Implementation of RADIUS Support in PickPacket

A Thesis Submitted
in Partial Fulfillment of the Requirements
for the Degree of

Master of Technology

by
Sanjay Kumar Jain

to the

Department of Computer Science & Engineering
Indian Institute of Technology, Kanpur

May, 2003

Certificate

This is to certify that the work contained in the thesis entitled “Implementation

of RADIUS Support in PickPacket’, by Sanjay Kumar Jain, has been carried out

under our supervision and that this work has not been submitted elsewhere for a

degree.

May, 2003

(Dr. Deepak Gupta)

Department of Computer Science &
Engineering,

Indian Institute of Technology,

Kanpur.

(Dr. Dheeraj Sanghi)

Department of Computer Science &
Engineering,

Indian Institute of Technology,

Kanpur.

Abstract

The extensive use of computers and networks for exchange of information has
also had ramifications on the growth and spread of crime through their use. Law
enforcement agencies need to keep up with the emerging trends in these areas for
crime detection and prevention. Among the several needs of such agencies are the
need to monitor, detect and analyze undesirable network traffic. However, the mon-
itoring, detecting, and analysis of this traffic may be against the goal of maintaining
privacy of individuals whose network communications are being monitored.

PickPacket — a network monitoring tool that can handle the conflicting issues
of network monitoring and privacy through its judicious use, is discussed in Refer-
ences [10, 15, 1]. This thesis discusses the implementation of RADIUS [24, 22, 23]
support in PickPacket and how the information in RADIUS packets can be used
to monitor dialup users who are generally allocated dynamic IP addresses by the

Internet Service Provider.

Acknowledgments

I take this opportunity to express my sincere gratitude towards my thesis super-
visors Dr. Dheeraj Sanghi and Dr. Deepak Gupta for their invaluable guidance. It
would have never been possible for me to take this project to completion without
their innovative ideas and encouragement. I also thank the other team members
involved with the development of PickPacket - Neeraj, Brajeshji, Prashant, Abhay,
Nitin, Ankit, Sachin, JVR Murthy and Srikanth for their cooperation and support.
Abhay, Nitin and Ankit painstakingly performed several testings on PickPacket.
Prashant always helped me whenever there was any problem related with linux sys-
tem. I will also remember him for his small trainning on CVS. Sachin, Kanth and
Murthy helped me in second release of PickPacket. I fondly remember Neeraj who
explained me the various design issues of PickPacket. Unfortunately, he is no longer
with us. T would like to thank BrajeshlJi, for being cooperative. Without his con-
stant support and ideas even after completion of his M.Tech., this work would have
been dificult for me.

I also wish to thank whole heartily all the faculty members of the Department of
Computer Science and Engineering, [IT Kanpur for enhancing my knowledge. T also
wish to thank the Head of Computer Center, II'T Kanpur and and Navpreet SinghlJi
for loaning me Remote Access Server and Modem for testing the application. I also
wish to thank MishralJi, Nadeem, Chandan, Anamika madam, Sandeep who were
always very cooperative.

[would like to thank whole of mtech2001 batch for the times I shared with them.
I always felt with them as if I am also of same age group.

I thank to Ministry of Communication and Information Technology, New Delhi
for sponsoring this project.

I would like to thank my parents for taking me to this stage. It was the their
blessing and support of my wife Jyoti which gave me confidence to do M.Tech. after
a long gap of 7-8 years.

Finally, T thank my both daughters Prachi and Astha. It were the long hours
stolen from the time due to them that make the story of my M.Tech.

Contents

1 Introduction
1.1 Sniffers
1.2 PickPacket
1.3 Organization of the Report

2 PickPacket: Architecture and Design

2.1 The Architecture of PickPacket
2.2 The PickPacket Configuration File Generator
2.3 PickPacket Packet Filter: Basic Design

2.3.1 PickPacket Filter: Output File Formats.

2.3.2 PickPacket Filter: Text String Search
2.4 The PickPacket Post-Processor
2.5 The PickPacket Data Viewer

3 The RADIUS Protocol
3.1 RADIUS Simplified
3.1.1 RADIUS Packet Format
3.1.2 RADIUS Packet Types
3.1.3 RADIUS Attributes

4 RADIUS Support in PickPacket
4.1 Configuration File Generator
4.2 RADIUS Filter

4.2.1 Design and Implementation

il

10
11
11
12

14
15
17
18
19

4.3 RADIUS Post-Processor
4.3.1 Design and Implementation
4.4 Data Viewer e

5 Testing of RADIUS Filter

6 Conclusions
6.1 Further Work

Bibliography
A A Sample Configuration File

B Configuration Files used for RADIUS Filter Testing
B.1 Files for testing RADIUS filter
B.1.1 PickPacket Filter Configuration File
B.1.2 Cistron RADIUS Server Configuration Files

C Structure of various Data Viewer Input Files

C.1 Structure of Connection Record Files

iii

31

34
35

38

39

46
46
46
49

52

List of Tables

iv

List of Figures

2.1
2.2
2.3
24

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1

The Architecture of PickPacket [15] 6
Filtering Levels [15] 8
The Basic Design of the PickPacket Filter [10] 10
Post-Processing Design [10] 12
RADIUS Message Flow 16
RADIUS Packet Format 17
Configuration File Generator: SMTP Tab 23
Access-Request Packet Processing by RADIUS Filter 25
Accounting-Request(Start) Packet Processing by RADIUS Filter . . . 25
Access-Accept Packet Processing by RADIUS Filter 26
Access-Request Packet Post-Processing 28
Accounting-Request(Start) Packet Post-Processing 28
Access-Accept Packet Post-Processing 29
RADIUS Detail Form 30
RADIUS Test Setup i 32

Chapter 1
Introduction

The use of computers has rapidly increased in the last few decades. Computers can
now exchange large volumes of information very fast. Coupled with this has been
the exponential growth of the Internet. The Internet in all its various forms (the
World Wide Web, email, chatrooms and many others) has opened up a whole new
world to millions of us. Unfortunately, criminals have been just as quick to exploit
its possibilities. They are increasingly relying on the net for communication and
exchange of information pertaining to unlawful activity. Consequently the ability
of law enforcement agencies to conduct lawful monitoring of the data flowing across
the net can help detect and prevent crime. Such monitoring tools, therefore, have an
important role in intelligence gathering. Companies can also use such tools to safe-
guard their information repositories and research efforts, in addition to preventing
abuse of network facilities by employees. Thus there is a pressing need to monitor,
detect and analyze undesirable network traffic.

However, the monitoring, detecting, and analysis of this traffic may be opposed
to the goals of maintaining the privacy of individuals whose network communications
are being monitored. PickPacket is a network monitoring tool that can address the
conflicting issues of network monitoring and privacy through its judicious use. This
tool has been developed as a part of the research project sponsored by the Ministry
of Communication and Information Technology, New Delhi. The basic framework

for this tool and design and implementation of application layer filter for Simple Mail

Transfer Protocol (SMTP) [11] and Telnet [18] has been discussed in Reference [10].
The design and implementation of application layer filter for Hyper Text Transfer
Protocol (HTTP) [6] and File Transfer Protocol (FTP) [19] has been discussed in
Reference [15]. The design and implementation of text string search in MIME-
Encoded data has also been discussed in Reference [1]. This thesis discusses the
design and implementation of application layer filter for the Remote Authentication
Dial In User Service (RADIUS) Protocol [24, 22, 23|.

1.1 Sniffers

The word “sniffer” is a registered trademark of Network Associates referring to the
“Sniffer(r) Network Analyzer”, a product introduced by them in 1988. The term
‘sniffer’ is more popular in everyday usage than alternatives like “protocol analyzer”
or “network analyzer”. Sniffers can be used both for legitimate network management
functions and for stealing information off a network. Recently, sniffers have also
found use with law enforcement agencies for gathering intelligence and helping in
crime prevention and detection.

The primary mechanism of sniffing in ethernet is by putting the ethernet hard-
ware into “promiscuous mode”. Ethernet was built around a “shared” principle: all
machines on a local network share the same wire. This implies that all machines are
able to “see” all the traffic on the same wire. Ethernet card (the standard network
interface card) is hard-wired with a particular MAC address and is always listening
for packets on its interface. When it sees a packet whose MAC address matches
either its own address or the link layer broadcast address (i.e., FE:FF:FF:FF:FF:FF
for Ethernet) it starts reading it into memory. It rejects all packets whose destina-
tion MAC addresses are different from that of the card. But, it is possible to turn
off this filtering mechanism of the card and collect all the frames flowing through
the network, independent of their MAC address. This is known as putting the card
into promiscuous mode. Sniffers put the network card in promiscuous mode.

A simple sniffer that just captures all the data flowing across the network and

dumps it to the disk soon fills up the entire disk especially if placed on busy segments

of the network. Analysis of this data for different protocols and connections takes
considerable time and resources. The privacy of individuals who are accessing and
dispensing data which is not of user’s interest is also compromised as all packets are
being captured. It is therefore necessary to filter, on-line, the data gathered by the
“promiscuous” network adapter.

There are three levels of filtering that can be applied on packets flowing across
the network. The first level of filtering is based upon network parameters like IP
addresses, protocols and port numbers. This level of filtering is generally supported
by the kernel also. With in-kernel filtering several packets are rejected by the kernel
itself and the overhead of copying these packets to application address space is
avoided. This speeds up the filtering process. The second level of filtering is based
on criteria specific to an application such as email-ids for the SMTP, user names for
RADIUS etc. Since there is no support in the kernel for handling these parameters
a user level application handles such filtering. The third level of filtering is based
on the content present in the application pay load. For instance it may be desired
to search for the presence of a text string in an e-mail sent during a SMTP session.
Such filtering also needs to be handled by the user level application.

Sniffers dump captured data onto disk directly without any processing of this
data. As such, this dump is not human-readable. Sniffers therefore come bundled
with their own post-capture analysis and processing tools which extract information
from the dump and present it in a human-readable form. In addition to just present-
ing the sniffed data, packet analyzers can be configured to provide different kinds of
functionality like alerting network administrators if something has gone amiss.

Several commercially and freely available sniffers exist currently. Sniffers come
in different flavors and capabilities for different Operating Systems. Ethereal [5]
and WinDump [3]| are two such popular tools for Windows. On UNIX sniffers are
generally based upon libpcap and /or BPF [13] (Berkeley Packet Filter). Two popular
sniffer tools on Unix are tcpdump [9] and Ethereal [5]. WinDump is a version of
tcpdump for Windows that uses a libpcap-compatible library called WinCap.

Carnivore |25, 7, 8| is a tool developed by the FBI. It can be thought of as a tool

with the sole purpose of directed surveillance. This tool can capture packets based

on a wide range of application-layer level based criteria. It functions through wire-
taps across gateways and ISPs. Carnivore is also capable of monitoring dynamic
IP address based networks. The capabilities of string searches in application-level
content seems limited in this package. It can only capture email messages to and
from a specific user’s account and all network traffic to and from a specific user or

IP address. It can also capture headers for various protocols.

1.2 PickPacket

PickPacket, the focus of this thesis and also discussed in Reference [10, 15, 1] is a
monitoring tool similar to Carnivore. PickPacket can filter packets based on IP and
TCP/UDP level criteria as well as application level criteria for several application
level protocols such as FTP, HTTP, SMTP and Telnet. It also supports real-time
searching for text string in application and packet content.

In this work, we have added support for the RADIUS protocol to PickPacket.
RADIUS is a protocol that is commonly used to authenticate users dialing into
a network. Such users are usually assigned TP addresses dynamically using the
Dynamic Host Configuration Protocol (DHCP) [4]. Adding RADIUS support to
PickPacket allows monitoring of the activites of a user whose RADIUS login name

is known.

1.3 Organization of the Report

This thesis focuses in detail on filtering RADIUS data packets and using information
in these packets to track dialup users. Chapter 2 describes the high level design
and architecture of PickPacket. Chapter 3 briefly discusses the RADIUS protocol.
Chapter 4 describe the design and implementation of the RADIUS filter, the post-
processing details of the captured RADIUS packets and the user inteface provided
for viewing RADIUS packets information. Chapter 5 describes the setup used for
testing the filter. The final chapter concludes the thesis with suggestions for further

work.

Chapter 2

PickPacket: Architecture and Design

This chapter discusses the architecture and design of PickPacket and details of the
packet filtering component in PickPacket. First the architecture of PickPacket is dis-
cussed and its various components are identified. Discussion on these components
is then undertaken with a view to elaborate on the design of the filtering mecha-
nisms in PickPacket. Detailed design and implementation details are discussed in
Reference [10].

2.1 The Architecture of PickPacket

PickPacket can be viewed as an aggregate of four components ideally deployed on
four different machines. These components are — the PickPacket Configuration File
Generator, a JAVA GUI deployed on a Windows/Linux machine; the PickPacket
Filter, deployed on a Linux machine; the PickPacket Post Processor, deployed on
a Linux machine; and the PickPacket Data Viewer, GUI deployed on a Windows
machine. An architectural view of PickPacket is shown in Figure 2.1 where these
components are shown in rectangles.

The PickPacket Configuration File Generator is used first to specify the criteria
for capturing the packets. The criteria specified by the user are saved in a file which
is called the configuration file. This configuration file needs to be transferred to the

machine where the PickPacket Filter would run. The PickPacket Filter captures

PickPacket Configuration PickPacket Filter PickPacket Post-Processor| | PickPacket Data Viewer
File Generator GUI GUI

ﬂ U ﬂ ﬂ

Conf files Dump files GUI files
I e B e =

Figure 2.1: The Architecture of PickPacket [15]

packets according to the criteria specified in the configuration file and stores them
to some storage device. Then the file containing the dump packets is processed
offline using the PickPacket Post-Processor. The PickPacket Post Processor would
typically run on some machine other than the one on which the PickPacket Filter
is running. The Post Processor processes the captured data and retrieves the meta
information. The meta information now is transferred to the machine running Pick-
Packet Data Viewer. The Data Viewer reads this meta information and displays it

to the user.

2.2 The PickPacket Configuration File Generator

The PickPacket Configuration File Generator is a Java based graphical user interface
(GUI) that is used for specifying the rules for capturing the packets. The rules are
then saved in a file. This file which is called configuration file is input to PickPacket
Filter . This file is a text file with HTML like tags. A sample configuration file is

given in Appendiz A. This file has four sections:

1. The first section contains specifications of the output files that are created by
the PickPacket Filter for storing captured packets. There is no restriction on
number of output files. The last file can have a size of “0” meaning potentially
infinite size. A feature in the configuration file is the support for different
output file managers. This feature would be useful if captured packets have

to be stored in formats other than the default pcap [26] style format.

2. The second section contains criteria for filtering packets based on source and
destination IP addresses, transport layer protocol, and source and destina-
tion port numbers. The application layer protocol that handles packets that
match the specified criteria is also indicated. This information is required for

demultiplexing packets to the correct application layer protocol filter.

3. The third section specifies the maximum number of simultaneous connections
that can be monitored for any application. This is used for memory alloca-
tions. The default value set by the configuration file generator is 500 for each

application protocol.

4. The fourth section comprises of multiple subsections, each of which contains
criteria corresponding to an application layer protocol. Based on these criteria
the application layer data content of the packets are analyzed. Filtering criteria
for SMTP, HTTP, FTP and Telnet can be specified in these subsections. The
application layer protocol subsection also specifies the mode of operation of
the filter(“PEN” or “FULL?”) for this application layer protocol.

2.3 PickPacket Packet Filter: Basic Design

The PickPacket Packet Filter reads packets from the network by putting the net-
work interface card into promiscuous mode. The packets which matches the criteria
specified by the user are stored in a file for further analysis. This section presents
the design of the PickPacket Filter.

The PickPacket filter can filter packets at three levels.

1. Network level(IP addresses, port numbers, etc.).

7

2. Application level(user names,email-ids, filename etc.).

3. Application level content(text strings).

The first level of filtering has been made very efficient through the use of in-kernel
filters [13], as only packet which matches the network level criteria are copied from

kernel space to user space. Since the content of application can be best deciphered by

Criteria based on Network Application Specific
Parameters Criteria and text strings

Packet Packet Application Layer Filter Packet

Figure 2.2: Filtering Levels [15]

the application itself, the second and third levels of filtering are combined. Figure 2.2
illustrates the various levels of filtering. The Basic Filter takes network parameters
based criteria as input, and reads packets from the h/w interface and passes those
packets that matches the specification criteria to the next level filter. All other
packets are dropped. The Application Layer Filter takes as input the application
specific filtering criteria , and packets passed from the Basic Filter. The detailed
design of the PickPacket filter is shown in Figure 2.3.

The PickPacket Filter has separate filters for different application layer protocols.
Thus there is an SMTP Packet Filter for filtering SMTP packets, an HT'TP Packet
Filter for filtering HT'TP packets etc. This design has the advantage that it is easy to
enhance the capability of the filter by adding new application layer protocol filters.
A demultiplexer is provided between the basic filter and application layer filters. The
demultiplexer decides which application layer filter should get the packet for the next
level of filtering. The demultiplexer uses its own set of criteria for demultiplexing
packets.

The application layer filter which gets the packet checks for application specific
criteria (email-id, username etc.). Finally, application specific filtering reduces to
text search in the application layer data content of the packets. In case of commu-

nications over connection oriented protocol, the text search handles the case where

the desired text is split across two or more packets. It also handles the case where
packets are received out of sequence. To know whether a packet is out of sequence
a component is provided between demultiplxer and application layer filter. This
component is called the TCP Connection Manager. This component is used by
all application level filtering modules that allow searching for text strings in the
application pay load.

The TCP connection manager is designed in such a way that it needs to determine
the sequencing for only those connections that an application layer filter is interested
in. For this reason, it provides functions by which an application layer protocol filter
can alert it so as to maintain the sequence information for a connection.

The connection manager maintains a list of state information for all the con-
nections on which it has been alerted. This information is separately maintained
for every connection, hence retrieving requires searching the list based on the four
tuples (source IP, destination IP, source port and destination port). The connection
manager also maintains a reference to the data that the application layer protocol
filter has built for a particular connection. On receiving a packet the connection
manager searches its list and retrieves this data and the reference to the data re-
quired by the protocol filter for that connection. After processing the packet it
passes on the packet and the reference to the data required by the protocol filter.
Whenever the application layer protocol filter wants to maintain state information
about a connection, it passes this information to the connection manager by alerting
it.

The module Initialize is used for initializations dependent on the configuration
file. Another module, the Qutput File Manager, is responsible for dumping filtered
packets to the disk. The Filter Generator module is used for generating the in-kernel
BPF code. Hooks are provided for changing the BPF code on-the-fly. Functions that
can generate the filter code based on changed parameters can be called by application
level filters such as FTP during “PASSIVE” mode of file transfers. The Demultiplezer
can also call the Qutput File Manager directly so that the filter can directly dump
packets without resorting to application layer protocol based filtering, if necessary.

The Connection Manager can also directly dump packets to the disk. This is required

Configuration

File _
Output File T e Initialize) :
Options § T Application Layer Protocol : Output File
|P addresses, Specific Criteria Options
Transport
Layer Protocol | = Additional Filter
Options % ,,,,,,,,,,, ,
Application S T Application
Layer Protocol| — ¢ pBprC Connection Layer Filter
Spedific | § Manager
Criteria 0 g
Q
Q
Q
=3
(@]
=t
=
=}
3 D
L-egend. Application
~2> DataFlow Lg)‘/)er Filter
— Control Flow @
Components
Packet

Figure 2.3: The Basic Design of the PickPacket Filter [10]

when all criteria have matched for a specific connection and the connection is still

open. More details of these components can be found in Reference [10].

2.3.1 PickPacket Filter: Output File Formats

The output file manager can store files in any format. However, the output file
manager provided by PickPacket stores output files in the pcap [26] file format.
This file starts with a 24 byte pcap file header that contains information related to
version of pcap and the network from which the file was captured. This is followed
by zero or more chunks of data. Every chunk has a packet header followed by the
packet data. The packet header has three fields — the length of the packet when it
was read from the network, the length of the packet when it was saved and the time

at which the packet was read from the network. The data stored in pcap file format

10

can also be viewed using utilities like tcpdump etc. This standard format also allow

us to use some other tool for analysis of captured data.

2.3.2 PickPacket Filter: Text String Search

The PickPacket Filter contains a text string search library. This library is exten-
sively used by application layer filters in PickPacket. This library uses the Boyer-
Moore |20] string-matching algorithm for searching text strings. This algorithm can
be used for both case sensitive and case insensitive search for text strings in packet
data.

2.4 The PickPacket Post-Processor

The packet filter writes filtered packets to an output file that is analyzed offline by
the PickPacket Post-Processor. This processing includes separating packets based
on the transport layer protocol and the application layer protocol. The detailed
description of Post Processor is given in Reference [10].

The Post Processor has three components — the Sorter, the Connection Breaker,
and the Meta Information Gatherer. These are shown in Figure 2.4.

The packets present in the output file may not be in the order they were transmit-
ted on the network. Therefore the Sorter module is used to sort the packets present
in the output file generated by the packet filter based on the time stamp value corre-
sponding to the time the packets were read off the network. The Connection Breaker
module reads the sorted output file and retrieves the connection information from the
packets belonging to a connection oriented protocol and separates them into different
files. Internally connection breaking is accomplished by a TCP state machine [17]
based process. Packets belonging to a connectionless protocol like UDP [16] are
separated based on the communication tuple. The Meta Information Gathering
Module reads these connection specific files and retrieves the meta-information of
every connection. Each application requires different meta-information and packets
belonging to a particular application are processed by meta-information gathering

modules for that application. The meta-information of application layer protocols

11

T . Ty m—m— St
: Files

AT
. @ Connection
{caf
Yen/

—————— > Data Flow
> Module

/]/ DataFiles

- Mealnformation) Meta-Informatio 7/
Do Gatherer
Legend

Figure 2.4: Post-Processing Design [10]

includes important fields present in the data content such as e-mail addresses for
SMTP connections, usernames for FTP connections, URLs for HTTP etc. The

meta-information for different application layer protocols is stored separately.

2.5 The PickPacket Data Viewer

The PickPacket Data Viewer is used for rendering the post-processed information.
This is a Visual Basic based GUI and runs on Windows. The choice of this platform
was made for rapid prototyping and the rich API (Application Program Interface)
library that is provided in Windows for rendering content belonging to an applica-
tion. The Data Viewer reads the meta-information files and lists all connections by
application type, source and destination IP addresses, and other such fields based
on the meta-information that has been provided by the Post-Processor. These con-
nections can be sorted and searched based on these fields. The Data Viewer also
allows examining the details of a connection and can show the data for that connec-

tion through appropriate user agents commonly found in the Windows environment

12

such as outlook express, internet explorer etc. The dialogue between communicating
hosts can also be seen in a dialogue box. User can also view the configuration file
used by the packet filter.

13

Chapter 3

The RADIUS Protocol

PickPacket currently supports the SMTP, FTP, HT'TP and Telnet protocols. It can
filter packets based on network and TCP/UDP level criteria as well as application
level criteria for SMTP, FTP, HTTP and Telnet protocols. The major limitation of
PickPacket is that it currently does not support dynamic address allocation based
networks such as dialup networks. If one is interested in monitoring activities of a
particular user on networks with dynamically allocated TP addresses, the IP address
allocated to the user in a session needs to be known. If the IP address allocated
to such a user can not be determined then all possible IP addresses have to be
monitored. This compromises the privacy of other indiviuals who are accessing and
dispensing data through the network and causes waste of resources in processing
uninteresting packets. Moreover, the connection of interest may not be monitored
because there is an upper limit on the maximum number of sessions that PickPacket,
can monitor simultaneously. The capability of this tool needs to be enhanced so
that it can be used in efficient manner in networks with dynamically allocated TP
addresses.

In dialup network the users are given a login name by the Internet Serivice
Providers(ISP). The dialup user is first authenticated before granting access to net-
work. RADIUS is a protocol that is commonly used to authenticate dialup users.
Dialup users are usually assigned TP addresses dynamically using the DHCP. Adding

RADIUS support to PickPacket allows monitoring of the activities of a user whose

14

login name is known. This chapter briefly describes the RADIUS protocol.

3.1 RADIUS Simplified

A remote user dials a well-known phone number and the modems on both ends (user
and service provider) establish a connection. The user needs to be authenticated
before being granted access to the network. This is done by asking the user for a login
name and a password. This is where RADIUS comes in. RADIUS is a standard
communications protocol using a client/server model. The modem at provider’s
end are typically connected to a Network Access Server (NAS). The NAS [14] uses
the RADIUS protocol to communicate over the network with a RADIUS server.
The RADIUS server is asked by the NAS to authenticate the user who is dialing
into one of its modem ports. The RADIUS server collects the information about
the user that the NAS has forwarded to it (login name, password, asynchronous
serial port number, etc.). Then the RADIUS server determines whether or not
the user is allowed to connect. The result of the verification of the user’s identity
is sent back to the NAS where it results in either the user being connected to the
NAS’s serial port for further communication or being refused and the modem session
terminated. RADIUS is a UDP based protocol and consists of two sub-protocols:
an authentication protocol and accounting protocol. The RADIUS Authentication
server listens on port 1812 and the Accounting server listens on port 1813. Figure
3.1 is a sequence diagram when a user accesses the network through the Network
Access Server and later disconnects itself. The steps in this sequence are described

below.

1. The Network Access Server gets the username and the password from the
remote machine, encrypts this information with a shared secret key and sends
this with an “Access-request” to the RADIUS Server (Authentication phase).

2. If the user and password combination is valid, the RADIUS Server sends an
“Access-accept” with reply with extra information such as IP-address allo-
cated, network mask, allowed session time etc., to the Network Access Server

(Authorization phase).

15

Network
Access
Server

(RADIUS
Client)

Login Session

1 Access—Request

2 Access—Accept

3 Accounting—Request (Start

4 Accounting—Response
Logout Session

5 Accounting—Request(Stop)

6 Accounting—Response

. The network Access Server sends an “Accounting-request (Start)” message to

Figure 3.1: RADIUS Message Flow

RADIUS
Server

indicate that the user is logged onto the network (Accounting phase).

. The RADIUS Server responds with an “Accounting-response” reply when the

accounting information is stored.

. When the user logs out, the Network Access Server sends an “Accounting-

request (Stop)” with the information like session time, input packets, output

packets etc.

. The RADIUS Server responds with an “Accounting-response” when the ac-

counting information has been stored.

16

3.1.1 RADIUS Packet Format

RADIUS packets are named requests and responses. Requests are generated by
a RADIUS client and responses to requests are generated by the RADIUS server.
The format of the request and response packets are same. The minimum length of
RADIUS packet is 20 bytes and the maximum length is 4096 bytes. Figure 3.2
shows the RADIUS packet format.

1 2 4
Code Identifier Length

Authenticator 1

Attributes

Figure 3.2: RADIUS Packet Format

The code field is one octet, and identifies the type of RADIUS packet. Some
of the codes are Access-Request, Access-Accept, Access-Reject, Accounting-Request
etc. The Identifier field is one octet, and aids in matching requests and replies. The
length field is two octets, and contains the length of the packet including the Code,
Identifier, Length, Authenticator and Attribute fields. The Authenticator field is
sixteen (16) octets. The Authenticator field value is used by the RADIUS client
to authenticate the reply from the RADIUS server. Attributes carry the specific
authentication, authorization, information and configuration details for the request
and reply. There can be zero or more attributes in a packet. Each attribute has

following fields.

e Type (one octet)
e Length (one octet)

e Value (variable length)

The Type field is used to identify the type of attribute. Some of the attributes
types are User-Name, Framed-IP-Address, NAS-Identifier and Session-Time etc.

17

The length field value gives the attribute length which includes the Type, Length
and Value field. The Value field is zero or more octets and contains information

specific to the attribute.

3.1.2 RADIUS Packet Types

The RADIUS Packet type is determined by the Code field in the first octet of the
Packet. The packet types are Access-Request, Access-Accept, Access-Reject, Access-
Challenge, Accounting-Request and Accounting-Response. These packet types are

described below.

Access-Request: Access-Request packet are sent by NAS to a RADIUS server, and
convey information used to determine whether a user is allowed access to NAS.
The attributes which are generally sent with this type of packet are User-Name,
User-Password (Encrypted), NAS-IP-Address and/or NAS-Identifier etc.

Access-Accept: Access-Accept packets are sent by the RADIUS server, and pro-
vide specific configuration information necessary to begin delivery of service
to the user. The attributes which are generally sent with this type of packet
are Framed-IP-Address, Reply-Message and Framed-MTU etc.

Access-Reject: Access-Reject packets are sent by the RADIUS Server. If any
value of the received attributes in Access-Request is not acceptable, then the
RADIUS server sends this packet. The Reply-Message attribute is a text
message that is generally sent with this type of packet that the NAS may
display to the user.

Access-Challenge: Access-Challenge packets are sent by the RADIUS server. The
challenge collects additional data from the user. The Attributes field generally
has a Reply-Message attribute. If NAS does not support challenge/response,
it treats this type of response as an Access-Reject instead. If the NAS supports
challenge /response, The NAS may display the text message (Reply-Message
attribute content), if any, to the user, and then prompt the user for a response.

It then constructs a new Access-Request which also includes the user response.

18

Accounting-Request: Accounting-Request packets are sent from NAS to RA-
DIUS accounting server, and convey information used to provide accounting for
a service provided to a user. The important attribute which is sent with these
packets are Acct-Status-Type. It can have many values such as Accounting
Start and Accounting Stop. An Accounting-Request packet with Acct-Status-
Type as Accounting Start is sent at the beginning of the user service and packet
with Accounting Stop is sent at the end of service. So with these two type
of values of Acct-Status-Type (Start and Stop) one can know when a session
starts and when it ends. The Accounting-Request packet with Acct-Status-
Type attribute set to Stop also has associated attributes like Acct-Session-
Time, Acct-Input-Packets, Acct-Output-Packets, Acct-Terminate-Cause etc.
The Accounting-Request packet with Acct-Status-Type attribute value as Start
also has associated attributes like User-Name, Framed-IP-Address, NAS-TP-
Address and/or NAS-Identifier etc.

Accounting-Response: Accounting-Response packets are sent from RADIUS ac-
counting server to NAS upon receipt of an Accounting-Request. A RADIUS
Accounting-Response is not required to have any attributes in it. This is
simply an acknowledgement packet that Accounting Server has successfully
received and recorded the accounting packet sent by NAS. If because of any
reason Accounting Server can not record the accounting packet, then it does
not send this packet to NAS.

3.1.3 RADIUS Attributes

RADIUS attributes carry the specific authentication, authorization, information and
configuration details for the requests and replys. The end of the list of attributes is
indicated by the length of the RADIUS packet. Some of the attributes of interest

to us are described below.

User-Name: This attribute indicates the name of the user to be authenticated. If
available then it must be sent in Access-Request packets. This also may be

present in Access-Accept and Accounting Request packet.

19

Framed-IP-Address: This attribute in the Access-Request makes it possible for
a NAS to provide the RADIUS server with a hint of the user IP address
before user authentication. The server is not required to honour the request.
RADIUS Server can also tell NAS to use a specific IP address or use whatever

available.

Framed-MTU: This Attribute specify the Maximum Transmission Unit to be con-
figured for the user. This attribute can exist in Access-Request and Access-

Accept packet.

Reply-Message: This Attribute indicates text which may be displayed to the user.
This attribute can exist in Access-Reject, Access-Accept or Access-Challenge
packet. When used in an Access-Accept, it is the success message. When
used in an Access-Reject, it is the failure message. When used in an Access-

Challenge, it may indicate a dialog message to prompt the user for a response.

Acct-Session-Time: This attribute records the number of seconds that the user
has received service. This attribute can exist in Accounting-Request packet

where the Acct-Status-Type is set to Stop.

Acct-Status-Type: This attribute specify whether Accounting-Request packet con
tains information about the beginning of the user service (Start) or the end

(Stop) of user service.

NAS-TP-Address: This attribute gives the IP Address of the NAS which is re-
questing authentication of the user, and should be unique to the NAS within
the scope of the RADIUS server. This attribute is used only in Access-Request
and Accounting-Request packets. Either NAS-TP-Address or NAS-Identifier

must be present in an Access-Request/Accounting-Request packet.

NAS-Identifier: This attribute contains a string identifying the NAS originating
the Request. It is only used in Access-Request and Accounting-Request pack-

ets.

20

NAS-Port: This Attribute specify the physical port number of the NAS which is

authenticating the user. It is only used in Access-Request packets.

Acct-Session-ID: This attribute is used to match Accounting Start and Stop
packets. For a session Accounting-Request packet must have the same Acct-
Session-Id. Access-Request packet also may have this attribute, if it does, then
the NAS must use the same value in the Accounting-Request packets for that

session.

Class: This attribute is first sent, if available, in an Access-Accept and then should
be sent unmodified by the NAS to the accounting server as part of the Accounting-
Request packet. This attribute is can be used offline to match Access-Request/
Accept packets with Accounting packets.

This completes the discussion on the RADIUS protocol. The next chapter covers
design and implementation of RADIUS packet filter, post-processing of RADIUS
packet and enhancement made to Configuration File Generator and Data Viewer

component of PickPacket to support RADIUS protocol.

21

Chapter 4

RADIUS Support in PickPacket

This chapter discusses the modifications made to the various PickPacket components
for supporting the RADIUS protocol. First the enhancements made to Configuration
File Generator are described. Then the design and implementation of RADIUS filter
and post-processor is discussed. Finally the enhancements made to the Data Viewer

component of PickPacket are discussed briefly.

4.1 Configuration File Generator

The Configuration File Generator is enhanced so that the user can also specify the
filtering criteria for the RADIUS protocol. These criteria are specified in a way
similiar to basic criteria except that instead of source IP range the dialup user name
is given. A panel is added in the GUI for specifying the RADIUS criteria in each tab
used for specifying criteria for different application layer protocols. Figure 4.1 shows
the new GUI screen for specifying HTTP specific criteria. The RADIUS criteria are

stored in the configuration file in following format.
username:CaseSensitive:DestIPRange:SrcPortRange:DestPortRange:TLP:Application

Here userame is dialup user’s login name, Application is the application layer pro-
tocol (HTTP, SMTP, TELNET, FTP etc.) which is to be monitored for the dialup
user of interest and TLP is transport layer protocol (TCP/UDP). For example, if

22

all SMTP session of a dialup user with login name “gauravj” are to be monitored,
the RADIUS criteria will look like following.

gauravj:N:0.0.0.0-0.0.0.0:1024-65535:25-25:TCP: SMTP

If any RADIUS criteria are specified then two filtering criteria are automatically
added by Configuration File Generator to the basic criteria to capture all RADIUS

authentication and accounting packets. These two criteria look like following.

0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:1812-1812:UDP:RADIUS
0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:1813-1813:UDP:RADIUS

sMTP | FTP [Telnet | uTTP | OTHER | File Manager

— Basic SMTP Criteria

Source IP Target IP

Add

Mode of Operation X Eull [] PEN

—RADIUS SMTP Criteria

User Name Target IP
gauravj 0.0.0.0-0.0.0.0 Add

Modify

— SMTP Criteria

Email ID String
Harkat-Ul Mujahidin

Add

Figure 4.1: Configuration File Generator: SMTP Tab

23

4.2 RADIUS Filter

The RADIUS Filter captures RADIUS Packets flowing across the network. The
RADIUS filter has to extract the IP address associated with the dialup users of
interest. The IP address allocated to user with other details specified in the RADIUS
criteria for this user are used for monitoring activites of this user. The RADIUS
filter stops monitoring user activities as soon as the user of interest terminates the

session.

4.2.1 Design and Implementation

The RADIUS filter maintains three hash table to keep track of RADIUS authenti-

cation and accounting requests.

1. access request hash table: This keeps only those access requests which are

waiting for a reply from the RADIUS Authentication Server.

2. acct request hash table: This keeps only those accounting requests correspond-

ing to which Accounting-Request(Stop) packets have not been seen so far.

3. temp store hash table: This keeps those access requests which have been
accepted by the RADIUS Authentication server, but whose accounting has

not started.

After receiving a packet the RADIUS filter first parses the packet and the attributes
of the packet are stored in a structure. Further processing depends upon the type
of packet. Figure 4.2 to 4.4 show the processing of some RADIUS packet types by
the RADIUS Filter.

If the packet is an Access-Request or Accounting-Request(Start) packet, then
the User-Name attribute is matched with usernames of interest. If a match occures
then a request is added into “access request hash table” or “acct request hash table”
depending upon the type of packet. If the packet has a Framed-TP-Address attribute
then if any user with the same IP address is currently being monitored, then monitor-

ing of that user is stopped as it is assumed that somehow Accounting-Request(Stop)

24

Matching Old Access Request 2

Yes

@e Matched ?

No

Remove Old User

Remove Associated Criteria
flag_recompile_bpf_code=TRUE
flag_dump_packet=TRUE

|
flag_dump_packet=TRUE ?

Write Packet To Dump File

flag_recompile_bpf_code=TRUE 7=

Recompile BPF Code

Figure 4.2: Access-Request Packet Pro-

cessing by RADIUS Filter

No
Framed-IP-Address Presen

Framed-IP-Addres
Existed For this User in
Access Request/Accept

Remove Old User
Remove Associated Criteria
flag_recompile_bpf_code=TRUE

flag_dump_packet=TRUE Add New User
Add Associated Criteria
flag_recompile_bpf_code=TRUE

flag_dump_packet=TRUE

Add New User

Add Associated Criteria
flag_recompile_bpf_code=TRUE
flag_dump_packet=TRUE

flag_dump_packet=TRUE ?

Write Packet To Dump File

flag_recompile_bpf_code=TRUE 7=

Recompile BPF Code

Figure 4.3: Accounting-Request(Start)
Packet Processing by RADIUS Filter

packet has been missed. If the packet type is Accounting-Request(Start) then mon-
itoring of the user is also started. If packet type is Accounting-Request(Stop) then
a matching Accounting-Request(Start) is searched in the “acct request hash table”.
The Acct-Session-Id attribute is used for this matching. If a match is found then
monitoring of this user is stopped. Accounting-Request packets with other values
for A cct-Status-Type attribute are discarded. The request packets are stored in a
file if username matches with any dialup users of interest, or monitoring of a dialup

user starts or stops because of the request packet.

25

|

Remove Old Access Request ‘

flag_dump_packet=TRUE

Matched Access Reques
Has Framed-IP-Addess 2

Save Matched Access Request !
flag_dump_packet=TRUE Remove Matched Access Request

Monitoring User with same IP 2

Yes

Create Dummy Access Request
Save Access Request Seperately
flag_dump_packet=TRUE

Remove Old User
Remove Associated Criteria
flag_recompile_bpf_code=TRUE
flag_dump_packet=TRUE

]

Recompile BPF Code

Figure 4.4: Access-Accept Packet Processing by RADIUS Filter

For a response packets the identifier field of the packet is used to find the match-
ing request. The relevant hash tables are searched for a matching request for all
response packets. If the response is either Access-Reject or Access-Accept, then ac-
cess request hash table is searched. If response is Accounting-Response then, acct
reqest hash table is looked into. If no matching request is found then the response
packet is discarded. If a matching request is found then this packet is stored on disk
as we stored the request packet earlier. If the matching request is access request then
this request is also removed from access request hash table. The Access-Challenge

packet is treated like Access-Reject because NAS after getting response from the

26

user sends another Access-Request packet to RADIUS server that finally illicits an
Access-Accept response. Finally if the packet has a Framed IP Address attribute
then if any user is currently being monitored with same IP address then monitoring
of that user is stopped as it is assumed that somehow Accounting-Request(Stop)
packet has been missed.

In all the cases monitoring of a user of interest starts by adding the user specific
filtering criteria to the basic criteria and stops by removing the user specific filtering
criteria from the basic criteria. The bpf code is recompiled whenever filtering criteria

are added or removed to basic filter.

4.3 RADIUS Post-Processor

The RADIUS post-processor works on the output of the RADIUS filter. It needs to
extract meta information that may consist of username, Framed-IP-Address, start
time, end time etc. from the RADIUS packets. This information is used to find
out the connections that were initiated by users authenticated using RADIUS. The

post-processor also needs to detect when a RADIUS session starts and when it ends.

4.3.1 Design and Implementation

The PickPacket Post-Processor works on the output of the PickPacket filter. The
Sorter module of the PickPacket post-processor does not need any changes for pro-
cessing RADIUS packets, as this module does not have any dependency on the
application layer protocols. The Connection Breaker Module separates out all UDP
packets in a different file named on the basis of the four tuple(source IP, destination
IP, source port and destination port). RADIUS packets have to be processed differ-
ently due to the following. If the RADIUS Authentication and Accounting server
are running on different machines a link between various accounting and authenti-
cation packets for a session has to be established. Processing based on four tuples
would store such packets on separate files. The same problem arises when RADIUS
packets need to be sent to RADIUS fallback server because the main server is down

or unreachable. The Connection Breaker module handles this problem by storing

27

all RADIUS packets in a single file named “radius.dump”. The Meta Information
Gathering Module first processes this file, if available, by calling the RADIUS post-
processor. The RADIUS post-processor creates a RADIUS meta information file
with an extension “radius”.

The RADIUS post-processor reads packet one by one from “radius.dump” file and
processes it. The processing depends upon type of RADIUS packet. The processing
is done in a way similiar to RADIUS packet filter. The RADIUS post-processor
writes meta information to RADIUS meta information file. It also creates separate

conversation files for each user session of interest. These files contains both authen-

tication and accounting packets. Figure 4.5 to 4.7 shows the post-processing of
RADIUS packets.

No
Matching Access Request ?
i Yes
Add New User

Add Access Request
Create and Write to .CONV File

Framed-IP-AddressPresen

Yes

Framed-IP-Address
Exists in Matched
Access Request

Write to .CONV File

Matched Access Request ?.
Yes

onitoring User with same IP 2
es

Create .CONV File Delete .CONV File
Remove User
Y

Remove Access Reques

No
Remove Old User Write to .CONV File

Figure 4.5: Access-Request Packet Figure 4.6: Accounting-Request(Start)
Post-Processing Packet Post-Processing

Once all the packets have been read from the “radius.dump” file, the post pro-
cessor checks whether there are some requests that have not received Accounting-
Request packet with Acct-Status-Type set to Stop. It is possible that these Accounting-

Request packets were missed for some reasons such as the session was on when filter

28

program was terminated or the dump file got exhausted etc. All such requests are
now assumed to have received their corresponding Accounting-Request packets with

Acct-Status-Type as “Stop”.

Access—Accept

l

Remove Old Access Request
Remove .CONV File

|

Matched
Access Request
Has Framed-1P—-Addess/Class
Session-ID ?

Remove Old User

Create Dummy Access Request
Fill Access Request
Save Access Request Seperately

Save Matched Access Request Remove Matched Access Request
Seperately Remove .CONV File
Write to .CONV File l/

Figure 4.7: Access-Accept Packet Post-Processing

RADIUS post-processor finally generates a list of all radius sessions, which con-
sists of allocated IP address, start and end time when this IP address was active
and RADIUS connection id (a unique integer value for each RADIUS session). This
list is used by all other application level protocol post processors to check whether

a particular communication was initiated by a RADIUS authenticated user.

4.4 Data Viewer

The Data Viewer component of PickPacket is enhanced to render the RADIUS post-
processed information. If a connection belongs to a RADIUS user then the RADIUS

details such as start time of session, end time of session, IP address allocated to user,

29

session duration etc. can be viewed. Figure 4.8 shows a sample RADIUS detail form.
The RADIUS dialogue box shows communication between the RADIUS client and
server. It includes both authentication and accounting request and response details.
All forms of the Data Viewer that show data for application layer protocols have
have been enhanced to show RADIUS details.

—RADIUS Detail
<<BACK Dialogue
—RADIUS Detail
Authentication Detalil Accounting Detail
Source Mac 0:47:58:98:51:1 0:47:58:98:51:1
Destination Mac 0:7:eg:ad:54:3d 0:7:eg:ad:54:3d
Source Port 1645 1646
Destination Port 1645 1646
Source IP 172.31.19.1 172.31.19.1
Destination IP 172.31.19.24 172.31.19.24
User Name skjaincs skjaincs
RAS/NAS IP 172.31.19.1 172.31.19.1
User IP Address 172.31.19.21
Session Time 4 Min 16 Sec
Session ID
Calling Station ID
Start TIme Mon Feb 24 17:55:19 2003 Mon Feb 24 17:55:19 2003
End Time Mon Feb 24 17:55:19 2003 Mon Feb 24 17:59:38 2003

Figure 4.8: RADIUS Detail Form

30

Chapter 5

Testing of RADIUS Filter

In this chapter, we describe the test setup used for testing the RADIUS filter.

The initial testing of RADIUS filter program was done with the help of a utility
provided by Cistron RADIUS Server [21]. This utility is called “radclient”. The
“radclient” is a RADIUS client program and can send arbitrary RADIUS packets
to a RADIUS server, then show the received replies. Using this utility, different
scenarios such as missing Accounting-Request(Stop) packet, Access-Request Packet
etc. were generated to test various parts of filter program.

The final testing of RADIUS filter program was done by setting up a simple ISP
environment, where a user makes a dialup connection on PPP to the ISP. After
being authenticated by the RADIUS server, the user is allowed to access resources.
Figure 5.1 shows the setup used for testing. One machine with Intel Pentium
2.4 GHz CPU, 256 MB RAM and running Linux kernel version 2.4.18-3 were used
as RADIUS Server (both authentication and accounting server). Cistron RADIUS
server [21] version 1.6 was used as RADIUS authentication and accounting server.
One more machine with similar configuration was used for running the PickPacket
Filter program. Another Pentium 2.4 GHz CPU machine with 256 MB RAM and
running Linux kernel version 2.4.18-3 was used as the dialup user client machine.
Two D-Link DMF-336/E modems were used. One modem was connected to the
serial port of dialup user’s machine and other was at one of WAN port of D-Link
DI-540 Remote Access Server (RAS). This RAS has four WAN ports (RS-232) and

31

one LAN (UTP) port. A WAN port can be selected to fulfill either Internet Access,
Remote Access or Lan-To-Lan Routing function. The WAN port used in setup is
configured for Remote Access function. The D-Link DI-540 RAS does not send
the Framed-IP-Address attribute in either Access-Request or Accounting-Request
packet with Acct-Status-Type set as Start. So in this test setup RADIUS server was
configured to send the TP address in Access-Accept packet that NAS is to allocate to
the dialup user. The two machines running the RADIUS Server and the PickPacket
Filter program respectively and the LAN port of the RAS were connected to a
10/100 Dual Speed D-Link Hub.

RADIUS Server PickPacket Filte

Modem

Dial Up User PC M — DI-540 EETTITT

HUB
RAS

Telephone Line
=== —M To Switch

Modem

Figure 5.1: RADIUS Test Setup

The Net-Device Manager 5.83 utility [2] provided by D-Link was used to config-

ure the Remote Access Server. The various configuration parameters used were as

follows:
Modem Settings - A1l Default
Dialup Settings - A1l Default

32

General Settings
WAN Port Function - Remote Access

Use RADIUS Authentication - Yes

User Authentication - PAP
Routing Table - Routing Details Entered for CSE Router
IP Mapping - All Default

The Net-Device Monitor 5.83 utility [2]| provided by D-Link was used to know
the status of ports in Remote Access Server.

The kppp utility [12] was used to setup PPP connection at the dialup user’s ma-
chine. The sample RADIUS Server’s configuration files used are given in Appendix

B. The sample configuration file for filter program is also given in Appendix B.

33

Chapter 6
Conclusions

PickPacket is a network monitoring tool that can capture packets flowing across the
network based on a highly flexible user defined set of criteria. PickPacket allows the
filtering of packets on the basis of criteria specified by the user both at the network
level and the application level of the protocol stack. The design of PickPacket is
modular, flexible, extensible, robust and efficient. This makes it easy to extend it
to support a new application level protocol. Judicious use of PickPacket can also
help protect the privacy of individuals and captures only packets which matches the
criteria specified by the user onto the disk. This is not something most sniffers are
capable of doing. The captured data is stored in standard tcpdump/libpcap format
which offers the user a choice of using “ post-processing and rendering tools” other
than those provided by PickPacket.

This thesis discussed the filtering of packets based on the RADIUS application
level protocol and how the information present in the RADIUS packets can be used
to monitor dialup users. Users of PickPacket can now specify dialup usernames as
filtering criteria for RADIUS packets. The RADIUS packets Post-capture analysis
is also discussed in this thesis.

Several experiments were conducted to test the functionality of the RADIUS
packet filter of PickPacket. All the bugs which appeared during the testing were
fixed.

34

6.1 Further Work

PickPacket currently supports SMTP, FTP, HTTP, Telnet and RADIUS applica-
tion level protocols. There is always scope for extending PickPacket to support other
application level protocols. Currently protocol used for reading mail i.e. POP3 or
IMAP are not supported. The support for these two protocols can be added. Pick-
Packet currently support IPv4 packets. The support can be added for IPv6, the next
generation Internet Protocol. The support for DHCP, which is used for assigning IP
addresses for high-speed users ((cable-modems, DSL, company networks) can also
be added.

PickPacket design needs some improvement so it can also take advantage of
availability of multi-processor architecture on a machine. This can be the first step

towards making this tool to run on Gigabit network.

35

References

[1] S. Prashant Aditya. “Pickpacket: Design and Implementation of the
HTTP postprocessor and MIME parser-decoder”. Technical report, De-
partment of Computer Science and Engineering, IIT Kanpur, Dec 2002.
http://www.cse.iitk.ac.in/research /btp2003/98316.html.

[2] “D-link Device Driver”. http://www.dlink.com.au/tech/drivers/files /routers/di5xx.htm.

[3] Loris Degioanni, Fulvio Risso, and Piero Viano. “Windump”. http://netgroup-

serv.polito.it/windump.

[4] R. Droms. “Dynamic Host Configuration Protocol”. Technical report, 1997.
http://www.ietf.org/rfc/rfc2131.txt.

[5] Gerald Combs et al. “Ethereal”. Available at http://www.ethereal.com.

[6] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-
Lee. “Hypertext Transfer Protocol”. Technical report, 1997.
http://www.ietf.org/rfc/rfc2068.txt.

[7] Robert Graham. “carnivore faq”. http://www.robertgraham.com /pubs/carnivore-

faq.html.
[8] “How Carnivore Works”. http://www.howstuffworks.com /carnivore.htm.

[9] Van Jacobson, Craig Leres, and Steven McCanne. “tcpdump : A Network
Monitoring and Packet Capturing Tool”. Available via anonymous FTP from

ftp://ftp.ee.lbl.gov and www.tcpdump.org.

36

[10] Neeraj Kapoor. “Design and Implementation of a Network Monitoring Tool”.
Technical report, Department of Computer Science and Engineering, ITT Kan-
pur, Apr 2002. http://www.cse.iitk.ac.in/research /mtech2000/Y011111.html.

[11] J. Klensin. “Simple Mail Transfer Protocol”. Technical report, 2001.
http://www.ietf.org/rfc/rfc2821.txt.

[12] “Linux PPP HOWTO". http://www.tldp.org/HOWTO/PPP-HOWTO.

[13] Steve McCanne and Van Jacobson. “The BSD Packet Filter: A New Architec-
ture for User-level Packet Capture”. In Proceedings of USENIX Winter Con-
ference, pages 259-269, San Diego, California, Jan 1993.

[14] D. Mitton and M. Beadles. “Network Access Server Requirements
Next Generation (NASREQNG) NAS Model ”. Technical report, 2000.
http://www.ietf.org/rfc/rfc2881.txt.

[15] Brajesh Pande. “Design and Implementation of a Network Monitoring Tool”.
Technical report, Department of Computer Science and Engineering, IIT Kan-
pur, Sep 2002. http://www.cse.iitk.ac.in/research /mtech2000/Y011104.html.

[16] J. Postel. “User Datagram Protocol”. Technical report, 1980.
http://www.ietf.org/rfc/rfc0768.txt.

[17] J. Postel. “Transmission Control Protocol”. Technical report, Information Sci-

ences Institute, 1981. http://www.ietf.org/rfc/rfc0793.txt.

[18] J. Postel and J. Reynolds. “Telnet Protocol Specification”. Technical report,
1983. http://www.ietf.org/rfc/rfc0854.txt.

[19] J. Postel and J. K. Reynolds. “File Transfer Protocol”. Technical report, 1985.
http://www.ietf.org/rfc/rfc0959.txt.

[20] Boyer R. and J Moore. “A fast string searching algorithm”. In Comm. ACM
20, pages 762-772, 1977.

[21] “Cistron RADIUS Server”. ftp://ftp.radius.cistron.nl/pub/radius.

37

22]

23]

[24]

[25]

[26]

C. Rigney. “Remote Authentication Dial In User Service ”. Technical report,
2000. http://www.ietf.org/rfc/rfc2866.txt.

C. Rigney, W. Willats, and P. Calhoun. “Remote Authentication Dial In User
Service ”. Technical report, 2000. http://www.ietf.org/rfc/rfc2869.txt.

C. Rigney, S. Willens, A. Rubens, and W. Simpson. “Remote
Authentication Dial In User Service . Technical report, 2000.

http://www.ietf.org/rfc/rfc2865.txt.

Stephen P. Smith, Henry Perrit Jr., Harold Krent, Stephen Mencik, J. Allen
Crider, Mengfen Shyong, and Larry L. Reynolds. “Independent Technical Re-
view of the Carnivore System”. Technical report, IIT Research Institute, Nov

2000. http://www.usdoj.gov/jmd/publications/carniv_entry.htm.

Jacobson V., Leres C., and McCanne S. “pcap - Packet Capture Library”, 2001.

Unix man page.

38

Appendix A

A Sample Configuration File

#This is a sample configuration file

#Be very careful if you edit a configuration file manually

The syntax should be preserved

A hash(#) is used for comments

This file has several sections

#Sections start and end with tags similar to HTML.

#Tags within sections can start and end subsections or can be tag-value pairs.
#A11l the tags that are recognized appear in this file.

First Section spcifies the sizes and names of the dump files

The Second Section specifies the source and destination IP ranges

the source and destination ports, the protocol and the application

that should handle these IPs and ports

The third sections specifies the number of connections to open simultaneously
for some applications

The next sections describe in no particular order the application specific

input criteria.

H OHF H OH O H OH OH O H

This file has a fixed format Careful!!

AR R AFITST SOCTLIOMKKkkokkokkokkokkokkok Kok KKK KKK KKK KK

<Output_File_Manager_Settings>

39

<Default_Output_File_manager_Settings>
#number of specified files
Num_0Of_Files=2
#the full file name relative/absolute will do
File_Path=dump1l.dump
#the file size in MB
File_Size=12
File_Path=dump2.dump
#the 0 file size means that file can be of max available size
#only the last file can have File_Size=0.
File_Size=0
</Default_Output_File_manager_Settings>
</Output_File_Manager_Settings>

fhxokskokkokokokkkkkkkENd First Sectiomnkkkkskskskskskskkkkkkokkk ok kk ok kkk

HhkokkkokokkokokkkkkkSeCcond SeCt 1 Omkkokkokk ok sk k ok ok sk ok ok %k sk ok ok %k xk >k %k xk >k %k k k %
The basic criteria here are for the Device and
SrcIP1:8SrcIP2:DestIP1:DestIP2:SrcP1:SrcP2:DestP1:DestP2:ProtoA:App
Should be read as For the range of sorce IP from SrcIPl1 to SrcIP2
For associated ports from SrcPl to SrcP2
and For the range of desitnation IP from DestIP1 to DestIP2
For associated ports from DestPl to DestP2

and FOR Protocol ProtoA

#

#

#

#

#

#

#

monitor connections according to Application App
Protocols can be UDP or TCP

Applications for TCP are

SMTP, FTP, HTTP, TELNET, RADIUS, TEXT, DUMP_FULL, DUMP_PEN
Applications for UDP are

DUMP_FULL, DUMP_PEN

No further specs are required for DUMP kind of applications.

#

Do not mix too many applications for clarity

40

H= OH O H OH O H R

<Basic_Criteria>

DEVICE=ethO

Num_0f_Criteria=10

Criteria=0.0.
Criteria=0.
Criteria=0.
Criteria=0.
Criteria=0.
Criteria=0.
Criteria=0.
Criteria=0.
Criteria=0.

Criteria=0.

SO O O O O O O o
SO O O O O O O O o

0.

0.

</Basic_Criteria>

#xxxkxkkkk*kEnd Second

0-0.
.0-0.
.0-0.
.0-0.
.0-0.
.0-0.
.0-0.
.0-0.
.0-0.
.0-0.

need to change server port

O O O O O O O O o o
© ©o © 0o 0o 0o 0o o o o°
© ©o ©o o 0o 0o o o o o
S © © ©o OO O O ©o o o
© ©o ©o o o 0o 0 o o ©
© ©o ©o o 0o 0o 0 o o ©

.0-0.
.0-0.
.0-0.
.0-0.
.0-0.
.0-0.
.0-0.
.0-0.
.0-0.
.0-0.

SO O O O O O O o o o
SO O O O O O O o o o
SO O O O O O O O o o

in configuration file as mentioned in next two lines.
Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:1645-1645:UDP:RADIUS
Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:1646-1646:UDP:RADIUS

:1024-65535:
:1024-65535:
:1024-65535:
:1024-65535:
:1024-65535:
:1024-65535:
:1024-65535:
:1024-65535:
:1024-65535:
:1024-65535:

Take care that IPs Ports and applications do not conflict
Important: Some old NAS/RAS sends packets assuming RADIUS Auth Server port
as 1645 and Accounting Server port as 1646. So for this type of RAS/NAS we

25-25:TCP:SMTP
20-20:TCP:FTP
21-21:TCP:FTP
23-23:TCP:TELNET
80-80:TCP:HTTP
143-143:TCP: TEXT
1024-65535:TCP : DUMP_FULL
1024-65535:UDP : DUMP_FULL
1812-1812:UDP:RADIUS
1813-1813:UDP:RADIUS

SeCt 1 0On %k kk ok ok sk ok sk sk skok ok ok ok ok sk sk sk ok ok ok ok ok ok ok ok ok k

ook kokokkookkokkkkThird SeCt i Omsk ok skok sk sk ok ok sk ok ok sk ok ok sk ok ok sk ok ok sk ok ok sk ok ok 5k

Has tunable number of connections that should be monitored

by some applications of interest SIMULTANEQUSLY
<NUM_CONNECTIONS>
NUM_CONNECTIONS=5
NUM_SMTP_CONNECTIONS=500
NUM_FTP_CONNECTIONS=500
NUM_HTTP_CONNECTIONS=500

41

NUM_TELNET_CONNECTIONS=500
NUM_RADIUS_CONNECTIONS=500
</NUM_CONNECTIONS>

trokkkxkkkkkENd Third Sectiomkkskskskskskskkkkokokkok kK % ok ok k ok K % 4 k ok ok

#rkkkokokolookokokokkApplication Specific Specificationskekkekksk
#If there are RADIUS Specific criteria then those criteria comes first in this file
#xkkkxkxkkkkxxxRADIUS Specificationskkxkkx
<RADIUS_Configuration>
Num_0f _Criteria=3
Criteria=skjaincs:no:0.0.0.0-0.0.0.0:1024-65535:1-65535:TCP:DUMP_FULL
Criteria=vijayg:no:0.0.0.0-0.0.0.0:1024-65535:25-25:TCP:SMTP
Criteria=vijayg:no0:0.0.0.0-0.0.0.0:1024-65535:23-23:TCP: TELNET
</RADIUS_Configuration>
ok xkrkrkkkkkkxkSMTP Specifications*xkkxk
<SMTP_Configuration>
<SMTP_Criteria>
NUM_of _Criteria=2
<Search_Email_ID>
Num_of_email_id=1
Case-Sensitive=yes
E-mail_ID=skjaincs@cse.iitk.ac.in
</Search_Email_ID>
<Search_Text_Strings>
Num_of_Strings=1
Case-Sensitive=yes
String=book
</Search_Text_Strings>
<Search_Email_ID>
Num_of_email_id=2

Case-Sensitive=yes

42

E-mail_ID=skjaincs@iitk.ac.in
E-mail_ID=brajesh@hotmail.com
</Search_Email_ID>
<Search_Text_Strings>
Num_of_Strings=0
</Search_Text_Strings>
</SMTP_Criteria>
Num_of_Stored_Packets=750
Mode_0f _Operation=full
</SMTP_Configuration>

#xrrrokxkkkokkEND SMTP Specificationskkkkk

#rkkkkkooo0okFTP Specificationsskokskokskk
<FTP_Configuration>
<FTP_Criteria>
NUM_of_Criteria=1
<Usernames>
Num_0f _Usernames=2
Case-Sensitive=no
Username=ankanand
Username=nmangal
</Usernames>
<Filenames>
Num_0f_Filenames=1
Case-Sensitive=no
Filename=test.txt
</Filenames>
<Search_Text_Strings>
Num_0f_Strings=1
Case-Sensitive=yes

String=book secret

43

</Search_Text_Strings>
</FTP_Criteria>
Num_of_Stored_Packets=750
Monitor_FTP_Data=yes
Mode_of_Operation=full
</FTP_Configuration>

#rrrkxkkkkEND FTP Specificationskxskkksk

ok rokkokkokkkkkkkHTTP Specificationskkkkksk
<HTTP_Configuration>
<HTTP_Criteria>
NUM_of _Criteria=1
<Host>
Num_0f _Hosts=1
Case-Sensitive=no
HOST=http://www.rediff.com
</Host>
<Path>
Num_0f _Paths=1
Case-Sensitive=yes
PATH=/cricket
</Path>
<Search_Text_Strings>
Num_of_Strings=1
Case-Sensitive=no
String=neutral venu
</Search_Text_Strings>
</HTTP_Criteria>
<Port_List>
Num_of _Ports=1

HTTP_Server_Port=80

44

</Port_List>

Num_of _Stored_Packets=750

Mode_0f _Operation=full
</HTTP_Configuration>

#rrrkoo0okEND HTTP Specificationsksksksksksk

#rrrxxokokxTELNET Specificationssokskskksk
<TELNET_Configuration>
<Usernames>
Num_of_Usernames=1
Case-Sensitive=yes
Username=ankanand
</Usernames>
Mode_0f _Operation=full
</TELNET_Configuration>
#xxxxxEND TELNET Specificationsikxxkxkx

#rrkkokokook o TEXT SEARCH Specifications*kkkkx

#These have to be added manually

<TEXT_Configuration>
<Search_Text_Strings>
Num_of_Strings=1
Case-Sensitive=no
String=timesofindia
</Search_Text_Strings>
Mode_0f _Operation=pen
</TEXT_Configuration>
#1411+ END TEXT SEARCH Specificationskkkxx

#xrrxxkkkkkEnd Application Specific Specifications*kkk

45

Appendix B

Configuration Files used for
RADIUS Filter Testing

B.1 Files for testing RADIUS filter

B.1.1 PickPacket Filter Configuration File

#DI-540 D-Link Remote Access Server assumes that RADIUS server are listening on
#port 1645 and 1646.
<Output_File_Manager_Settings>
<Default_Output_File_manager_Settings>
Num_0f _Files=1
File_Path=/dev/null
File_Size=4000
</Default_Output_File_manager_Settings>
</Output_File_Manager_Settings>
<BASIC_CRITERIA>
DEVICE=ethO
Num_0f_Criteria=2
Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:1645-1645:UDP:RADIUS
Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:1646-1646:UDP:RADIUS
</BASIC_CRITERIA>

46

<NUM_CONNECTIONS>
NUM_CONNECTIONS=5
NUM_SMTP_CONNECTIONS=50
NUM_FTP_CONNECTIONS=50
NUM_HTTP_CONNECTIONS=50
NUM_TELNET_CONNECTIONS=50
NUM_RADIUS_CONNECTIONS=50
</NUM_CONNECTIONS>
<RADIUS_Configuration>
Num_0f _Criteria=10
Criteria=skjaincs:no:0.0.0.0-0.0.0.0:1024-65535:25-25:TCP:SMTP
Criteria=skjaincs:no:0.0.0.0-0.0.0.0:1024-65535:20-20:TCP:FTP
Criteria=skjaincs:no:0.0.0.0-0.0.0.0:1024-65535:21-21:TCP:FTP
Criteria=murthyj:no:0.0.0.0-0.0.0.0:1024-65535:3128-3128:TCP:HTTP
Criteria=kanth:no:0.0.0.0-0.0.0.0:1024-65535:25-25:TCP:SMTP
Criteria=goyals:no:0.0.0.0-0.0.0.0:1024-65535:20-20:TCP:FTP
Criteria=goyals:no:0.0.0.0-0.0.0.0:1024-65535:21-21:TCP:FTP
Criteria=murthyj:no:0.0.0.0-0.0.0.0:1024-65535:3128-3128:TCP:HTTP
Criteria=brajesh:no:0.0.0.0-0.0.0.0:1024-65535:25-25:TCP:SMTP
Criteria=neeraj:no:0.0.0.0-0.0.0.0:1024-65535:25-25:TCP:SMTP
</RADIUS_Configuration>
<SMTP_Configuration>
<SMTP_Criteria>
NUM_of _Criteria=1
<Search_Email_ID>
Num_of _email_id=1
Case-Sensitive=yes
E-mail_ID=skjaincs
</Search_Email_ID>
<Search_Text_Strings>

Num_of_Strings=2

47

Case-Sensitive=no
String=Harkat-Ul Mujahidin
String=Biological Terrorism
</Search_Text_Strings>
</SMTP_Criteria>
Num_of_Stored_Packets=100
Mode_0f _Operation=full
</SMTP_Configuration>
<FTP_Configuration>
<FTP_Criteria>
NUM_of _Criteria=1
<Usernames>
Num_0f _Usernames=1
Case-Sensitive=no
Username=skjaincs
</Usernames>
<Filenames>
Num_0f _Filenames=0
</Filenames>
<Search_Text_Strings>
Num_0f_Strings=1
Case-Sensitive=no
String=Procedure Call
</Search_Text_Strings>
</FTP_Criteria>
Num_of_Stored_Packets=100
Monitor_FTP_Data=yes
Mode_of_Operation=full
</FTP_Configuration>
<HTTP_Configuration>
<HTTP_Criteria>

48

NUM_of_Criteria=0
</HTTP_Criteria>
<Port_List>

Num_of_Ports=2

HTTP_Server_Port=80

HTTP_Server_Port=3128
</Port_List>
Num_of_Stored_Packets=0
Mode_0f _Operation=full

</HTTP_Configuration>

B.1.2 Cistron RADIUS Server Configuration Files

File Name - clients

Client Name Key
172.31.19.1 dialup (DI-540 RAS)
172.31.19.25 testing123 (Machine used with radclient utility)
File Name - naslist
NAS Name Short Name Type
172.31.19.1 nas01 other (DI-540 RAS)
172.31.19.25 nas02 other (Machine used with radclient utility)

File Name - users
For user - skjaincs

skjaincs Auth-Type = Local, Password = "ksgajml23"
Service-Type = Framed-User,
Framed-Protocol = PPP,
Framed-IP-Address = 172.31.19.7,
Framed-IP-Netmask = 255.255.252.0,
Framed-Routing = Broadcast-Listen,
Framed-Filter-Id = "std.ppp",
Framed-MTU = 1500,

Framed-Compression = Van-Jacobson-TCP-IP

49

For user - kanth
kanth Auth-Type = Local, Password = "kanth123"
Service-Type = Framed-User,
Framed-Protocol = PPP,
Framed-IP-Address 172.31.19.21,
Framed-IP-Netmask 255.255.252.0,

Framed-Routing = Broadcast-Listen,
Framed-Filter-Id = "std.ppp",
Framed-MTU = 1500,

Framed-Compression = Van-Jacobson-TCP-IP

For user - brajesh

brajesh Auth-Type = Local, Password = "brajesh123"
Service-Type = Framed-User,

Framed-Protocol = PPP,

Framed-IP-Address = 172.31.19.22,

Framed-IP-Netmask = 255.255.252.0,

Framed-Routing = Broadcast-Listen,

Framed-Filter-Id = "std.ppp",

Framed-MTU = 1500,

Framed-Compression = Van-Jacobson-TCP-IP
For user - neeraj

neeraj Auth-Type = Local, Password = '"neeraj123"

Service-Type = Framed-User,

Framed-Protocol = PPP,

Framed-IP-Address = 172.31.19.23,

Framed-IP-Netmask = 255.255.252.0,

Framed-Routing = Broadcast-Listen,

Framed-Filter-Id = "std.ppp",

Framed-MTU = 1500,

Framed-Compression = Van-Jacobson-TCP-IP

For user - murthyj

20

murthyj Auth-Type = Local, Password = "murthyj123"
Service-Type = Framed-User,

Framed-Protocol = PPP,

Framed-IP-Address = 172.31.19.24,

Framed-IP-Netmask 255.255.252.0,

Framed-Routing = Broadcast-Listen,
Framed-Filter-Id = "std.ppp",
Framed-MTU = 1500,
Framed-Compression = Van-Jacobson-TCP-IP

For user - goyals
goyals Auth-Type = Local, Password = "goyals123"
Service-Type = Framed-User,
Framed-Protocol = PPP,
Framed-IP-Address = 172.31.19.3,
Framed-IP-Netmask = 255.255.252.0,

Framed-Routing = Broadcast-Listen,

Framed-Filter-Id = "std.ppp",
Framed-MTU = 1500,

Framed-Compression = Van-Jacobson-TCP-IP

ol

Appendix C

Structure of various Data Viewer

Input Files

Here we describe the structure of the various application protocols’ connection record

files. We follow this description by a sample packetfile(someid.pkt).

C.1 Structure of Connection Record Files

1. someid.smtp (The SMTP connection record file)

2. someid.http cr (The HTTP connection record file)

3. someid.http_dr (The HTTP connection detail record file)

4. someid.other (Non-HTTP/SMTP /Telnet/FTP connections record file)
5. someid.ftp _pdr (The FTP data connection record file)

6. someid.ftp_pcr (The FTP control connection record file)

7. someid.telnet (The Telnet control connection record file)

8. someid.radius (The RADIUS record file)

9

. someid.signature (The Signature file)
These files may or may not be present depending on what was sniffed For instance,

the someid.http cr and someid.http dr file may not be there if no HT'TP connec-

tions were sniffed for.

52

The details of fields are as follows:

(A) someid.smtp

© 0 N oW

[N T S G S o Gy SOy U G S ey
_ O © 00 ~J O Ot = W N = O

Connection ID

Source Mac Address

Destination Mac Address

Source IP

Destination IP

Source port

Destination Port

Conversation file name (*.CONV)

Server dialogue file name (*.S)

. Client dialogue file name (*.C)

. Eml file name

. Date at which the mail was sent (in “date” command format)

. Emailid of sender

. Number of persons to whom the mail was sent

. Comma separated list of mailids of all the recipients of this mail
. Subject of mail

. Start time (seconds from Unix epoch) of the connection

. Start time (micro seconds from Unix epoch) of the connection

. End time (seconds) of the connection

. End time (micro seconds) of the connection
. RADIUS Connection ID

(B) someid.http cr

1.

2
3
4.
5

Connection ID

. Source Mac Address
. Destination Mac Address

Source IP

. Destination IP

23

6.
7.
8.
9.

10.
11.
12.
13.
14.

Source port

Destination Port

Conversation file name (*.CONV)

Server dialogue file name (*.S)
Client dialogue file name (*.C)
hostname
Start time (seconds) of the connection
End time (seconds) of the connection
RADIUS Connection ID

(B) someid.http dr

© 0 N oW

S e e O Syt
O ~J O Ot = W N —= O

Connection ID

Source Mac Address

Destination Mac Address

Source IP

Destination IP

Source port

Destination Port

Conversation file name (*.CONV)

hostname

. Request Method

. URI

. Request Data file name (POST Data)

. Dummy Field

. Response Data file name

. Start time (seconds) of the connection

. End time (seconds) of the connection

. Post Data Encoding (Urlencoding, multipart/form-data)
. Boundary (POST data encoded in multipart/form-data)

(C) someid.other

54

Connection ID

Source Mac Address
Destination Mac Address
Source IP

Destination TP

Source port

Destination Port

Transport Protocol (udp/tep)
Conversation file name (*.CONV)
. Server dialogue file name (*.S)
. Client dialogue file name (*.C)

. Date at which the session was started (in “date” command format)

B -l R

—_ = = =
w N = O

. Start time (seconds) of the connection

—_
N

. Start time (micro seconds) of the connection

—_
ot

. End time (seconds) of the connection

—_
(=

. End time (micro seconds) of the connection
. RADIUS Connection ID

—_
EN |

(D) someid.ftp pdr
Connection ID

Source Mac Address
Destination Mac Address
Source IP

Destination IP

Source port

Destination Port
Conversation file name (*.CONV)
FTP username

10. FTP password

11. Actual file name of file transferred

© 0 N oW

12. New file name

95

13.
14.
15.
16.
17.
18.
19.
20.

Type of the file as determined from the file command
Start time (seconds) of the connection

Start time (micro seconds) of the connection

End time (seconds) of the connection

End time (micro seconds) of the connection
Structure of the file transfer

Type of file transfer

Mode of file transfer

(E) someid.ftp pcr

© 0 NS ot W N

10.
11.
12.
13.

Connection ID

Source Mac Address

Destination Mac Address

Source TP

Destination IP

Source port

Destination Port

Conversation file name (*.CONV)

Server dialogue file name (*.S)
Client dialogue file name (*.C)
Date at which the session was started
Date at which the session ended
RADIUS Connection ID

(F) someid.telnet

SEEN A

Connection ID

Source Mac Address
Destination Mac Address
Source TP

Destination TP

Source port

26

7. Destination Port

8. Transport Protocol (udp/tcp)

9. Conversation file name (*.CONV)

10. Server dialogue file name (*.S)

11. Client dialogue file name (*.C)

12. Date at which the session was started (in “date” command format)
13. Start time (seconds) of the connection

14. Start time (micro seconds) of the connection

15. End time (seconds) of the connection

16. End time (micro seconds) of the connection
17. RADIUS Connection ID

(G) someid.radius

Connection ID

Source Mac Address

Destination Mac Address

Source TP

Destination TP

Source port

Destination Port

Conversation file name (*.CONV)
Dummy Field

B -l R

—_
o=

. Dummy Field

—_
—_

. User Name

. NAS/RAS TP Address

. NAS/RAS Port

. Framed IP Address (Dynamically allocated TP to user)

— = =
Ot = W N

. Acct Session Time

—_
D

. Session ID
. Class

. Calling Station ID

— =
oo

57

19. Start time (seconds) of the connection

20. Start time (micro seconds) of the connection

21. End time (seconds) of the connection

22. End time (micro seconds) of the connection

23. Record Type (“A” - Accounting, “T”- Authentication)

(H) someid.signature

1. Dump File Name

2. Dump File Size

3. Signature Creation Time

4. Signature (Hex Format)

In each of the above files, the various records end with a CRLF. The individual

fields are separated by a ; (semicolon).

Sample packetfile
100.cfg
101.signature
102.smtp

105.ftp _per
106.ftp_pdr
115.telnet
120.radius

o8

