separates the pa
kets based on transport layer and appli
ation layerinformation. The detailed des
ription of Post Pro
essor is given in Referen
e [9℄.The Post Pro
essor has three
omponents � the Sorter, the Conne
tion Breaker,and the Meta Information Gatherer. These are shown in Figure 2.4.11

Sorter Connection Breaker

C1

C3

Cn

C2
Meta Information

Gatherer
Legend

Data Flow

Data Files

Module

Output File
Sorted

Output File

 Connection
Specific

Files

Meta−Information

Cn

C2

C1

C3

Figure 2.4: Post-Pro
essing DesignThe pa
kets present in the output �le may not be in the order they were transmit-ted on the network. Therefore the Sorter module is used to sort the pa
kets presentin the output �le generated by the pa
ket �lter based on the time stamp value
orresponding to the time the pa
kets were read o� the network. The Conne
tionBreakermodule reads the sorted output �le and retrieves the
onne
tion informationfrom the pa
kets belonging to a
onne
tion oriented proto
ol and separates theminto di�erent �les. Internally
onne
tion breaking is a

omplished by a TCP statema
hine based pro
ess. Pa
kets belonging to a
onne
tionless proto
ol like UDPare separated based on the
ommuni
ation tuple. The Meta Information GatheringModule reads these
onne
tion spe
i�
 �les and retrieves the meta-information ofevery
onne
tion. Ea
h appli
ation requires di�erent meta-information and pa
ketsbelonging to a parti
ular appli
ation are pro
essed by meta-information gatheringmodules for that appli
ation. The meta-information of appli
ation layer proto
olsin
ludes important �elds present in the data
ontent su
h as e-mail addresses forSMTP
onne
tions, usernames for FTP
onne
tions, URLs for HTTP, et
. Themeta-information for di�erent appli
ation layer proto
ols is stored separately.12

2.2.4 The Pi
kPa
ket Data ViewerThe Pi
kPa
ket Data Viewer is used for rendering the post-pro
essed information.This is a Visual Basi
 based GUI and runs on Windows. The
hoi
e of this platformwas made for rapid prototyping and the ri
h API (Appli
ation Program Interfa
e)library that is provided in Windows for rendering
ontent belonging to an appli
a-tion. The Data Viewer reads the meta-information �les and lists all
onne
tions byappli
ation type, sour
e and destination IP addresses, and other su
h �elds based onthe meta-information that has been provided by the Post-Pro
essor. These
onne
-tions
an be sorted and sear
hed based on these �elds. The Data Viewer also allowsexamining the details of a
onne
tion and
an show the data for that
onne
tionthrough appropriate user agents
ommonly found in the Windows environment su
has Outlook Express, Internet Explorer, et
. The dialogue between
ommuni
atinghosts
an also be seen in a dialogue box. User
an also view the
on�guration �leused by the pa
ket �lter.

13

Chapter 3Design of Gigabit Pi
kPa
ketPi
kPa
ket
an �lter pa
kets based on network and TCP/UDP level
riteria as wellas appli
ation level
riteria for SMTP, FTP, HTTP and Telnet proto
ols. Pi
kPa
ketalso supports monitoring dialup users who are allo
ated dynami
 IP addresses bythe Internet Servi
e Provider with the RADIUS support in
luded in it [8℄. Themajor earlier version of Pi
kPa
ket was designed for operation at 100 Mbps. It
annot handle pa
kets when they are re
eived at a very high speed. When the pa
ketsare arriving at a very high speed, Pi
kPa
ket �lter that runs on-line should pro
essthe pa
kets fast enough in order to avoid dropping any pa
ket. Analyzing the pa
ketfor spe
i�ed
riteria and storing the pa
ket to a �le takes more time than the rate atwhi
h pa
kets arrive in gigabit networks. So, the Pi
kPa
ket Filter starts droppingthe pa
kets. This problem
an be ta
kled by using a parallel ar
hite
ture, where�ltering
an be parallelized. But the
urrent design does not support this featureand thus it does not s
ale to gigabit networks.Gigabit Pi
kPa
ket is an enhan
ed version of Pi
kPa
ket that indu
es parallelisminto the �ltering
omponent of the Pi
kPa
ket thus enabling it to monitor gigabittra�
. This
hapter dis
usses the design of this tool. Two me
hanisms for a
hievingparallelism are des
ribed in the rest of this
hapter.
14

3.1 Multi-threaded DesignMulti-threaded and distributed
omputing are gaining a wide popularity in the areaof high performan
e
omputing. Availability of high speed
omputer networks andsophisti
ated software environments are allow performing parallel/
on
urrent
om-puting on
ommodity hardware. Re
ently, threads have be
ome powerful entitiesto express parallelism on these shared memory multipro
essors (SMP) systems. Ona multipro
essor ma
hine, multiple threads may be distributed a
ross multiple pro-
essors, whi
h
an dramati
ally improve throughput. This is often the
ase withpowerful multipro
essor web servers, whi
h
an distribute large numbers of userrequests a
ross CPUs in a program that allo
ates one thread per request. Thesefa
tors have given an impetus for further popularity of multi-threading.In the past, high-performan
e multi-threading has been used only in super-
omputing, real-time
ontrol and multi-user server appli
ations for a
hieving highthroughput. The idea of dividing a
omputationally intensive program into multi-ple
on
urrent threads to speed up exe
ution on multipro
essor
omputers is wellestablished. However, this kind of high-performan
e multi-threading has made verylittle impa
t in mainstream business and personal
omputing, or even in most areasof s
ien
e and engineering. The reason has been the rarity and high
ost of multi-pro
essor
omputer systems. With the advent of inexpensive multipro
essor PCs,multi-threading is poised to play an important role in all areas of
omputing.Pi
kPa
ket �lter is the most
ru
ial
omponent of the Pi
kPa
ket ar
hite
turethat monitors tra�
 on-line at a very high speed. To handle su
h tra�
, the �ltershould take de
ision about a pa
ket as soon as possible. Thus, multi-threading isintrodu
ed in the �lter
omponent to enable it to use multipro
essor support. Eventhough it is
lear that multi-threading will improve the performan
e, it is not atrivial exer
ise to
onvert Pi
kPa
ket into a multi-threaded appli
ation.The Pi
kPa
ket Filter
an be parallelized in di�erent ways:1. We
an have one thread for ea
h appli
ation layer proto
ol and all the pa
kets
orresponding to this appli
ation proto
ol
an be handled by this thread. Thismethod is easy to implement but is not e�
ient when pa
kets belonging to oneappli
ation proto
ol dominates the other appli
ation proto
ols, whi
h is quite15

ommon in pra
ti
e. In that
ase, work load will not be uniformly distributeda
ross all the threads. In real life, HTTP tra�
 is more than the
ombinedtra�
 of all the other appli
ation proto
ols.2. We
an
reate �xed number of threads and allo
ate pa
kets to threads inround-robin manner or using any other load balan
ing algorithm. In this
ase, pa
kets belonging to the same
onne
tion may be handled by di�erentthreads. In that
ase, we need to prote
t
onne
tion spe
i�
 data stru
turesand appli
ation level information stored for a
onne
tion from ra
e
ondition.We
an use lo
ks to a
hieve this, but this is not an e�
ient design as thesedata stru
tures are used so often in �lter that e�
ien
y a
hieved by usingmultiple threads will be
ompromised by the
ontention for lo
ks.3. We
an use another method where one thread is
reated for ea
h new
onne
-tion that handles all the pa
kets belonging to this
onne
tion and destroyedwhen the
onne
tion is
losed. In this method thread management overheadand
ontext swit
hes will be signi�
ant and nullify the advantage of usingmulti-threading.As all these methods have some bottlene
ks, we use a di�erent approa
h wherea �xed number of threads are
reated and instead of distributing individual pa
ketsamong these threads, di�erent
onne
tions are distributed among them in the desiredratio. All pa
kets belonging to a parti
ular
onne
tion will always be handled by thesame thread. This design a
hieves load balan
ing at a mu
h �ner level than approa
h1 above, as pa
kets are distributed based on
onne
tions rather than on appli
ationlayer proto
ol. Also it solves the
ontention problem of approa
h 2 as we need notprote
t all the
onne
tion spe
i�
 data stru
tures from ra
e
ondition, be
ause ea
h
onne
tion is always handled by the same thread. Problems in approa
h 3 will notbe present here as we use a �xed and small number of threads. Ideally this numbershould be equal to the number of pro
essors on this ma
hine for a
hieving the bestperforman
e.We use a hash fun
tion on four tuple (Sour
e IP Address, Destination IP Address,Sour
e Port and Destination Port) to distribute pa
kets among multiple threads in16

the desired manner. Four tuple is
hosen for
al
ulating hash fun
tion be
ause allpa
kets belonging to a
onne
tion have the same four tuple. We
ategorize threadsin our model into two di�erent types based on the task that they perform. Theyare reading threads and pro
essing threads. A reading thread reads pa
kets fromthe network and handles it or enqueues it for other thread to handle based on thehash fun
tion. A pro
essing thread on the other hand does not read any pa
ket butpro
esses pa
kets that are read by other threads. Ea
h pro
essing thread maintainsa bu�er
alled pending queue in whi
h pa
kets are inserted by the reading threadson hash index mat
h. As pa
ket reading time is lesser than pa
ket handling time,generally we require fewer reading threads
ompared to pro
essing threads. We
anuse all reading threads and no pro
essing threads if the load is to be shared equallyamong all the threads.The Psuedo
ode for reading thread follows.reading_thread{ while(1){ read a pa
ket from the network;sear
h dynami
 demultiplexer table for entry;if(entry found){ thread_index = thread index present in the entry;insert into pending queue of target thread whoseindex range mat
hes thread_index;if target thread is a pro
essing thread and itspending queue was empty before insertion thensend signal to that thread;
ontinue;} 17

sear
h stati
 demultiplexer table for entry;if(entry found){ thread_index = hash(four tuple);insert into pending queue of target thread whoseindex range mat
hes thread_index;if target thread is a pro
essing thread and itspending queue was empty before insertion thensend signal to that thread;
ontinue;}else dis
ard pa
ket;while(pending queue is non-empty){ remove pa
ket from pending queue;pro
ess_pa
ket();}}} Pa
kets after being
opied from the network are
he
ked against the
riteriabased on the appli
ation layer data
ontent present in them. For this the pa
ket�lter determines to whi
h appli
ation layer proto
ol the pa
ket belongs and passesit to the respe
tive �ltering module. In other words pa
kets are demultiplexed onthe basis of the appli
ation layer proto
ol they belong to. We use demultiplexertables for maintaining this information. Ea
h table
ontains tuples representing thebasi

riteria spe
i�ed in the
on�guration �le. The pa
ket is sent to the appropriate
onne
tion manager and appli
ation �lter based on the information in these tuples.18

There
an be a situation where an appli
ation might require addition of newtuples in the demultiplexer table apart from the tuples
orresponding to the basi

riteria spe
i�ed in the
on�guration �le. An example of su
h a situation is passiveFTP. In a passive �le transfer, the FTP
lient
onta
ts the server on the standardFTP
ommand port and issues a PASV
ommand. The FTP server replies withits own IP address and a port to whi
h the
lient is supposed to
onne
t for data
onne
tion. This port when sent from the server is a non-standard port and hen
e
annot be determined beforehand. For monitoring su
h
onne
tions, the in-kernelBPF
ode i.e., the BPF
ode, needs to be modi�ed.For this purpose the demultiplexer maintains its tables in two separate parts,a stati
 table and a dynami
 table. The stati
 table
ontains information aboutthe basi

riteria spe
i�ed in the
on�guration �le. Whenever an appli
ation layerproto
ol �lter desires a modi�
ation in the BPF
ode, it adds a new entry into thedynami
 demultiplexer table and removes the existing BPF
ode from the kernel.On reading a pa
ket from the network, a reading thread �rst sear
hes in thedynami
 demultiplexer table for an entry
orresponding to this pa
ket. If an entryis found, pa
ket is inserted in the pending queue of the appropriate thread. If anentry for this pa
ket is not found in the dynami
 demultiplexer table, the stati
demultiplexer table is sear
hed. If an entry is found in this table, pa
ket is insertedin the pending queue of the appropriate thread whose index is
al
ulated by applyinghash fun
tion on the four tuple of this pa
ket. After inserting pa
ket in pendingqueue of the other thread, the target thread is signaled if it is a pro
essing threadand its pending queue was empty before this insertion. Signal is not sent for otherreading threads and pro
essing threads with non empty pending queues as they willeventually
he
k their pending queues and pro
ess this pa
ket. If the entry is notfound even in the stati
 table then this pa
ket is dis
arded. Now if pending queue of
urrent thread is non empty, pa
kets are dequeued and pro
essed until it be
omesempty.Dynami
 demultiplexer entries use di�erent thread index for pa
ket handlingthan the one
al
ulated by applying hash fun
tion on four tuple of the pa
ket. InFTP,
ontrol and data
onne
tions share the same data stru
tures throughout the19

appli
ation �lter pro
essing. To avoid
ontention here, FTP
ontrol and data
on-ne
tions are handled by the same thread. When an FTP
ontrol
onne
tion is beinghandled, FTP �lter adds an entry in the dynami
 demultiplexer table
orrespond-ing to the FTP data
onne
tion. Index of the thread handling
ontrol
onne
tionis added in the dynami
 demultiplexer table along with the basi

riteria informa-tion. This index is later used to deliver the data
onne
tion to the same thread thathandled the
ontrol
onne
tion.The Psuedo
ode for pro
essing thread follows.pro
essing_thread(){ while(1){ if(pending queue is empty){ wait for signal;On re
eiving a signal
ontinue;}else{ remove pa
ket from pending queue;pro
ess_pa
ket();}}} A pro
essing thread waits for signal on �nding that its pending queue is empty.If the queue is not empty, it removes a pa
ket from the queue and pro
esses it. Afterpro
essing, it will again
he
k for any pa
kets in the pending queue. On re
eiving asignal in the waiting state, it
he
ks for pa
kets in pending queue.This model gives �ne
ontrol over dividing the load among di�erent threads in thedesired ratio. Also, it is s
alable for any number and type of pro
essors. Fine tuning20

of ratios, number and type of threads is required to a
hieve maximum performan
efor given hardware.3.2 Distributed DesignDistributed
omputing solves a large problem by dividing it into small problems,solving them at many
omputers and �nally
ombining the partial solutions intoa solution for the original problem. Re
ent distributed
omputing proje
ts havebeen designed to use the
omputers of hundreds of thousands of volunteers all overthe world
onne
ted through Internet for solving many
omputationally intensiveproblems. Distributed
omputing
an be e�e
tively used to get the most out ofmulti
omputer systems in solving
omputationally intensive problems. MPI/PVMis used for message passing between di�erent
omputers.This te
hnique is used in Gigabit Pi
kPa
ket to e�e
tively use the power ofmulti-
omputer systems in monitoring gigabit tra�
. This se
tion des
ribes twovariations of our design in using distributed
omputing.3.2.1 Hub based approa
hIn this approa
h, multiple ma
hines run the monitoring tool in parallel and
om-putation overhead is distributed among these ma
hines in a desired ratio. We donot need any message passing between these ma
hines. We
an either use singlethreaded or multi-threaded Pi
kPa
ket at ea
h ma
hine. At ea
h ma
hine, only asubset of the in
oming pa
kets are handled and the remaining pa
kets are dis
arded.A hash fun
tion
al
ulated on the four tuple (Sour
e IP Address, Destination IP Ad-dress, Sour
e Port, Destination Port) of the pa
ket is used to �nd this subset. Hashfun
tion is
hosen in su
h a way that all pa
kets belonging to a
onne
tion are han-dled by the same ma
hine and a pa
ket is not dis
arded by all the ma
hines. Hashindex generated by the hash fun
tion lies in the index range of one and only onema
hine. Figure 3.1 shows the ar
hite
ture of hub based approa
h.For handling FTP and RADIUS proto
ols, some deviations from the originaldesign are required. In Passive FTP, four tuple of the data
onne
tion is known21

PickPacket Filter PickPacket Filter PickPacket Filter PickPacket Filter

HUB

Monitoring PortGigabit Switch

ABCD

ABCD ABCD ABCDABCD

Figure 3.1: The Ar
hite
ture of Hub based approa
honly at the time of handling
ontrol
onne
tion. FTP �lter dynami
ally
hanges theBPF
ode and re
ompiles it to prevent in kernel �ltering of data
onne
tion pa
ketsby Linux So
ket Filter. It also adds an entry in the dynami
 demultiplexer tablefor the new data
onne
tion. The BPF
ode and dynami
 demultiplexer entries are
hanged only on the ma
hine where
orresponding FTP
ontrol
onne
tion is beinghandled. Thus FTP data pa
kets rea
h the appli
ation layer, without being �lteredout by the BPF �lter, only on this ma
hine and they should be handled by thisma
hine without �ltering based on the hash fun
tion. Be
ause of these reasons,FTP should be handled with spe
ial
are to prevent hash fun
tion from dis
ardingdata
onne
tion pa
kets on the ma
hine where
ontrol
onne
tion is being monitored.In RADIUS proto
ol, authenti
ation and a

ounting pa
kets are the
ontrolpa
kets that will instantiate new
onne
tions. All the pa
kets
orresponding to aRADIUS
ontrol
onne
tion should be handled by the same ma
hine as we maintainstate information
orresponding to the
ontrol pa
kets re
eived. But these pa
ketsmay be having di�erent four tuples as authenti
ation and a

ounting servers run on22

di�erent ports and possibly on di�erent ma
hines. Thus RADIUS
ontrol pa
ketsshould be exempted from hash fun
tion and spe
ial
are should be taken while han-dling them. Similar to FTP, RADIUS
ontrol pa
kets add entries in demultiplexertable and re
ompile BPF
ode to enable monitoring of RADIUS instantiated
on-ne
tions. So, pa
kets belonging to RADIUS instantiated
onne
tions will rea
h theappli
ation layer only on the ma
hine where RADIUS
ontrol
onne
tion is handled.Thus, RADIUS data pa
kets should not be dis
arded on this ma
hine based on hashfun
tion and they should be handled similar to FTP data pa
kets.To solve the above problems, FTP data pa
kets and RADIUS pa
kets should behandled before dis
arding them based on hash fun
tion. Figure 3.2 shows the data�ow diagram of Gigabit Pi
kPa
ket with spe
ial
are for FTP and RADIUS.Every UDP pa
ket is �rst
he
ked for whether it is a RADIUS pa
ket. If it isa RADIUS pa
ket, it is handled without
al
ulating hash fun
tion. Thus, RADIUS
ontrol pa
kets are handled by all the ma
hines and BPF Filter on every ma
hine is
hanged to a

ept pa
kets belonging to RADIUS instantiated
onne
tions. Dynami
demultiplexer table is divided into FTP and RADIUS demultiplexer tables to avoidsear
hing RADIUS entries of demultiplexer on every ma
hine for all the re
eivedpa
kets. On re
eiving a TCP pa
ket, FTP demultiplexer table is sear
hed for anentry
orresponding to this pa
ket. If an entry is found, this pa
ket is handledwithout dis
arding based on hash fun
tion. Otherwise RADIUS demultiplexer tableand stati
 demultiplexer table are sear
hed in order for an entry
orresponding tothis pa
ket. If it is found in any of these tables, it is handled normally and dis
ardedotherwise. With this approa
h, RADIUS instantiated
onne
tions are distributedamong all the ma
hines based on the same hash fun
tion.3.2.2 Splitter based approa
hEven though hub based approa
h improves the performan
e of Pi
kPa
ket to someextent, it is still limited by the kernel level overhead as all pa
kets are handled bythe kernel on every ma
hine. The Hub based approa
h distributes the appli
ationlevel overhead but not the kernel level overhead. In this se
tion, we dis
uss anotherapproa
h where kernel level pa
ket overhead
an also be distributed.23

Start

Read Packet

 Is TCP
 Packet?

 Is UDP
Packet?

Drop Packet

Process Packet

Is RADIUS pkt?

 Calculate Hash

 If Hash
match occurs?A

A

in RADIUS demultiplexer
 table

 If entry found

 If entry found
in FTP demultiplexer
 table

 If entry found

 table
in Static demultiplexer

Yes

No

Yes Yes

No

No

No

No

No

No

Yes

Yes

Yes

YesFigure 3.2: Pa
ket handling in Hub based approa
h
24

PickPacket Filter PickPacket Filter PickPacket Filter PickPacket Filter

Monitoring PortGigabit Switch

SPLITTER

A B C D

ABCD

Figure 3.3: The Ar
hite
ture of Splitter based approa
hLoad balan
ing swit
hes
an be used to split the tra�
 to be monitored amongmultiple ma
hines in su
h a way that all pa
kets belonging to a
onne
tion are sentto the same ma
hine. Figure 3.3 shows the ar
hite
ture of splitter based approa
h.IDS load balan
ers are available [16℄ that
an split tra�
 based on round robin andweighted least
onne
tions algorithms. We
an use the ar
hite
ture shown in the�gure, where a load balan
ing swit
h will divide the tra�
 to be monitored amongmultiple ma
hines running Pi
kPa
ket. By this approa
h kernel level overhead isalso distributed. This approa
h is s
alable to very high speed networks.This approa
h has the disadvantage that FTP and RADIUS
an not be handled.As we have already seen, a simple hash fun
tion that dis
ards all the pa
kets that donot mat
h the hash index is not enough for handling FTP and RADIUS proto
ols.Spe
ial
are need to be taken to handle FTP
ontrol and data
onne
tions at thesame ma
hine. Similarly RADIUS
ontrol and data pa
kets should be handled bythe same thread. A general load balan
ing swit
h may not handle these variations.A
ustomized splitter
an be built with spe
ial
are to handle these proto
ols.25

Various approa
hes for parallelizing the �lter
omponent of Gigabit Pi
kPa
kethave been dis
ussed in this
hapter. Multi-threaded approa
h e�e
tively uses thepower of multipro
essor ma
hines to distribute the appli
ation load among multiplepro
essors. It allows binding a thread to a parti
ular pro
essor and
ontrolling theload on various threads for a
hieving the best performan
e. The Hub-based ap-proa
h distributes the appli
ation load among multiple ma
hines in a desired ratioand thus improves the performan
e of �lter. It is used when multiple ma
hines areavailable for monitoring the tra�
. Multi-threaded and hub-based approa
hes
anbe used together when multiple multipro
essor ma
hines are available. Both theseapproa
hes distribute the appli
ation load but not the kernel load among multiplepro
essing units. So, they are useful when
omplex
riteria are used for �ltering,where appli
ation overhead is more than kernel overhead. In both these approa
hes,as all pa
kets are handled at the kernel level, kernel limitation in handling max-imum tra�
 speed limits the maximum speed that
an be monitored by GigabitPi
kPa
ket.In the splitter based approa
h, kernel level pa
ket handling is also distributedamong multiple ma
hines. So, Gigabit Pi
kPa
ket with this approa
h is not limitedby the kernel limitation in handling high speed tra�
. The only limitation of thisapproa
h is that hardware splitter needs to be
ustomized to support FTP andRADIUS proto
ols.Current implementation of Gigabit Pi
kPa
ket in
ludes support for all threeapproa
hes. By
hanging the
on�guration spe
i�
ation, any
ombination of theseapproa
hes
an be obtained. Unipro
essor version
an be obtained by setting numberof threads and hash index to one.

26

Chapter 4Implementation of GigabitPi
kPa
ketThis
hapter dis
usses the implementation details of Gigabit Pi
kPa
ket. First theenhan
ements made to
on�guration �le generator are des
ribed. Then the imple-mentation of �lter and
hanges for postpro
essing are des
ribed brie�y.4.1 Con�guration File GeneratorThe
on�guration �le generator of Pi
kPa
ket is enhan
ed so that users
an alsospe
ify the
riteria for multi-threading and hash fun
tion
al
ulation. For multi-threaded approa
h,
on�guration �le should
ontain thread-spe
i�
 information su
has load on ea
h thread, type of thread, its pro
essor binding and pending queuelength. Load on ea
h thread
an be varied by user to redu
e the load on a threadrunning on a pro
essor that performs kernel level pa
ket handling. Threads
an bebound to pro
essors to prevent unne
essary
ontext swit
hes that result in unpre-di
table overheads. The pending queue length of ea
h thread needs to be
ontrolledfor best performan
e. A very high value will
ause the system to run out of memory,whereas a very small value may
ause dropping of pa
kets at the pending queue.For the hub-based approa
h, hash index values need to be spe
i�ed in the
on-�guration �le. Users should be able to
ontrol the load on various ma
hines and27

threads in any ratio. We use the total hash index to represent the total load on thesystem and hash start and end values for ea
h ma
hine represent the hash indexrange of the
urrent ma
hine. If the hash value
al
ulated by the hash fun
tion fallsin the hash range of a ma
hine, then it will handle the pa
ket.A new se
tion is added in the
on�guration �le before the appli
ation level
riteriase
tions
alled thread_info. This se
tion
ontains information about hash_index,num_threads, hash_start_value, hash_end_value and subse
tions
ontaining in-formation spe
i�
 to ea
h thread. Hash_index is the value of total load that is beingshared by all threads on all the ma
hines, num_threads is the number of threads thatare going to be
reated on this ma
hine, hash_start_value and hash_end_valuespe
ify the range of hash index for this ma
hine. A subse
tion is
reated for ea
hthread that
ontains information about type of thread, load on this thread, pro
essorbinding and length of the pending queue. Appendix A shows a sample
on�guration�le for Gigabit Pi
kPa
ket.A panel
alled Thread Manager Panel is added in the Con�guration File Gener-ator GUI for spe
ifying the new
riteria. Figure 4.1 shows the new GUI s
reen forspe
ifying the
riteria added in Gigabit Pi
kPa
ket.A

ording to the spe
i�
ations in Figure 4.1, this is one ma
hine in the
lusterthat takes half of the total load as its hash range is half of the total hash value.Two threads are
reated where one thread is a reading thread binded to pro
essor0 that reads all the pa
kets but pro
esses only 25% of them and the other thread isa pro
essing thread binded to pro
essor 1 that handles 75% of the pa
kets read byreading thread with a pending queue length of 1000 pa
kets.4.2 FilterThis se
tion dis
usses the implementation details of various design methodologies ex-plored in the previous
hapter. Some optimizations in the �lter
omponent and dig-ital signature implementation for prote
ting dump�le's integrity are also des
ribedbrie�y.
28

Add

Modify

Remove

SMTP FTP Telnet HTTP OTHER File Manager Thread Manager

 Thread Manager

Total Hash Value:

Hash End Value:

Hash Start Value:

3

8

0

Reading 0 1 1

Processing 1 3 1000

 Thread Type Processor Binding Load Pending Queue Length

Figure 4.1: Con�guration File Generator: Thread Manager Tab
29

4.2.1 Multi-threaded ImplementationWe used standard POSIX thread library on Linux for
reation and managementof threads. The Filter reads thread-spe
i�
 information from the
on�guration �leand
reates as many threads as spe
i�ed in the
on�guration �le. It starts readingpa
kets from the network only after all the threads are properly initialized. Ea
hthread uses a stru
ture
alled thread_spe
i�
_data for maintaining thread spe
i�
information su
h as pending queue pointers and information about
urrent pa
ketbeing handled by this thread.As we have multiple threads running simultaneously and sharing some globaldata stru
tures, we need to prote
t these data stru
tures from ra
e
onditions. De-multiplexer tables, t
p a
tive and free lists, appli
ation level free lists are some globaldata stru
tures shared by all threads that need to be prote
ted from simultaneousa

ess by multiple threads. Ea
h thread spends very little time exe
uting the
ode in
riti
al se
tions involving these data stru
tures as the
riti
al se
tions are small andea
h thread is ideally s
heduled on its own pro
essor. So, we use spinlo
ks for pro-te
ting these
riti
al se
tions rather than blo
king lo
ks. Non-blo
king read/writelo
ks are also implemented on top of basi
 spinlo
ks for prote
ting data stru
tureslike dynami
 demultiplexer, where reads are frequent and writes are rare.4.2.2 Clustered ImplementationIn
lustered implementation, tra�
 should be distributed among all the ma
hinesrunning Pi
kPa
ket in the desired ratio and all pa
kets belonging to the same
onne
-tion should always be handled by the same ma
hine. The hash fun
tion is
al
ulatedon the four tuple (Sour
e IP Address, Destination IP Address, Sour
e Port, Desti-nation Port) of ea
h pa
ket as all pa
kets belonging to a
onne
tion have the samefour tuple. As it is possible to have di�erent ma
hines with di�erent power, we needto divide the load between these ma
hines any desired ratio. For providing this,we used hash index range for ea
h ma
hine and thread instead of single hash indexvalue. Hash value is
al
ulated as sum of all the items in four tuple modulo totalhash index range of all the ma
hines. Only that ma
hine whose hash range in
ludesthis value a

epts this pa
ket, while all the other ma
hines dis
ard it ex
ept for some30

variations in FTP and RADIUS. This method distributes all the
onne
tions in thedesired ratio as the hash is
al
ulated on
onne
tion information basis.4.2.3 Signature for Dump�lesFor providing authenti
ity and integrity to dump�les, a digital signature is generatedfor ea
h dump�le generated by the �lter. A message digest is a spe
ial number thatis e�e
tively a hash
ode produ
ed by a fun
tion that is very di�
ult to reverse. Adigital signature is a message digest en
rypted with someone's private key to
ertifythe
ontents. This pro
ess of en
ryption is
alled signing. This digital signature
anlater be de
rypted using a publi
ly known key to verify that it is signed with thisprivate key.The most
ommon digital signature in use today is the
ombination of the MD5message digest and the RSA en
ryption. We used this
ombination to generatedigital signature for all the dump�les generated by �lter. In
remental MD5 is usedto generate message digest when ea
h pa
ket is stored to dump�le and the messagedigest is �nally en
rypted while
losing dump�le. Private key is input to the �lterpro
ess by a safe medium su
h as a removable disk.The digital signatures thus generated for dump�les are sent to the postpro
essorwhere veri�
ation of message digests is done. Digital signature is de
rypted usinga publi
 key, that is known to the world, to generate the message digest. Messagedigest of the dump�le is
al
ulated now and it is
ompared with the de
ryptedmessage digest. If a mismat
h o

urs between them, it means that the dump�le hasbeen
hanged before postpro
essing and thus its integrity is lost. This me
hanismof digital signatures thus prote
ts the integrity of dump�les.4.2.4 Optimization of FilterFilter
an be optimized by using memory mapped I/O on so
kets for reading pa
kets.This will redu
e the pa
ket reading time by eliminating a memory
opy from kernelspa
e to user spa
e. A ring bu�er of memory is allo
ated and atta
hed to theraw so
ket and the so
ket is
on�gured so that kernel will use this ring bu�er for31

reading pa
kets into memory for this so
ket. The same bu�er is shared by kernel andappli
ation for pro
essing the pa
ket. After pro
essing the pa
ket, appli
ation setsa �ag in this pa
ket indi
ating that this memory spa
e
an be reused by kernel. Theappli
ation should pro
ess the pa
kets fast enough to prevent kernel from droppingpa
kets due to la
k of empty frames in the ring bu�er. As mmap saves a memory
opy for all the pa
kets rea
hing the appli
ation layer, it redu
es the overall kernellevel pa
ket handling overhead by a major fa
tor.Latest Ethernet drivers
ompiled with NAPI support are used in ma
hines run-ning Pi
kPa
ket for better performan
e. NAPI is a devi
e polling te
hnology intro-du
ed from Linux 2.4.20 that
ontrols the interrupt rate by polling the devi
e forpa
kets at regular intervals thus improving the performan
e of operating system inhandling high tra�
 rate. NAPI redu
es the kernel overhead in handling interruptsby polling for interrupts at regular intervals rather than devi
e sending an interruptafter re
eiving pa
kets. When large number of pa
kets have been re
eived, multiplepa
kets
an be handled in a single poll in an e�
ient manner. Kernel level pa
kethandling overhead is redu
ed a lot by using this te
hnique as the time spent inhandling interrupts for ea
h pa
ket is not present here.Another optimization is to prevent the sni�ed pa
kets from rea
hing the TCP/IPsta
k of the ma
hine running Gigabit Pi
kPa
ket as the sni�ed pa
kets are notdestined for appli
ations running on this ma
hine. This further redu
es the load onkernel level pa
ket handling as expensive operations like IP
he
ksum
al
ulationand routing table lookup are eliminated by not allowing a pa
ket from rea
hingTCP/IP sta
k on the ma
hine. This
an be a

omplished using a kernel modulethat a
ts as an IP_PRE_ROUTING_HOOK in the Linux kernel.4.3 Pi
kPa
ket PostPro
essorPi
kPa
ket PostPro
essor has been
hanged to postpro
ess multiple dump�les gen-erated by various ma
hines in Gigabit Pi
kPa
ket. A new program is added topostpro
essor before the sorter module that will verify the integrity of individualdump�les and
on
atenate them into a single dump�le. This single dump�le is32

given to sorter program for further postpro
essing. For veri�
ation of signature, were
al
ulate message digest for ea
h dump�le using MD5 and
ompare this messagedigest with the one obtained by de
rypting the signature for this dump�le usingpubli
 key. If both the message digests do not mat
h, then the post pro
essingstops, giving an error message. Otherwise, it
he
ks all the dump�les for integrityand �nally
on
atenates all of them into a single dump�le. While
on
atenating, 24byte p
ap header is removed from all the dump�les ex
ept the �rst one. If the p
apoutput �les are generated using di�erent versions of the p
ap library, then an errormessage is generated and the dump�les should be postpro
essed separately.

33

Chapter 5TestingIn this
hapter we des
ribe the test setup used for testing Gigabit Pi
kPa
ket. Theessential idea of these experiments was to determine the peak bandwidth at whi
hGigabit Pi
kPa
ket monitors the network without dropping any pa
ket. Perfor-man
e is evaluated by spe
ifying
omplex set of appli
ation level
riteria and varioustra�
 patterns were monitored with these
riteria.5.1 Corre
tness TestingFun
tional testing of Gigabit Pi
kPa
ket was
arried out by varying the number ofreading threads, handling threads and by testing all the
ontrol paths of appli
ationlevel �lters with various
riteria. E�e
t of multiple threads and usage of lo
ks werethoroughly tested for
orre
tness. For testing Gigabit Pi
kPa
ket at high speedswith live tra�
, a gigabit hub was required to sni� the pa
kets by putting theinterfa
e in promis
uous mode. Due to unavailability of a gigabit hub, we
hangedthe Linux kernel to set the destination MAC address of every outgoing pa
ket tothe Ethernet broad
ast address. At the re
eiver, we
hanged the kernel to re
eivethese MAC broad
ast pa
kets and send upto appli
ation layer without droppingthem. We used three ma
hines with 2.4 GHz CPU, 256 MB RAM running the
hanged Linux kernel
onne
ted through a gigabit swit
h as both
lients and serversfor various appli
ation layer proto
ols. Gigabit Pi
kPa
ket was tested on two dual34

pro
essor Xeon ma
hines with 2.0 GHz CPU, 1.0 GB RAM and running the Linuxkernel 2.4.20-8smp
onne
ted to the same swit
h as tra�
 generating ma
hines. Weused some s
ripts on all these tra�
 generating ma
hines to generate to generate alarge number of
onne
tions varying in number of pa
kets, duration of
onne
tion,speed, amount of data transferred and appli
ation proto
ol. Gigabit Pi
kPa
ket wassu

essfully tested and it
aptured all the pa
kets of interest.5.2 Performan
e TestingPerforman
e testing was
arried out with a di�erent setup than the one used for
orre
tness testing. Test setup used for
orre
tness testing did not really simulatethe behaviour of a real network as only three ma
hines were generating all the tra�
and they were limited in speed due to various problems. Also, it was not easy to
ontrol the speed of the generated tra�
 with this setup. We tried to
ondu
t theexperiment on a real network where many users from di�erent ma
hines
an bemonitored. But the maximum bandwidth at the busiest link available for us wasonly 50 Mbps. For monitoring high and
ontrolled speeds, we stored these pa
kets
oming at 50 Mbps to disk and later replayed them at desired speed by reading themfrom the disk. As one ma
hine was not able to replay the tra�
 at required speed,we used multiple ma
hines for replaying this data and evaluated the performan
e ofGigabit Pi
kPa
ket.Various metri
s were used for evaluating the performan
e of Gigabit Pi
kPa
ket.We used �ve di�erent
on�guration �les whi
h
overs all kinds of
riteria spe
i�
a-tion. They are1. normal_appl tests all possible
ombinations of appli
ation level
riteria spe
i-�
ation with one
riteria for ea
h
ombination, but does not store any pa
ketsto disk.2. normal_dump is similar to normal_appl and it also stores around 10% pa
ketsto disk.3. dumpall stores every pa
ket to disk.35

4. heavy_appl tests all possible
ombinations of appli
ation level
riteria spe
i�-
ation with multiple (around 20)
riteria for ea
h
ombination, but does notstore any pa
kets to disk.5. heavy_dump in
ludes all
riteria in heavy_appl and some extra
riteria tostore around 10% of the read pa
kets.The �rst three
on�guration �les put less load on Gigabit Pi
kPa
ket when
omparedto the last two
on�guration �les.5.2.1 E�e
t of Multiple Threads/Pro
essorsPerforman
e of Gigabit Pi
kPa
ket by varying the number of pro
essors were
arriedout using a dual pro
essor Xeon ma
hine with hyper-threading. In all the tests,maximum bandwidth at whi
h Gigabit Pi
kPa
ket handled all the pa
kets withoutany pa
ket drop was measured. Table 5.1 shows the results obtained by varyingthe number of pro
essors. The number of reading threads and pro
essing threads,their pro
essor binding and load on ea
h thread are �ne tuned in ea
h
ase to givethe maximum performan
e. The
ase of four pro
essors was tested by using a dualpro
essor ma
hine with hyper-threading enabled.Maximum Speed Maximum Speed Maximum SpeedCon�guration File a
hieved with a
hieved with a
hieved withone pro
essor two pro
essors four pro
essors(in Mbps) (in Mbps) (in Mbps)normal_appl 275 300 350normal_dump 250 275 325dumpall 150 250 325heavy_appl 125 200 260heavy_dump 100 180 250Table 5.1: E�e
t of number of Pro
essors on Gigabit Pi
kPa
ket's performan
eIt
an be observed from the results that on in
reasing the number of pro
es-sors, performan
e improved drasti
ally in
on�gurations with heavy load on Gigabit36

Pi
kPa
ket, while there is only a slight improvement in
on�gurations with less load.Adding more pro
essors did not improve performan
e mu
h in
on�gurations withless load due to two reasons. We use multiple threads to distribute appli
ation over-head among multiple pro
essors when a single pro
essor
annot handle the entiretra�
. Here, as appli
ation load was not very high to be shared by multiple pro
es-sors, we did not see mu
h improvement in performan
e. The se
ond reason is thatUnipro
essor Linux kernel performs better than SMP Linux kernel in kernel levelpa
ket handling, as
ontention resolution in latter kernel is very
ostly. In
on�gu-rations with heavy load, there was enough load to be shared by multiple pro
essorsand the improvement a
hieved due to
on
urren
y at the appli
ation level was mu
hmore than the overhead at kernel level. When we in
reased number of pro
essorsfrom two to four, performan
e did not double as hyper-threading does not doublethe performan
e of pro
essors, but only improves it by around 30% to 50%.5.2.2 E�e
t of OptimizationsTable 5.2 shows the results obtained with multiple threads for the same
on�guration�les and tra�
 patterns used in 5.1 but with optimized Gigabit Pi
kPa
ket. NAPIfor devi
e polling, mmap to save a pa
ket
opy from kernel spa
e to user spa
eand a kernel module to prevent TCP/IP sta
k pro
essing for ea
h pa
ket are theoptimizations used here.Maximum Speed Maximum Speed Maximum SpeedCon�guration File a
hieved after a
hieved after a
hieved afteroptimizations optimizations optimizationswith 1 pro
essor with 2 pro
essors with 4 pro
essors(in Mbps) (in Mbps) (in Mbps)normal_appl 325 325 400normal_dump 300 300 375dumpall 175 250 350heavy_appl 125 210 275heavy_dump 125 200 260Table 5.2: E�e
t of Optimizations on Gigabit Pi
kPa
ket's performan
e37

NAPI redu
es the kernel overhead in handling interrupts by polling for inter-rupts at regular intervals rather than devi
e sending an interrupt after re
eivingpa
kets. When a large number of pa
kets have been re
eived, multiple pa
kets
anbe handled in a single poll in an e�
ient manner. Mmap saves a
opy of pa
ketfrom user spa
e to memory spa
e for ea
h pa
ket rea
hing the appli
ation layer. Bypreventing a
opy from kernel spa
e to user spa
e for all the pa
kets, kernel levelpa
ket handling overhead is redu
ed a lot. As the sni�ed pa
kets are not destinedto rea
h the TCP/IP sta
k of the ma
hine running the sni�er, we
an safely dis
ardthem before they rea
h this level. This further redu
es the load on kernel levelpa
ket handling. As all the optimizations result in redu
ing the kernel overheadrather than appli
ation overhead, performan
e improvement is more in
on�gura-tions with less appli
ation load. In
on�gurations with heavy load, the ratio ofappli
ation overhead to kernel overhead in handling a pa
ket is so high that thee�e
t of optimizations does not signi�
antly improve the overall performan
e.5.2.3 E�e
t of Tra�
 PatternsWe tested Gigabit Pi
kPa
ket with three di�erent kinds of tra�
 patterns to �ndthe e�e
t of tra�
 pattern on performan
e. d25, d50 and d100 are the three tra�
�les used in this experiment. 25% of the pa
kets in d25 belongs to the appli
ationproto
ols being monitored by Gigabit Pi
kPa
ket, thus rea
h our sni�er withoutbeing �ltered by the in-kernel BPF �lter. Similarly d50 and d100
ontains 50%and 100% pa
kets respe
tively that rea
h the appli
ation level. Table 5.3 shows theresults obtained with di�erent tra�
 patterns with heavy_dump as
on�guration�le.It
an be observed from the table that lesser the load on Gigabit Pi
kPa
ket,better the performan
e. In d25, as 75% of the total pa
kets are dis
arded at thekernel level, it gave the best possible results. As we used heavy_dump as the
on�g-uration �le, pa
ket handling time at the appli
ation layer was very high. Thus thedi�eren
e in performan
e between di�erent tra�
 patterns is quite high. A simple
on�guration �le like normal_appl will not show mu
h di�eren
e in performan
e be-tween di�erent tra�
 �les. In general, we will most often see the d50 tra�
 pattern.38

Maximum Speed Maximum Speed Maximum SpeedTra�
 Pattern �le a
hieved with a
hieved with a
hieved with1 pro
essor 2 pro
essors 4 pro
essors(in Mbps) (in Mbps) (in Mbps)d25 225 300 425d50 125 200 260d100 80 140 180Table 5.3: E�e
t of tra�
 pattern on Gigabit Pi
kPa
ket's performan
eThus d50 is used in all the remaining tests.5.2.4 Performan
e of Hub Based Approa
hPerforman
e of Gigabit Pi
kPa
ket with hub based approa
h was measured usingXeon 2.0 GHz ma
hine running Unipro
essor Linux 2.4.20-8. A single ma
hine wasused for this experiment. By varying the hash index from 1 to 16, load on thisma
hine was varied from 1 to 1/16 of the total load. By s
aling one ma
hine'sperforman
e upto 16, performan
e results for upto 16 ma
hines were
al
ulated.Table 5.4 shows the results.Maximum Maximum Maximum Maximum MaximumCon�guration Speed Speed Speed Speed SpeedFile a
hieved a
hieved a
hieved a
hieved a
hievedwith 1 with 2 with 4 with 8 with 16ma
hine ma
hines ma
hines ma
hines ma
hines(in Mbps) (in Mbps) (in Mbps) (in Mbps) (in Mbps)normal_appl 325 450 575 650 650normal_dump 300 375 450 575 600dumpall 175 500 600 650 650heavy_appl 125 225 400 500 600heavy_dump 125 225 400 500 600Table 5.4: E�e
t of number of ma
hines on hub based approa
h's performan
eMultiple ma
hines in hub based approa
h performed better than equal number of39

pro
essors in multithreaded approa
h as the kernel overhead in resolving
ontentionis not present here. After the number of ma
hines
rossed
ertain limit, there isa very limited or no performan
e gain. In hub based approa
h, multiple ma
hinesshare the appli
ation load but kernel load for handling all the pa
kets is presentin all the ma
hines. On
e we rea
h enough number of ma
hines for sharing theappli
ation load, it is the kernel overhead that prevents us from a
hieving betterspeeds. Thus there is no performan
e improvement after
ertain level.5.2.5 E�e
t of Pa
ket SizesEven with a mixed approa
h of multithreading and hub based approa
h, we
ouldnot handle 1Gbps speed tra�

onstantly for all tra�
 patterns. We found thatkernel limitation in handling small pa
kets is the reason for this behaviour. Weused a simple pa
ket
ounting sni�er and evaluated the speed at whi
h it starteddropping the pa
kets for di�erent pa
ket sizes. Table 5.5 shows the results obtained.Maximum Speed Maximum SpeedPa
ket Size a
hieved with a
hieved withpa
ket
ounting Gigabitsni�er Pi
kPa
ket(in Mbps) (in Mbps)64 200 150500 950 9501500 1000 1000Table 5.5: E�e
t of Pa
ket size on sni�er's performan
eTable shows that even an optimized pa
ket
ounter
annot handle tra�
 speedabove 200 Mbps when pa
ket size is 64 bytes. Referen
e [3℄ dis
usses similar resultsfor small sized pa
kets. With small sized pa
kets, number of pa
kets re
eived at1Gbps speed is too high to be handled by the kernel. As kernel handles pa
kets ofdi�erent sizes in a similar manner, kernel level pa
ket handling overhead is mu
hhigher in
ase of small pa
kets. At the hardware level, individual bits are handledas signals and thus irrespe
tive of pa
ket sizes, hardware
an handle 1Gbps tra�
.40

Thus we need to use a hardware splitter as des
ribed in the splitter based approa
hfor monitoring more than 1 Gbps speed with small pa
kets.5.2.6 Performan
e of Splitter Based Approa
hDue to the unavailability of a hardware splitter, we obtained the results of theSplitter approa
h by extrapolating the results of Gigabit Pi
kPa
ket. Performan
eresults of four pro
essor
ase were extrapolated to obtain the results in Table 5.6.Maximum Maximum MaximumCon�guration Speed Speed SpeedFile a
hieved a
hieved a
hievedwith 1 with 2 with 4ma
hine ma
hines ma
hines(in Mbps) (in Mbps) (in Mbps)normal_appl 400 800 1600normal_dump 375 750 1500dumpall 350 700 1400heavy_appl 275 550 1100heavy_dump 260 520 1040Table 5.6: E�e
t of number of ma
hines on splitter based approa
h's performan
eAssuming that the hardware splitter divides the load among ma
hines runningGigabit Pi
kPa
ket in a uniform manner and it works �ne at gigabit speeds withoutdropping any pa
kets, we
an obtain the results shown in the Table. As load balan
-ing swit
hes handling Gigabit speed are available in the market, these performan
eresults
an be obtained using them.

41

Chapter 6Con
lusionsThis report dis
usses the �ltering of pa
kets �owing a
ross the network based on
omplex
riteria involving appli
ation level proto
ols SMTP, FTP, HTTP, Telnetand RADIUS instantiated
onne
tions at very high speeds by a network monitoringtool
alled Gigabit Pi
kPa
ket. Various approa
hes that improve the performan
eof the monitoring tool by sharing the appli
ation pro
essing load among multipro-
essor ma
hines and
luster of ma
hines have been dis
ussed. Several kernel andappli
ation level optimizations for enhan
ing the network monitoring tool are alsodis
ussed. Digital signature support has been added for prote
ting the integrity of�les that
ontain pa
kets stored by the �lter.Several experiments have been
ondu
ted for evaluating the performan
e of Giga-bit Pi
kPa
ket based on various metri
s su
h as
omplexity of the
riteria spe
i�ed,tra�
 patterns and pa
ket sizes. Results show that Gigabit Pi
kPa
ket
an mon-itor upto 1 Gbps tra�
 under very
omplex
riteria spe
i�
ation for large pa
ketsizes. In
ase of pa
kets with small size, Gigabit Pi
kPa
ket needs hardware splittersupport for handling 1 Gbps tra�
 due to inherent limitation of Linux kernel inhandling small pa
kets at that speed. When
omplex �ltering
riteria are spe
i�ed,support of multipro
essors and/or multiple ma
hines
an be e�e
tively used to sharethe appli
ation pro
essing overhead.
42

6.1 Further WorkWe observed that Gigabit Pi
kPa
ket
ould not monitor 1Gbps tra�
 for small sizedpa
kets without using spe
ial hardware support like splitter. One possible way tosolve this problem is to use a hash fun
tion at the Network Interfa
e Card and dis
ardpa
kets at the hardware level in the hub based approa
h thus relieving kernel fromhandling millions of small pa
kets. Cost-bene�t ratio of hardware splitter approa
hand NIC level hash fun
tion needs to be
ompared. Gigabit Pi
kPa
ket
urrentlydoes not support PASV FTP and RADIUS proto
ols in splitter based approa
h. It
an be extended to support these proto
ols. One interesting resear
h work would beto look at the limitations of Linux kernel in handling small pa
kets at high speedsand propose an optimized solution to this problem.

43

Referen
es[1℄ S. Prashant Aditya. �Pi
kpa
ket: Design and Implementation of theHTTP postpro
essor and MIME parser-de
oder�, De
 2002. BTP,Department of Computer S
ien
e and Engineering, IIT Kanpur,http://www.
se.iitk.a
.in/resear
h/btp2003/98316.html.[2℄ Loris Degioanni, Fulvio Risso, and Piero Viano. �Windump�. http://netgroup-serv.polito.it/windump.[3℄ Lu
a Deri. �Improving Passive Pa
ket Capture: Beyond Devi
e Polling�.http://lu
a.ntop.org/Ring.pdf.[4℄ Gerald Combs et al. �Ethereal�. Available at http://www.ethereal.
om.[5℄ Robert Graham. �
arnivore faq�. http://www.robertgraham.
om/pubs/
arnivore-faq.html.[6℄ �How Carnivore Works�. http://www.howstu�works.
om/
arnivore.htm.[7℄ Van Ja
obson, Craig Leres, and Steven M
Canne. �t
pdump : A NetworkMonitoring and Pa
ket Capturing Tool�. Available via anonymous FTP fromftp://ftp.ee.lbl.gov and www.t
pdump.org.[8℄ Sanjay Kumar Jain. �Implementation of RADIUS Support in Pi
kpa
ket�. Mas-ter's thesis, Department of Computer S
ien
e and Engineering, IIT Kanpur,Apr 2003. http://www.
se.iitk.a
.in/resear
h/mte
h2001/Y111122.html.
44

[9℄ Neeraj Kapoor. �Design and Implementation of a Network Monitoring Tool�.Master's thesis, Department of Computer S
ien
e and Engineering, IIT Kanpur,Apr 2002. http://www.
se.iitk.a
.in/resear
h/mte
h2000/Y011111.html.[10℄ Steve M
Canne and Van Ja
obson. �The BSD Pa
ket Filter: A New Ar
hite
-ture for User-level Pa
ket Capture�. In Pro
eedings of USENIX Winter Con-feren
e, pages 259�269, San Diego, California, Jan 1993.[11℄ �nprobe n�ow�. http://www.ntop.org/nFlow/.[12℄ Brajesh Pande. �Design and Implementation of a Network Monitoring Tool�.Master's thesis, Department of Computer S
ien
e and Engineering, IIT Kanpur,Sep 2002. http://www.
se.iitk.a
.in/resear
h/mte
h2000/Y011104.html.[13℄ Boyer R. and J Moore. �A fast string sear
hing algorithm�. In Comm. ACM20, pages 762�772, 1977.[14℄ Stephen P. Smith, Henry Perrit Jr., Harold Krent, Stephen Men
ik, J. AllenCrider, Mengfen Shyong, and Larry L. Reynolds. �Independent Te
hni
al Re-view of the Carnivore System�. Te
hni
al report, IIT Resear
h Institute, Nov2000. http://www.usdoj.gov/jmd/publi
ations/
arniv_entry.htm.[15℄ �Sni�er Portable by Network Asso
iates�. http://www.networkasso
iates.
om/.[16℄ �TopLayer IDS load balan
ers�. http://www.toplayer.
om.[17℄ �Unispeed Netlogger�. http://www.unispeed.
om/.[18℄ Ja
obson V., Leres C., and M
Canne S. �p
ap - Pa
ket Capture Library�, 2001.Unix man page.
45

Appendix AA Sample Con�guration File#This is a sample
onfiguration file#Be very
areful if you edit a
onfiguration file manually# The syntax should be preserved# A hash(#) is used for
omments# This file has several se
tions#Se
tions start and end with tags similar to HTML.#Tags within se
tions
an start and end subse
tions or
an be tag-value pairs.#All the tags that are re
ognized appear in this file.# First Se
tion sp
ifies the sizes and names of the dump files# The Se
ond Se
tion spe
ifies the sour
e and destination IP ranges# the sour
e and destination ports, the proto
ol and the appli
ation# that should handle these IPs and ports# The third se
tions spe
ifies the number of
onne
tions to open simultaneously# for some appli
ations# The fourth se
tion spe
ifies the thread spe
ifi
 information and hash values.# The next se
tions des
ribe the appli
ation spe
ifi
input
riteria.# This file has a fixed format Careful!!#**************First Se
tion****************************<Output_File_Manager_Settings><Default_Output_File_manager_Settings>#number of spe
ified filesNum_Of_Files=2#the full file name relative/absolute will doFile_Path=dump1.dump#the file size in MBFile_Size=12 46

File_Path=dump2.dump#the 0 file size means that file
an be of max available size#only the last file
an have File_Size=0.File_Size=0</Default_Output_File_manager_Settings></Output_File_Manager_Settings>#**************End First Se
tion*************************#**************Se
ond Se
tion****************************# The basi

riteria here are for the Devi
e and# Sr
IP1:Sr
IP2:DestIP1:DestIP2:Sr
P1:Sr
P2:DestP1:DestP2:ProtoA:App# Should be read as For the range of sor
e IP from Sr
IP1 to Sr
IP2# For asso
iated ports from Sr
P1 to Sr
P2# and For the range of desitnation IP from DestIP1 to DestIP2# For asso
iated ports from DestP1 to DestP2# and FOR Proto
ol ProtoA# monitor
onne
tions a

ording to Appli
ation App# Proto
ols
an be UDP or TCP# Appli
ations for TCP are# SMTP, FTP, HTTP, TELNET, RADIUS, TEXT, DUMP_FULL, DUMP_PEN# Appli
ations for UDP are# DUMP_FULL, DUMP_PEN# No further spe
s are required for DUMP kind of appli
ations.# Do not mix too many appli
ations for
larity# Take
are that IPs Ports and appli
ations do not
onfli
t# Important: Some old NAS/RAS sends pa
kets assuming RADIUS Auth Server port# as 1645 and A

ounting Server port as 1646. So for this type of RAS/NAS we# need to
hange server port# in
onfiguration file as mentioned in next two lines.# Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:1645-1645:UDP:RADIUS# Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:1646-1646:UDP:RADIUS<Basi
_Criteria>DEVICE=eth0Num_Of_Criteria=10Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:25-25:TCP:SMTPCriteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:20-20:TCP:FTPCriteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:21-21:TCP:FTPCriteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:23-23:TCP:TELNETCriteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:80-80:TCP:HTTPCriteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:143-143:TCP:TEXTCriteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:1024-65535:TCP:DUMP_FULL47

Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:1024-65535:UDP:DUMP_FULLCriteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:1812-1812:UDP:RADIUSCriteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:1813-1813:UDP:RADIUS</Basi
_Criteria>#**********End Se
ond Se
tion****************************#**************Third Se
tion****************************# Has tunable number of
onne
tions that should be monitored# by some appli
ations of interest SIMULTANEOUSLY<NUM_CONNECTIONS>NUM_CONNECTIONS=5NUM_SMTP_CONNECTIONS=500NUM_FTP_CONNECTIONS=500NUM_HTTP_CONNECTIONS=500NUM_TELNET_CONNECTIONS=500NUM_RADIUS_CONNECTIONS=500</NUM_CONNECTIONS>#**********End Third Se
tion****************************#**************Fourth Se
tion****************************# Information regarding hash values and hash range for this# ma
hine are present here. Ea
h subse
tion
ontains information# about one thread. As many subse
tions as the number of# threads to be
reated are present in this se
tion.<THREAD_INFO>HASH_INDEX=8NUM_THREADS=2HASH_START_VALUE=0HASH_END_VALUE=3<Thread>Type=Pro
essingPro
essor=0Load=1Pending_Queue_Length=1000</Thread><Thread>Type=ReadingPro
essor=1Load=3Pending_Queue_Length=1000</Thread></THREAD_INFO> 48

#**********End Fourth Se
tion****************************#**************Appli
ation Spe
ifi
 Spe
ifi
ations******#If there are RADIUS Spe
ifi

riteria then those
riteria
omes first in this file#**************RADIUS Spe
ifi
ations******<RADIUS_Configuration>Num_Of_Criteria=3Criteria=skjain
s:no:0.0.0.0-0.0.0.0:1024-65535:1-65535:TCP:DUMP_FULLCriteria=vijayg:no:0.0.0.0-0.0.0.0:1024-65535:25-25:TCP:SMTPCriteria=vijayg:no:0.0.0.0-0.0.0.0:1024-65535:23-23:TCP:TELNET</RADIUS_Configuration>#**************SMTP Spe
ifi
ations******<SMTP_Configuration><SMTP_Criteria>NUM_of_Criteria=2<Sear
h_Email_ID>Num_of_email_id=1Case-Sensitive=yesE-mail_ID=skjain
s�
se.iitk.a
.in</Sear
h_Email_ID><Sear
h_Text_Strings>Num_of_Strings=1Case-Sensitive=yesString=book</Sear
h_Text_Strings><Sear
h_Email_ID>Num_of_email_id=2Case-Sensitive=yesE-mail_ID=skjain
s�iitk.a
.inE-mail_ID=brajesh�hotmail.
om</Sear
h_Email_ID><Sear
h_Text_Strings>Num_of_Strings=0</Sear
h_Text_Strings></SMTP_Criteria>Num_of_Stored_Pa
kets=750Mode_Of_Operation=full</SMTP_Configuration>#**********END SMTP Spe
ifi
ations******#**********FTP Spe
ifi
ations******49

<FTP_Configuration><FTP_Criteria>NUM_of_Criteria=1<Usernames>Num_Of_Usernames=2Case-Sensitive=noUsername=ankanandUsername=nmangal</Usernames><Filenames>Num_Of_Filenames=1Case-Sensitive=noFilename=test.txt</Filenames><Sear
h_Text_Strings>Num_Of_Strings=1Case-Sensitive=yesString=book se
ret</Sear
h_Text_Strings></FTP_Criteria>Num_of_Stored_Pa
kets=750Monitor_FTP_Data=yesMode_of_Operation=full</FTP_Configuration>#**********END FTP Spe
ifi
ations******#*************HTTP Spe
ifi
ations******<HTTP_Configuration><HTTP_Criteria>NUM_of_Criteria=1<Host>Num_Of_Hosts=1Case-Sensitive=noHOST=http://www.rediff.
om</Host><Path>Num_Of_Paths=1Case-Sensitive=yesPATH=/
ri
ket</Path><Sear
h_Text_Strings> 50

Num_of_Strings=1Case-Sensitive=noString=neutral venu</Sear
h_Text_Strings></HTTP_Criteria><Port_List>Num_of_Ports=1HTTP_Server_Port=80</Port_List>Num_of_Stored_Pa
kets=750Mode_Of_Operation=full</HTTP_Configuration>#*********END HTTP Spe
ifi
ations******#*********TELNET Spe
ifi
ations******<TELNET_Configuration><Usernames>Num_of_Usernames=1Case-Sensitive=yesUsername=ankanand</Usernames>Mode_Of_Operation=full</TELNET_Configuration>#*****END TELNET Spe
ifi
ations******#*********TEXT SEARCH Spe
ifi
ations******#These have to be added manually<TEXT_Configuration><Sear
h_Text_Strings>Num_of_Strings=1Case-Sensitive=noString=timesofindia</Sear
h_Text_Strings>Mode_Of_Operation=pen</TEXT_Configuration>#*****END TEXT SEARCH Spe
ifi
ations******#**********End Appli
ation Spe
ifi
 Spe
ifi
ations****
51

