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Abstract

In this thesis, we address the problem of degradation in performance of
TCP over wireless links. We propose enhancements to TCP so that it re-
sponds to certain control signals from the network. These control signals
allow TCP to differentiate packet losses unrelated to congestion from those
reiated to congestion. This enables TCP to react appropriately to different
packet losses resulting in improved performance. We developed a network
simulator for evaluating the performance of our scheme in a wireless com-
puting environment. Simulation results show that our scheme is successful
in substantially improving the performance of TCP over wireless links. The
overhead of our scheme is also very low.
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Chapter 1

INTRODUCTION

This thesis proposes a scheme for improving the performance of TCP ! over
wireless links.

A network simulator for simulating wireless computing environment is
also implemented. It serves as a useful tool for studying the behavior of
TCP in this environment.

1.1 Motivation

Recent years have witnessed rapid-progress in the area of wireless comput-
ing. This has largely been driven by growing popularity of laptop computers
coupled with advances in wireless technology, enabling laptop computers to
be equipped with wireless interfaces. The current trend strongly suggests
that wireless links will be an integral part of future networks.

Wireless links have fundamentally different characteristics than wired
links. This is because the surrounding environment interacts with the signal,
blocking signal paths and introducing noise and echoes. As a result, wireless
links are characterized by low bandwidth and high error rate. Moreover,
their error characteristics are bursty and time varying. This is in contrast to
wired links which have high bandwidth and very low error rate.

The error characteristics of wireless links result in significant degradation
in performance when hosts on wireless LAN make use of reliable transport

I'"Throughout this report, we use TCP to refer to 4.3 BSD Reno implementation of TCP



protocols such as TCP, that were originally developed for wired networks.

TCP implementation has evolved considerably since its first release. Over
the years, algorithms have been added to adapt to the changing characteris-
tics of wired networks. New congestion control policies have been introduced
keeping in mind the increased reliability (significantly lower bit error rates)
of today’s networks. These congestion control algorithms adapt well to the
changes in end-to-end delays over the lifetime of a connection. Since, packet
losses are invariably due to congestion in the network, these algorithms reacts
to a packet loss by reducing the sending rate and exponentially backing off
the retransmission timer. These congestion control algorithms have proven
beneficial in improving the performance of networks.

However, performance of TCP degrades significantly over networks with
wireless links. This degradation can be attributed to the error characteristics
of wireless links. It results in frequent packet corruption and hence, frequent
packet losses over a wireless link. These losses are (mis)interpreted by TCP
as signs of congestion in the network and its congestion control algorithm
reacts by reducing its sending rate and exponentially backing off its retrans-
mission timer. This unnecessary reduction in sending rate leads to degraded
performance.

The performance degradation of TCP poses an important challenge to
the researchers. TCP is the most widely used transport layer protocol on
the Internet today. TCP traffic constitutes 80% of all the wide-area network
trafic [CDJM91]. A large set of applications use TCP as their transport
layer protocol. If these applications are to operate with similar effectiveness
over wireless links, without requiring any modification, performance problem
of TCP needs to be addressed.

The performance problem of TCP over wireless links has been studied
by researchers and several solutions [NED94, BB95, YB94, BSAK95] have
been proposed. Nanda et al. [NED94] have suggested to solve the prob-
lem by introducing reliability at the link layer for wireless link. Badri et
al. [BB93] and Yavatkar et al. [YB94] advocate splitting end-to-end TCP
connection into two separate TCP connections - one over the wired network
and the other over the wireless link. Balakrishnan et al. [BSAK95] have sug-
gested augmenting the routing code at the base station with a module that
keeps a cache of unacknowledged TCP packets on a connection. The module
monitors every TCP packet (data and acknowledgment) that passes through
the connection and performs intelligent processing, utilizing the knowledge of
TCP. These proposals are discussed in greater detail in Chapter 3. Although,
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each of these solutions do achieve improvement in TCP’s performance, as we
will see, these solutions either have a significant overhead associated with
them or they are not able to fully achieve the goal of performance improve-
ment. ’

In this thesis, we describe a scheme to improve the performance of TCP
over wireless link and present simulation results. Our scheme is based on the
observation that without the co-operation of source TCP, one cannot achieve
the goal of substantial performance improvement with minimal overhead.
In our scheme, we propose enhancements to TCP so that it responds to
certain control signals from the network. Simulation results shows substantial
improvement in performance of TCP based on our scheme.

As part of this thesis work, we have also developed a network simulator
for simulating wireless computing environment. This has served as a useful
tool in testing our ideas. All the simulation results presented in this report
were obtained using this simulator.

1.2 Organization of the thesis

The rest of the thesis is organized as follows. In Chapter 2, we present a
brief overview of TCP and discuss TCP congestion control algorithms.

In Chapter 3, we briefly review the work that has been carried out in
this field and point out drawbacks of each of the approach proposed so far.

In Chapter 4, we discuss the features and design of our network simu-
lator.

In Chapter 5, we discuss our scheme. We describe the approach that we
have taken and propose a scheme based on this approach. In this chapter,
we also present the simulation results.

Finally, we conclude the thesis in Chapter 6 and provide way to extend
this study.



Chapter 2

TCP Overview

This chapter provides a brief overview of TCP. The goal of this chapter is
to describe the reaction of TCP to a packet loss. Since TCP links packet
loss to congestion in the network, a packet loss brings TCP’s congestion
control algorithms in action. This chapter briefly explains TCP’s congestion
control algorithms : slow-start, congestion avoidance, fast retransmit, and
fast recovery.

2.1 TCP basics

TCP (Transmission control protocol) is a reliable, connection-oriented, byte-
stream transport protocol. It receives data from the application, breaks it
into segments and passes them onto IP layer for transmission. IP layer pro-
vides a best-effort service. Packets may get lost, duplicated, or re-ordered
while traveling through the network. Therefore, TCP is designed to provide
reliability by using checksum methods, sequence number, and acknowledg-
ments. Since data as well as acknowledgment may get lost in the network,
TCP maintains a timer. If an acknowledgment is not received before the
timer expires, it retransmits the segment. Additional complexity in TCP is
required as packets may get out of order while traveling through the net-
work. TCP at the receiving end re-sequences packets before passing them,
in correct order, to the application.

TCP is a byte stream protocol. Using a TCP connection, two applications
exchange a stream of bytes. TCP does not introduce any record boundaries
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in the stream. So, if an application on one end writes 100 bytes, followed by
200 bytes, the application at the other end cannot identify the size of indi-
vidual writes. It can read this 300 bytes of data using any combination of
read sizes (three reads of 100 bytes each, single read of 300 bytes, etc.). If we
consider a stream of bytes flowing in one direction between two applications,
TCP numbers each byte with a sequence number. At the receiving side,
TCP sends acknowledgment when it receives data from the sender. TCP
supports cumulative acknowledgment policy. TCP acknowledgment number
indicates that all data bytes up through but not including the mentioned
sequence number, has been received successfully. Thus, an acknowledgment
number indicates the sequence number of next in-sequence data byte it ex-
pects to receive. An out-of-order segment results in generation of a duplicate
acknowledgment.

TCP provides end-to-end flow control. The purpose is to prevent a fast
sender from swamping a slow receiver. It requires the receiver to advertise
its window size to the other end. This window size (referred to as receiver’s
advertised window size) indicates the number of bytes of data, starting with
the one specified in the acknowledgment number field, that the receiver is
willing to accept. The sending side uses this information to send only as
much data as the receiver has buffers for.

TCP also supports congestion control. It keeps an estimate of bandwidth
available on the network path and accordingly, adjusts its sending rate and
the amount of data in-transit, based on this estimate.

2.2 Slow-start and Congestion Avoidance

At any point during data transfer, the sender TCP isin one of the two modes -
slow start and congestion avoidance. In slow start, sender increases its send-
ing rate more aggressively. The idea is to quickly reach the equilibrium point
for the connection. A connection is said to be running at equilibrium if it is
utilizing the available network resources optimally. After reaching the equi-
librium point, the connection shifts to congestion avoidance mode. In this
mode, it slowly increases its sending rate to probe the maximum network
capacity on the network path.

In order to implement slow start and congestion avoidance algorithm,
TCP uscs three variables - receiver’s advertised window size (snd-wnd), con-
gestion window (cwnd), and slow start threshold size (ssthresh). The value of
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ssthresh defines the equilibrium point for the connection. The relative values
of cwnd and ssthresh determines the mode. If cwnd is less than or equal
to ssthresh, connection is in slow start mode, otherwise, it is in congestion
avoidance mode.

In slow start mode, cwnd is set to maximum segment size (MSS) and
is incremented by 1 MSS for every acknowledgment received. Thus, in slow
start mode, cwnd size increases exponentially. In congestion avoidance mode,
cwnd is incremented by 1/cwnd for every acknowledgment received. This
results in additive increase in cwnd size.

2.3 TCP’s reaction to a packet loss

TCP interprets following two events as an indication of a packet loss in the
network :

e Occurrence of a timeout.

e Receipt of three duplicate acknowledgments.

Since packet loss caused by corruption is rare (less than 1% of all the
packet losses [Jac88]), TCP interprets a packet loss as an sign of congestion
in the network and invokes its congestion control algorithms. The specific
action taken is dependent on the event that signaled the packet loss. In the
following subsections, we briefly look at the reaction of TCP in both cases.

2.3.1 Occurrence of a timeout

Occurrence of a timeout is interpreted by TCP as a sign of severe congestion
in the network. It reacts by setting ssthresh to one half of the current window
size (minimum of cwnd and snd-wnd), invoking slow start algorithm, and
retransmitting the lost packet. Thus, cwndis set to 1 MSS and is incremented
by 1 MSS for every acknowledgment received. When cwnd becomes greater
than ssthresh, TCP switches to congestion avoidance mode.

TCP’s reaction is illustrated in figure 2.1 and 2.2. Figure 2.1 shows a plot
of sequence number and acknowledgment number against time. Figure 2.2
shows the plot of cwnd and ssthresh against time.

During simulation, the values of MSS and snd.wnd were kept at 1 KB
and 4 KB, respectively.
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As shown in figure 2.1, two segments are lost in the network. The remain-
ing two segments successfully reach the destination. Since these segments
are not the expected ones, destination queue these segments and generates
a duplicate acknowledgment corresponding to each of these. These dupli-
cate acknowledgments indicate the next sequence number expected at the
destination.

When the retransmission timer expires, source invokes slow start algo-
rithm and retransmits the lost segment. As per the slow start algorithm,
ssthresh is set to half of current window size and cwnd is set to 1 MSS (fig-
ure 2.2). The retransmitted segment reaches the destination successtully.
When the source receives the acknowledgment for this segment, it increases
its cwnd by 1 MSS and transmit two segments. The first of these two seg-
ments fills the hole at the destination. The destination passes this segment
and the two previously queued segments to the application layer and gener-
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ates an acknowledgment, acknowledging all the segments received so far.

Note that the second of the two consecutively sent segments, was already
received at the destination. It results in generation of a duplicate acknowl-
edgment.

2.3.2 Receipt of three duplicate acknowledgments

When an out-of-order segment is received, the receiver TCP generates a du-
plicate acknowledgment. The purpose of this duplicate acknowledgment is to
let the other end know that a segment was received out-of-order and to convey
the next in-order sequence number expected. Since, a duplicate acknowledg-
ment is caused either by a lost segment or by re-ordering of segments in the
network, TCP waits for a small number of duplicate acknowledgments before
making any inference. It is assumed that re-ordering of segments will not re-
sult in more than two duplicate acknowledgments. If three or more duplicate

8
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acknowledgments are received in a row, it is a strong indication that a seg-
ment was lost in the network. TCP interprets this as a sign of mild congestion
in the network. On receipt of the third consecutive duplicate acknowledg-
ment, it retransmits the lost segment (segment with sequence number equal
to the one indicated in the acknowledgment number field of the duplicate
acknowledgments) without waiting for the retransmission timer to expire.
This is fast retransmit algorithm. Since an acknowledgment (duplicate or
non-duplicate) can only be generated when the other end has received a seg-
ment, duplicate acknowledgments indicate that data is still flowing between
the two ends. TCP therefore performs congestion avoidance instead of slow
start, to avoid reducing the flow abruptly. This is fast recovery algorithm.

The fast retransmit and fast recovery algorithms are implemented as fol-
lows :

When TCP receives the third duplicate acknowledgment, it sets ssthresh
to half of current window size (minimum of cwnd and snd_wnd). It retrans-
mits the missing segment and sets the cwnd to ssthresh 4+ 3*MSS. For each
subsequent duplicate acknowledgment that it receives, it increments cwnd by
1 MSS and transmits a new packet if allowed by current window size. When
a new acknowledgment arrives, acknowledging some data, TCP comes out
of fast recovery algorithm. It sets cwnd to ssthresh and follows congestion
avoidance algorithm.

Figure 2.3 and 2.4 illustrate the reaction of TCP to receipt of more
than three duplicate acknowledgments. Figure 2.3 shows a plot of sequence
number and acknowledgment number against time. Figure 2.4 shows a plot
of cwnd and ssthresh against time.

During simulation, the values of MSS and snd-wnd were kept at 1 KB
and 32 KB, respectively.

As shown in figure 2.3, a segment is lost on the network. All the subse-
quent segments successfully reach the destination and results in generation of
duplicate acknowledgments. The third duplicate acknowledgment causes fast
retransmit algorithm to be invoked. ssthresh is set to half of current window
size, cwnd is set to ssthresh + 3*MSS (figure 2.4), and the lost segment is
retransmitted.

For every duplicate acknowledgment received, cwnd is incremented by 1
MSS and, if allowed by current window size, a new segment is transmitted. As
shown in figure 2.3, the duplicate acknowledgments cause three new segments
to be transmitted.

The retransmitted segment fills the hole at the destination. Destination

9
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time

passes this and all the previously queued segments to the application. It
generates an acknowledgment, acknowledging all the segments that have been
received so far. This acknowledgment causes the source to come out of fast
recovery algorithm. Source sets cund equal to ssthresh and proceeds as per
the normal congestion avoidance algorithm.

10

Eg 25000 I T T ] ] T T 1
Fy ’sequence no.” —<¢—
= ’acknowledgment no.” ‘g
2 20000 - .
£ ..
=
g
e 15000 -
=4
s
2
3
€ 10000 F -
5 Packet lost
< ¥
5 ++' . \ :
£
L + -
§ 5000 Lo+ Fast Retransmission
g
"é 0 ] | I ., 1 1 I |
3 1000 1100 1200 1300 1400 1500 1600 1700 1800

1900



Congestion wnd, Threshold size (in bytes)

(Congestion wnd, Threshold size) Vs Time

13000 T l | T T T T T
"congestion wnd’ —¢—
12000 + ‘threshold size’ -+ - |
11000 -
10000 - .
9000 -
8000 -
7000 4
6000 : -
Fast Retransmission New ACK
5000 arrives -
4000 | l ! L+ | 1 |\<
1000 1100 1200 1300 1400 1500 1600 1700 1800 1900

Time (in msecs.)

Figure 9.4: Plot of cund and ssthresh versus time

11



Chapter 3

Related Work

In this chapter, we summarize the solutions that have been proposed earlier
to improve the performance of TCP over wireless links. We also point out
the drawbacks of each of these solutions. For a detailed comparison, refer to
[BPSK96].

3.1 Link-level retransmission [NED94, BBKT96|

This approach attempts to solve the problem by introducing reliability at
the link layer for wireless link. The link layer uses a finite selective repeat
protocol to recover from errors over the wireless link but it does not intend to
completely eliminate all detectable errors. This approach attempts to make
a wireless link appear as better quality link to the higher layers, at the cost
of reduced effective bandwidth. The improved link quality results in fewer
number of packet losses due to corruption on the wireless link and there-
fore, results in improved performance. This is primarily because detecting
a packet loss at the (source) transport layer and retransmitting the packet
is significantly costlier than sending packet at a lower rate, especially when
packet loss rate is high.
This approach however has certain disadvantages :

¢ It may not be able to completely shield the source transport layer from
all losses on the wireless link.

12



e Studies have shown that link-layer retransmissions may interfere with
TCP’s end-to-end retransmissions [DCY93]. So, we might have a sce-
nario wherein a packet that was locally retransmitted some number of
times and finally delivered across the wireless link, is retransmitted by
the source TCP. This wastes efforts of the link layer, as it has to again
put efforts in getting this re-transmitted packet through. Since, link
layer as a resource, is shared by all TCP connections using the wire-
less link, wasted link layer efforts affect the performance of all TCP
connections.

3.2 Split connection approach [BB95, YB94]

In this approach, the end-to-end TCP connection is split into two connec-
tions - one over the wired network and the other over the wireless link, with
base station serving as the common point for two connections (A base station
is a router that interfaces wireless link to the wired network). The advantage
of this approach is that it isolates the source transport layer from the erratic
behavior of the wireless link. It also allows quick recovery from errors over a
wireless link.
This approach however, has the following disadvantages :

e The semantics of TCP connection are not preserved. The source TCP
may receive an acknowledgment for a packet which hasn’t reached its
destination.

e Choice of using regular TCP over wireless link in [BB95] results in
performance problems. Since TCP is not well-tuned for wireless links,
TCP sender of the wireless link often times out causing the original
sender to stall. This problem has been addressed in [YB94] wherein
use of specialized transport protocol over wireless link is proposed.

e Every packet incurs the overhead of going through the TCP protocol
processing twice at the base station. As the number of wireless links
in the path increases, this overhead also increases.

o This approach requires the base station to maintain significant amount
of state for every TCP connection passing through it.

13



3.3 Snoop protocol [BSAK95]

In this approach, a module called snoop agent is added to the routing code
at the base station. This agent monitors packets flowing on a TCP con-
nection and does intelligent processing, utilizing the knowledge of TCP. It
maintains a cache of un-acknowledged TCP packets on a per-connection ba-
sis and performs local re-transmission when it detects a packet loss (either by
arrival of a duplicate acknowledgment or by a local timeout). It intercepts
duplicate acknowledgments, triggered by loss of a packet on a wireless link,
and does not allow them to reach the source. This prevents the source from
unnecessarily fast retransmitting resulting in improved performance.
However, this approach has the following disadvantages :

Like the earlier link layer approach, this approach may not be able to
completely shield the sender from losses on a wireless link.

This approach assumes that a wireless link is the last hop in the net-
work path. Though currently wireless links are most commonly used as
a last hop link for providing portable computers access to the wired in-
frastructure, in the near future wireless links are expected to be widely
used for connecting two islands of networks as well. Hence, any long
term solution must cater for more general environment.

It requires a base station to maintain significant TCP state informa-
tion and a cache of unacknowledged packets for every TCP connection
passing through it.

Snoop agent performs some additional processing for every TCP data
packet or acknowledgment packet that passes through. Since a base
station is a common point for many TCP connections, the cumulative
effect of this per-packet processing overhead may become significant
and may make base station a bottleneck.

The proposed solution is not symmetric. A base station has different
set of policies for connection from fixed host to mobile host than for
connection from mobile host to fixed host. This further increases the
complexity of a base station.

14



Chapter 4

Simulator

Simulation techniques are widely used to study the performance of schemes
in the area of computer networks. As part of this thesis work, we developed
an event driven network simulator. In this chapter, we present the salient
features of the simulator and briefly discuss its design.

4.1 Motivation

Many TCP simulators such as Real [Kes88], Netsim [Hey90], NS [MF95] are
available in public domain. However, they have the following disadvantages :

e None of these simulators supports the concept of a wireless link.
e They have a large size and for the most part, they are undocumented.
e Bugs have also been reported in some of the simulators [Gup95).

Modifying undocumented code to introduce the concept of a wireless link
was itself a big task and then further modifications were required to simu-
late and test the proposed schemes. The problem was compounded by the
fact that we planned to iteratively evolve the scheme taking inputs from the
simulation results. We perceived that the effort involved in effecting these
modifications is more than the effort involved in developing our own simu-
lator. Hence, we decided to develop our own simulator, more suited for the

application at hand.
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| 4.2 Features

The simulator was specifically aimed at simulating wireless computing en-
vironment, however, it supports more general environment involving wired
and/or wireless links.

Simulator has the following features :

1.
2.

It is an event driven simulator.

TCP

It simulates 4.3 BSD Reno implementation of TCP. The simulator only
simulates the ESTABLISHED state of a TCP connection. The other
states associated with connection establishment phase and connection
tear-down phase, are not simulated. More specifically, slow-start, con-

gestion avoidance, fast retransmit, and fast recovery algorithms of TCP,
active during ESTABLISHED state, are simulated.

Network Topology

Simulator supports arbitrary network topology. It reads the descrip-
tion of the network topology from a file. The description specifies the
characteristics of various node and links involved in the simulation.

Nodes supported
Various nodes supported by the Simulator are classified on the basis of
their functionality into following 3 categories :

e Source
e Router
e Sink
Within each category, the nodes have been further classified on the basis

of the kind of link layer protocol they implement over the wireless link :
reliable! or un-reliable.

e Source Node

Nodes acting as the source of TCP segments are categorized as
source nodes. Every source node in the network transmit TCP

LAs we will see later in this chapter, the link layer protocol that we refer to as reliable

is only semi-reliable.
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segments to one and only one sink node. A node of this category
may also be referred to as ‘TCP sender’. Following nodes fall in

this category :
— wired_source_node
— wireless_source_node
wireless_source_node implements a reliable link layer protocol
over the attached wireless link whereas wired_source_node im-
plements an un-reliable link layer protocol.
e Router Node
Nodes routing IP packets to their destination are categorized as
router nodes. Following nodes fall in this category :
— normal_router_node
— base_station
base_station implements a reliable link layer protocol over the
wireless link. It also generates control information, if required. It
is therefore, an important entity in our scheme. normal_router_node
implements an un-reliable link layer protocol over the wireless link.
e Sink Node

Nodes acting as destination of TCP segments are categorized as
sink nodes. A sink node may accept TCP segments from one
and only one source node. A node in this category may also be
referred to as “TCP receiver’. These nodes receive TCP segments
and generate appropriate TCP acknowledgments. Following nodes
fall in this category :

— wired_sink_node
— wireless_sink_node

wireless_sink_node implements areliable link layer protocol over
the wireless link whereas wired_sink_node implements an unreli-
able link layer protocol.

5. Links supported
Following two kinds of links are supported :

e Wired link
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Error characteristics of a wired link is modeled by uniform distri-

bution. The packet loss probability over the link is specified by
the user.

o Wireless link

Error characteristics of a wireless link is modeled by 2-state Markov
model [BBKT96]. At any given instant, we model the channel as
being in one of the two possible states, GOOD or BAD. We as-
sume that packet loss probability in GOOD state is 0 (channel
is perfectly reliable), and that in BAD state is 1 (channel is per-
fectly lossy). We assume that the duration of stay in both the
states is exponentially distributed, with different average values.
These average values are specified by the user.

Simulator supports following two models of wireless link :

— Full duplex :
In this model, a wireless link is assumed to be a point-to-point
link between two nodes in the network, each transmitting at a
different frequency. Also, it is assumed that the wireless link
is not shared by any other entity in the network.

— Shared link : .

In this model a wireless link is shared by all the wireless hosts
and the base station, present in a single cell. Also, the error
characteristics of a channel between the base station and a
particular wireless host is independent of the error character-
istics of channel between base station and any other wireless
host in the same cell [BBKT96].

Simulator supports IEEE 802.11 MAC protocol over shared
wireless link model.

6. Routing
Simulator supports static routing between the nodes. The routes be-
tween different pairs of nodes are calculated using Dijkstra’s shortest
path algorithm, with hop count as the cost metric. This algorithm is
invoked by the IP layer of a node, when it receives an IP packet for
which it doesn’t have an entry in the routing table. This happens when
this packet is the first one on a TCP connection.
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7. Trace Generation

Simulator generates trace of important parameters. It also generates a
trace of important events taking place during simulation.

The trace of each parameter is controlled by a control flag and may be
turned off, if required.

The trace of important events is controlled by another set of flags.
These flags may be used to selectively allow/disallow some events from
appearing in the trace. This is necessary as otherwise, the amount of
data in the trace may be overwhelming.

8. Scheduling
When more than one wireless host is present in a single cell, usually,
there are multiple TCP connections sharing the wireless link. In such
a scenario, base station maintains a separate queue (per-connection
queue) for each wireless host. These per-connection queues are served
in round-robin fashion.

We opted for this model as it has been shown in [BBKT96] that FIFO
scheduling of packets in conjunction with reliable link layer protocol
leads to degraded overall throughput and unfair allocation of wireless
bandwidth to wireless hosts, due to head-of-line blocking effect.

9. Miscellaneous
Simulator can use a trace file to determine the time at which the wire-
less link should switch from GOOD state to BAD state and vice-versa,
during the course of a simulation. This feature is especially useful
when the desired behavior of a wireless link cannot be produced by a
mathematical model.

Simulator allows a user to specify the time at which a source should
start transmitting packets.

4.3 Simulator Design

The simulator has been built in an incremental fashion. In the beginning, we
started with the bare minimum requirements. Thereafter, we kept on adding
features as per our requirements. As a result, at certain places, design is
not “clean”. All through the design and development effort, we have given
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preference to ease of understanding over efficiency of implementation so that
the simulator may serve as a useful tool in future and may be modified as
per requirements. C+-+ language was chosen for implementation so that

repeated modifications to the design, resulting from added requirements, do
not make it “messy”.

4.3.1 Simulator Functional Units

In this section, we describe the design of basic functional units of the simula-
tor. These functional units combine to implement various features supported
by the simulator. Each of these functional units have been implemented as
a class in C++.

1. Event Scheduler (class Event_Queue)

Event scheduler is the most important component of the simulator.
It keeps a linked list of events waiting to happen. The linked list is
ordered by the time of occurrence of events.

The scheduler allows scheduling an event at a particular instant of time,
and canceling a previously scheduled event.

An event node has the following fields :

e eve_type (Event type)

e eve_time (Event time)

e src_node_id (Source node id)

e target_node_id (Target node id)

e seq.no (Sequence number)

e ack.no (Acknowledgment number)
Source node id contains the id of the node that has queued the event.
Target node id contains the id of the node that will take action on
the occurrence of this event. Together with sequence number and ac-

knowledgment number, they are used to identify the TCP segment to
be processed.

Every node in the simulator implements its own event handler. When
an event occurs, event scheduler passes the event to event handler of

the target node.
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2. TCP Source (class TCP.SRC)

TCP Source is responsible for injecting TCP segments into the network
and for processing TCP acknowledgments, as per TCP algorithms.

Apart from the variables maintaining state of a TCP connection, class
TCP_SRC maintains two queues :

e send.wnd (Send window) :

This is a queue of TCP segments that have not been acknowledged
so -far by the other end.

When a TCP segment is sent, it is also queued in send_wnd. This
queued segment is used in case the segment has to be retransmit-
ted. When a TCP acknowledgment is received, all the segments
that are acknowledged are removed from the send_wnd.

e tcp_in_queue (TCP input queue) :
All incoming TCP acknowledgments are queued in this queue be-
fore processing.

3. IP (class IP)
IP is responsible for routing IP packets to their respective destination.

class IP is used when we want to simulate an un-reliable model of
link layer. Link layer in this model is a forwarding agent. It accepts
IP packet from IP layer, encapsulates it in a frame and passes it on to
physical layer for transmission. At the other end, link layer receives the
frame from the physical layer, and passes the encapsulated IP packet
to the IP layer. In our simulator, instead of modeling the link layer
explicitly, we have chosen to assume its existence. We do this so that
we simulate only to the detail required for our purpose. This results in
some additional entries in the routing table which are traditionally not
present.

class IP has following three components :

e ip_in_queue (IP input queue) :
All incoming IP packets are queued here before being routed. The
routing module takes a packet from this queue and using the rout-
ing table, routes it to appropriate next hop router.
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e routing_table :
A routing table has the following entries :

— dest.id (Destination node id)
— router.id (next hop router id)
— link.ptr (link pointer)

— link. busy (link busy flag)

— transmission_completion_time (completion time of current
transmission)

1ink_ptr points to the characteristics of the link between the cur-
rent node and the next hop router node (router_id). This is
used to calculate transmission time of packet and to determine
the status of the link.

When a packet transmission is in progress, link.busy flag is
turned ON and transmission_completion_time contains the time
at which the transmission will complete.

e network.if_queue (Network interface queue) :
Packet that is being transmitted but which has not yet reached
the next hop router, is kept in this queue.

4. IP (modified) (class MOD.IP)

class MOD_IP builds over the functionality of class IP. It implements
reliable link layer model for wireless link. Link layer model for wired
link remains the same (i.e. un-reliable).

class MOD_IP adds one field, a link layer pointer, to the routing table.
This is the only change in the components of the class IP. Link layer
pointer (d11_ptr) is set when the connecting link (1ink-ptr) is wireless.
Otherwise, it is NULL. d11._ptr is used for passing packets to the link
layer.

5. Link layer

Link layer is responsible for recovering from some of the errors over
the wireless link through link layer retransmissions (also referred to as
local retransmissions, as an analogy to end-to-end retransmissions of
TCP). If N successive retransmission attempts for a frame have failed
(for some value of N), link layer discards the frame and attempts to
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deliver next frame in the queue. In this sense, link layer is only “semi-

reliable”. It employs a stop and wait protocol analogous to (but not
exactly similar to) one-bit sliding window protocol.

Simulator supports the following two models of link layer :

e The first model (implemented by class MOD_DLL_WN) supports the
features mentioned above. This model is used as part of wireless
sink node.

e The second model (implemented by class MOD_DLL_BS) supports
following additional functionality :

— It generates control information, if required.

— It maintains per-connection queue for each of the TCP con-
nection passing through (more precisely, for each of the wire-
less host present in the same cell with which communication
is going on). This feature is of use to base station which nor-
mally communicates with more than one wireless host in its
cell.

This model is used as part of base station and wireless source
node.

Link layer has the following components :

e network_if_queue (Network interface queue) : :
In class MOD_DLL_WN, this is simply a queue of frames. All IP
packets routed and passed by the IP layer are encapsulated and
stored in this queue.
In class MOD_DLL_BS, this is a queue of per-connection states. A
per-connection state contains the following information :

— per._connection_queue :
It is a queue of all IP packets routed and passed by the IP
layer (similar to network_if _queue in class MOD_DLL.WN).
— no_of_attempts (Number of attempts) :
It maintains the number of attempts that have been previ-
ously made on transmitting the frame at the head of the
per_connection_queue.
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— next_frame_seqmno_expected :
It is used to determine whether frame received on this con-
nection is duplicate or not.

— dst_node.id (Destination node id) :

It maintains id of the node at the other end of the connection.
It is used to identify a connection.

e dl1_send wnd (Link layer’s send window) :
It contains frames that have been transmitted but have not been
acknowledged by the link layer at the other end.

e dll_in_queue (Link layer’s input queue) :
Frames that have been received from the other end are queued in
this queue, before processing.

e nw_card_queue (Network card’s queue) :
Frame that is being transmitted but which has not yet reached
the other end, is kept in this queue.

6. TCP Sink (class TCP_SINK)

TCP Sink is responsible for accepting TCP segments and generating
appropriate TCP acknowledgments.

It has the following components :

e tcp_in_queue (TCP input queue) : .
All incoming TCP segments are placed in this queue before pro-
cessing.

e recv_wnd (Receive window) :
This simulates TCP’s reassembly queue. All out-of-order TCP
segments are placed in this queue. This queue is kept sorted in
the order of increasing (TCP) sequence number.

e seq.no_expected (Sequence number expected) :
It contains the sequence number of the segment that is expected
next at the sink.
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Chapter 5

Proposed Scheme

In this chapter we discuss our proposed scheme and present simulation re-
sults. At the end of this chapter, we list the advantages of our scheme.

5.1 Approach

All proposals discussed in Chapter 3, make the following assumptions :

e existing TCP implementations running on hosts connected to wired net-
works cannot be changed,

e changes can made to TCP (or any other software) running on hosts
connected to wireless networks, and

» changes can be made to those hosts which provide interface between
wired and wireless networks.

These assumptions are based on the fact that one cannot modify existing
TCP implementations overnight, and a new TCP implementation that is in-
compatible with an existing one, is unacceptable. But these assumptions lead
to very restrictive solutions, which are either too complex, or do not achieve
very good performance. This is because they impose rigid requirements on
the scheme. The only requirement should be that the new implementation
be compatible with the older implementations. With this assumption, new
implementations may be tuned to provide good performance over wireless



networks. They also work correctly with the older implementations. With
the passage of time, hosts running older version of TCP may be upgraded
in an incremental fashion so that all hosts will be running the newer version
eventually.

In this thesis, we propose to augment TCP to respond to control signals
from wireless gateway nodes. The simulation results show that the scheme
provides substantial performance improvement with minimal cost overhead.

5.2 Basic idea

The performance of TCP degrades because it (mis)interprets losses over wire-
less links as signs of congestion in the network. If TCP can distinguish a
packet loss due to congestion from that due to noise on the channel, then
algorithms can be developed to deal with the losses in an efficient fash-
ion. In this thesis, we make the assumption that losses in the wired net-
work are congestion-related, while those in the wireless network are noise-
related. These are the same assumptions made by almost every researcher
studying this problem, and follow directly from the error characteristics of
these networks. They can be confirmed by studying losses on these networks
[Jac88, YBY4].

The problem now reduces to informing TCP whether the loss was in the
wireless network or in the wired network, and to developing good heuristics
to deal with the two situations. We can do this by modifying the base station
(the node that has both wireless and wired interfaces).

One way to decrease the confusion between congestion losses and noise-
related losses is to reduce noise-related losses. Several researchers [NED94,
BBKT96] have suggested using link level retransmissions to achieve this. We
agree with this suggestion because it isolates TCP to some extent, from the
erratic behavior of the wireless link, and reduces the need for TCP retrans-
missions which are costly. But using only link -level retransmissions may
interfere with TCP’s end-to-end retransmissions [DCY93]. Our proposal re-
duces this conflict by the exchange of additional control information.
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5.3 (General Framework

There are four components in any scheme based on the ideas discussed above.
They are:

e What control information should be generated.
e The protocol to convey this information.

e When (and how frequently) should this information be generated.
e TCP heuristics to handle the information it receives.

Since, every control information represents an overhead in the network, it
is crucial to minimize the frequency and total number of such control packets
generated. :

In the next section, we describe a scheme based on this framework and
present simulation results. In subsequent sections, we refine and extend this
scheme.

5.4 Simple ICMP scheme

5.4.1 Description of the scheme

In our scheme we are assuming that the wireless link is the last hop in the
network path. In real life, most often the wireless link is indeed the last hop
in the Internet. The most common scenario is a laptop connected to the
Internet through a radio link.

For the purpose of discussion we assume that packets flow from a host on
a wired network to a wireless host (host attached via a wireless link to the
wired network).

We explain this scheme as a set of decisions we took corresponding to the
four components of the general framework mentioned in the previous section.

> In TCP/IP network, ICMP messages have traditionally been used to carry

control information. We propose to augment this protocol to carry control
information as an additional type of message.
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> Control information should allow TCP to identify the segment that was lost
due to noise. For this, it should contain sufficient information to identify both
the segment and the TCP connection to which it belongs. An ICMP error
message contains just this information. As per the specification of ICMP
[Pos81a], an ICMP error message contains an initial portion (the IP header
and first 8 bytes of the data portion) of the IP packet that triggered it. For
a TCP segment, these 8 bytes following the IP header will be from the TCP
header. This portion of TCP header contains the source and destination
port numbers and the sequence number. Thus, we achieve our objective of
conveying segment sequence number and connection information by making
the base station generate an ICMP error message.

We introduce a new type of ICMP error message for this purpose. We
refer to this type of ICMP message as ICMP-DEFER message.

> The policy for generation of control information should satisfy the following
three requirements :

1. An ICMP message should allow TCP to distinguish between a packet
loss on a wireless link and a packet loss on the wired network.

2. An ICMP message should help TCP in avoiding conflict between local
link layer retransmissions and end-to-end retransmissions.

3. Since, every ICMP message represents an overhead in the network, the
total number of such ICMP messages generated should be minimized.
This is a constraint on the policy.

The above three requirements may be mutually conflicting. For example,
in order to satisfy the second requirement, the base station must generate
an ICMP message fast enough to prevent TCP level retransmissions while
link layer transmissions are going on. The first requirement dictates that
base station should generate control information only when it has exhausted
all its local retransmission attempts, so that TCP is sure that loss was on
the wireless link. The third requirement means minimum number of control
packets should be generated, but again too few packets may mean that TCP
does not have complete information. Therefore, it is important to find a
balance between these three requirements.

In our scheme, the base station generates an ICMP-DEFER message
when the first local attempt at transmitting the packet has been unsuccess-
ful. This policy cnsures that within one round trip time, TCP will receive
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either an acknowledgment for the packet or an ICMP message. This mini-

mizes the possibility of conflict between local link layer retransmissions and
end-to-end retransmissions.

> An ICMP-DEFER message conveys the following information to the source
TCP :

e The segment indicated in the message has reached the base station.

e The first attempt at transmitting the segment at the base station was
unsuccessful. Since losses on wireless links occur in bursts, it is likely
that all subsequent local retransmission attempts at the base station
will also be unsuccessful. Hence, if TCP does not receive an acknowl-
edgment, then, most probably, this segment was lost on the wireless
link and the loss is unrelated to congestion. '

TCP performs following actions on the receipt of an ICMP-DEFER mes-
sage :

e If retransmit timer is set for the segment indicated in the ICMP mes-

sage, it postpones its expiry by the current estimate of retransmission
timeout (RTO) value. This is done to avoid any conflict between the lo-
cal retransmissions at the base station and end-to-end retransmissions.
Since, errors on a wireless link generally occur in burst, there is a high
chance that a few subsequent local retransmission attempts at the base
station will also fail. Hence, acknowledgment for this segment may get
delayed. Therefore, it becomes important to postpone the retransmit
timer.
We assume that one RTO time is sufficient for the base station to
exhaust all local retransmission attempts for a packet. This assumption
is valid because wireless links typically have bandwidth of 1 Mbps,
making transmission time over wireless links very small as compared
to the value of RTO (minimum value is 1 second [WS96]).

e It stores the information that an ICMP-DEFER message was received
for this segment.

If a segment needs to be retransmitted (either because of retransmit time-
out or because of receipt of three duplicate acknowledgments), TCP checks
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if it has received an ICMP-DEFER message for this segment. If it hasn’t
received an ICMP-DEFER message, it follows normal TCP algorithm. If
it has received ICMP-DEFER message, it performs one of the following ac-

tions depending on the reason for retransmitting the segment (retransmission
timeout or fast retransmission) :

e Retransmission Timeout
It simply retransmits the segment without changing the congestion
window, cwnd, or slow start threshold size, ssthresh. It also discards the

information that ICMP-DEFER message was received for the earlier
transmission of this segment.

e Fast Retransmission
It retransmits the segment without changing the ssthresh and discards
the information that ICMP-DEFER, message was received for the ear-
lier transmission of this segment. It then follows the normal fast recov-
ery algorithm viz. setting the cwnd to ssthresh + 3 * MSS, and incre-
menting cwnd by one MSS for every subsequent duplicate acknowledg-
ment received and transmitting a new segment if allowed by the current
window size (minimum of cwnd and receiver’s advertised window size).

When it comes out of fast recovery, it resets cwnd back to its value
before fast retransmission and fast recovery.
5.4.2 Simulation results

Simulation Setup

During our simulations, we have used the following network topology.

L2

L1 BASE
TCP SINK

Figure 5.1: Network configuration used in Simulations
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The wired link in the topology is representative of the entire network
path over the wired network. The propagation delay of this link represents
the sum of propagation delay, queuing delay and the processing time of each
node in the entire path over the wired network. We assume that the wired
link is perfectly reliable. We further assume that the base station does not
drop packets because of insufficient buffers.

We simulated wireless link by a 2-state Markov model with the stay pe-
riod in each state characterized by exponential distribution [BBKT96]. The

propagation delay of the wireless link is representatwe of the processing time
at the nodes as well.

Parameters

The following is the list of parameters that are of interest in the simulation.
o Wired link :

— Bandwidth
— Propagation delay
— Loss probability

o Wireless link :

— Bandwidth
— Propagation delay
— Error characteristics [BBKT96)

x GOOD state
- mean value of exponential distribution
- loss probability

x BAD state .
- mean value of exponential distribution
- loss probability

e Packet size
e Size of file transfer

e Receiver’s advertised window size
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We vary receiver’s advertised window size, propagation delay of the wired
link, and error characteristics of the wireless link in our simulations. The
remaining parameters are kept fixed. '

Varying the receiver’s advertised window size allow us to vary the maxi-
mum amount of data that may be in-transit.

Varying the propagation delay of the wired link allow us to simulate
various kinds of networks (LAN, WAN, etc.). A WAN can be simulated by
keeping the propagation delay value large. A small value simulates a LAN.

Varying the mean value of exponential distribution for GOOD and BAD
states allow us to simulate wireless link of different error characteristics.

The Results

Table 5.1 shows the values of various parameters that we used in the simu-
lation.

The propagation delay is set to 492 milli-seconds to highlight the effects
of the clash between local link layer retransmissions and end-to-end retrans-
missions.

The minimum value of RTO is 1 second. We try to maintain the actual
round trip time (RTT) (twice the propagation delay of wired link and the
propagation delay of the wireless link) very close to the minimum RTO (1
second) by keeping propagation delay at 492 milli-seconds. This makes TCP
less tolerant to Aluctuations in RTT because of local link layer retransmissions
‘at the base station.

We are interested in the time taken for completion of the transfer. This
gives us the TCP-level throughput:

The simulation results are summarized in the bar graph shown in fig-
ure 5.2. It shows the time taken for completion of the simulation run for
various schemes for different values of receiver’s advertised window size. The
schemes being compared are : Unmodified TCP for the case when wireless
link is perfectly reliable (No loss case), Unmodified TCP using normal wire-
less link assumptions (Unmodified TCP), and TCP enhanced based on our
scheme (Simple ICMP scheme). The graph also shows the percentage per-
formance improvement of Simple [CMP scheme over the Unmodified TCP.

In the figure, mean_bad_state refers to the mean value of exponential
distribution for BAD state for the model of wireless link.

From the graph we can see that there is degradation in performance of
Unmodified TCP and Simple I CMP scheme over the No loss case. Further,
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Parameters

Value
Wired link
- Bandwidth 8 Mbps

- Propagation delay
- Loss probability

Wireless link
- Bandwidth
- Propagation delay
- Error characteristics [BBKT96] -
* GOOD state
- mean value of exponential distribution
- loss probability
x BAD state
- mean value of exponential distribution
- loss probability

Packet size
Size of file transfer

Receiver’s advertised

window size

492 milli-seconds
0 (perfectly reliable)

1 Mbps

1 milli-seconds

5 seconds

0 (perfectly reliable)

0.1 second
1

1 KB

10 MB

16 to 64 KB

Table 5.1: Table showing parameter values used in the simulation (figure 5.2)
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Figure 5.2: Propagation delay of wired link kept at 492 milli-seconds and
mean_bad_state kept at 0.1 second

we see that the degradation in performance of Unmodified TCP increases
rapidly with the increase in receiver’s advertised window size. This is because
it treats losses on the wireless link as signs of congestion and reduces its cwnd,
and ssthresh. The effect of this reduction becomes more prominent at larger
value of receiver’s advertised window size. We see that the performance of
Simple ICMP scheme does not suffer much degradation. The degradation
results from having to retransmit the segments lost on the wireless link. As
the figure shows, the percentage improvement of Simple ICMP scheme over
Unmodified TCP reaches 24.39 %.

5.4.3 Discussion

In Simple ICMP scheme, TCP reacts to a packet loss on a wireless link by
retransmitting the packet while maintaining the same sending rate (i.e. it
does not reduce its cwnd and ssthresh). This results in substantial perfor-
mance improvement. But, it also introduces a problem. For every packet lost
on the wireles link, TCP now recovers it by suffering either a fast retransmit
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or a retransmission timeout. Since, fast retransmit and fast recovery algo-
rithms were designed to recover from single packet-loss, in case when multiple
packets in a transmission window are lost on the wireless link, TCP recovers
them by suffering retransmission timeouts as many times as the number of
losses. This is in contrast to unmodified TCP which recovers from multiple

consecutive packet losses in a window by suffering at most one retransmission
timeout.

Illustration of the problem in Simple ICMP scheme

As an illustration of the problem, consider the graph shown in figure 5.3.
The graph shows the reaction of TCP, based on Simple ICMP scheme, to
multiple consecutive packet losses in a window. For this example, the re-
ceiver’s advertised window size was kept at 4 KB and propagation delay of
wired link was kept at 170 milli-seconds (the remaining parameters’ values
being the same as mentioned in table 5.1).
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Figure 5.3: Graph illustrating problem with ICMP scheme

As indicated in the figure, two consecutive packets are lost on the wireless
link. The two “*” marks on the graph indicate the time at which ICMP-
DEFER messages were received by TCP, corresponding to these packets.
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The remaining two packets successfully reach the destination and results in
two closely spaced acknowledgments (at 97211 and 97221 milli-seconds). At
98003 milli-seconds, TCP suffers a retransmission timeout and retransmits
the first lost packet. Since, it had received an ICMP-DEFER. message for this
packet, it simply resends the packet without reducing its cwnd and ssthresh.
This packet successfully reaches the destination. The acknowledgment for
this packet is received by source TCP at 98354 milli-seconds. This acknowl-
edgment allows source TCP to transmit a new packet. When the destination
receives this new packet, it generates a duplicate acknowledgment indicating
the next sequence number expected. Since no more packets are traveling in
the network, no more acknowledgments are received. TCP finally times out
at 99354 milli-seconds and retransmits the second packet lost on the wireless
link. Since, it had received an ICMP-DEFER message for this packet as well,
it refrains from reducing its cwnd and ssthresh.

Thus, in this case, TCP recovered from two packet losses by suffering
two retransmit timeouts. It took 3054 milli-seconds (from 96651 to 99705
milli-seconds) to recover from these two losses.

The graph shown in figure 5.4, illustrates the reaction of unmodified TCP
under similar situation. As indicated in the figure, two consecutive packets
are lost on the wireless link. The remaining two packets manage to reach
the destination and results in two closely spaced acknowledgments (at 97211
" and 97221 milli-seconds). At 97703 milli-seconds, TCP suffers a retransmis-
sion timeout and retransmits the first lost packet. TCP reduces its cwnd
and ssthresh as per the standard algorithm (figure’5.5). It also sets the next
packet to be transmitted to the one immediately following this packet. When
the destination receives this packet, it generates an acknowledgment indicat-
ing the next packet expected (next packet expected is the second packet lost
on the wireless link). This acknowledgment reaches the source TCP at 98054
milli-seconds. On receiving this acknowledgment, source TCP increases its
cwnd by 1 MSS and sends out two packets. The first of these two packets
fills the hole at destination. Destination sends an acknowledgment, acknowl-
edging all the packets sent till now. This acknowledgment is received by the
source TCP at 98405 milli-seconds.

Note that in this case, TCP recovered from 2 packet losses by suffering a
single retransmit timeout. It took 1754 milli-seconds (between 96651 milli-
seconds and 98405 milli-seconds) to recover from the two packet losses. This
is almost half of the time required to recover in Simple ICMP scheme.

In Simple ICMP scheme, this large delay in recovering from multiple
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packet losses, detracts the advantage gained by not reducing the cwnd and
ssthresh. Note that this situation is not specific to a particular value of re-
ceiver’s advertised window size. With larger window size as well, similar
pattern was observed (though, the frequency of such patterns does depend
on the value of the receiver’s advertised window size). With a larger window
size, 1t is possible that a packet loss is recovered by fast retransmit algorithm.
But, since fast retransmit and fast recovery algorithms were designed to re-
cover from a single packet loss, if we have multiple packet losses in the same
window, we end up with a similar scenario. Figure 5.6 illustrates one such
situation with receiver’s advertised window size of 96 KB.

The performance improvement gained by Simple ICMP scheme then de-
pends on how many times such multiple packet losses occur in a transfer.
Simulation with receiver’s advertised window size of 4 KB showed that the
use of ICMP messages, in fact, resulted in degraded performance! While
Unmodified TCP took 929824 milli-seconds to complete the transfer, Simple
ICMP scheme took 945579 milli-seconds to complete the transfer. A closer
look reveals that, during the course of transfer, Unmodified TCP suffered 74
packet losses on the wireless link. It recovered them with 26 fast retransmits
and 19 retransmit timeouts. On the other hand, Simple ICMP scheme suf-
fered 67 packet losses on the wireless link during the transfer. It recovered
them with 23 Fast Retransmits and a staggering 42 retransmit timeouts.

5.5 Refined ICMP scheme

In this section, we identify the problem with simple ICMP scheme and pro-
pose modifications to the scheme for better performance.

5.5.1 Problem with Simple ICMP scheme

The main problem with Simple ICMP scheme is that the loss detection la-
tency is very high. With the information contained in an ICMP-DEFER
message, source TCP can at most avoid a conflict between local and end-to-
end retransmissions. When retransmitting the segment, it can refrain from
reducing cwnd and ssthresh. But, it has to still depend on a retransmission
timeout or receipt of three or more duplicate acknowledgments to determine
that a segment has been lost. This is because of our policy of generating
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ICMP-DEFER message immediately after the first unsuccessful local trans-
mission attempt at the base station.

5.5.2 Modifications to the original scheme

In order to overcome the above mentioned problem, we modify our policy
that deals with when the base station should generate an ICMP message
and the policy that deals with how the source TCP should respond to control
information from the network.

We make the base station generate an ICMP error message when all the
local retransmission attempts at the base station have been exhausted. We
refer to this type of ICMP message as ICMP-RETRANSMIT message.

The TCP’s response to control information is summarized in the following
steps :

1. When the TCP receives an ICMP-DEFER message, it checks if the
retransmission timer is set for the segment indicated. If so, it postpones
the expiry of retransmission timer by the current estimate of RT'O. This
step is same as the one we followed in Simple ICMP scheme. But in this
scheme, the TCP does not store the information that an ICMP-DEFER
message was received.

o

When TCP receives an ICMP-RETRANSMIT message, it retransmits
the segment indicated. It also stores the information that the ICMP-
RETRANSMIT message was received for this segment.

3. An ICMP-RETRANSMIT message indicates that one segment was lost
from the chain of segments sent by the source TCP. When the desti-
nation receives subsequent packets, it generates duplicate acknowledg-
ments. When the source TCP receives the first of such duplicate ac-
knowledgments, it switches to fast recovery algorithm. It discards the
information that it received an ICMP-RETRANSMIT message for this
segment. For every duplicate acknowledgment received, it increments
‘the cwnd by one MSS and sends a new segment if allowed by current
window size (minimum of cund and receiver’s advertised window size).
When it finally receives a new acknowledgment, it comes out of the fast
recovery algorithm and resets cwnd to the value prior to its entering

the fast recovery phase.
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4. When source TCP suffers a retransmit timeout, it follows normal TCP
algorithms.

5. 'When source TCP receives duplicate acknowledgments for a segment
for which it has not received ICMP-RETRANSMIT message earlier, it
follows normal TCP algorithms.

Note that the modified reaction to ICMP-DEFER, message enhances the
scheme to work on networks with a wireless link anywhere in the network
path (and not necessarily the last hop). This is because, an ICMP-DEFER
message only indicates that a segment has reached the base station. By stor-
ing this information (in our Simple ICMP scheme), we made the implicit
assumption that if the source TCP does not receive an acknowledgment for
this segment, then this segment was definitely lost on the wireless link and
that this loss is unrelated to congestion. This assumption will be true only
when wireless link is the last hop in the network path. Thus, by not stor-
ing the information that an ICMP-DEFER message was received, we avoid
making such an assumption.

5.5.3 Simulation results

The following graphs summarize the simulation results for different values
of propagation delay of the wired link and for different error characteris-
tics of the wireless link (the remaining parameters’ value being the same as
mentioned in table 5.1).

Each of the bar charts below, show the time taken for completion against
the receiver’s advertised window size for the following schemes : No Loss
Case, Unmodified TCP, Simple ICMP scheme, and TCP based on the refined
ICMP scheme (Refined ICMP scheme).

The simulation results shown in figure 5.7 were generated using the pa-
rameters’ value given in table 5.2. The figure also shows the percentage
improvement in performance of Simple ICMP scheme and Refined ICMP
scheme over Unmodified TCP case.

We see that the performance of Refined ICMP scheme is better than
that of Simple ICMP scheme for all values of receiver’s advertised window
size. Its performance is also very close to that of the ideal No loss case. As
the figure shows, the percentage improvement of Refined ICMP scheme over
Unmodified TCP reaches 28.96 %.
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Parameters Value

Propagation delay of wired link 492 milli-seconds
Error characteristics of wireless link
- GOOD state
- mean value of exponential distribution 5 seconds
- loss probability 0
- BAD state
- mean value of exponential distribution 0.1 second
- loss probability 1

Table 5.2: Table showing parameter values used in the simulation (figure 5.7)

The remaining simulation results are summarized in figures 5.8 to 5.16.
Table 5.3 gives the range of parameters’ value used in simulations. The
figures also show the percentage degradation in performance of each scheme
with respect to the ideal No Loss Case. This performance parameter tells
us how far is the performance of each of these schemes, from the ideal No
Loss Case. It also conveys an estimate of how the schemes fair with respect
to each other. We also mention the percentage improvement of the proposed
schemes over the Unmodified TCP case, in a table along with every bar chart.

We ‘see from the simulation results (figure 5.8 to 5.16) that the perfor-
mance of Refined ICMP scheme is better than that of Simple ICMP scheme
and Unmodified TCP, for all values of receiver’s advertised window size. The
performance of Refined ICMP scheme is also close to the ideal No loss case
(the percentage degradation being in the range from 2.45% to 24.88%). The
higher percentage degradation in performance of Refined ICMP scheme occur
when the value of mean_bad_state is large. This is because at higher val-
ues of mean_bad_state the burst periods are larger, resulting in more packet
losses. The degradation results from having to retransmit these lost packets.
However, it is to be noted that, in each of the case, the value of percentage
degradation is very much better than the corresponding value obtained for
Unmodified TCP and Simple I CMP scheme. As the figures show, the percent-
age improvement in performance of Refined ICMP scheme over Unmodified
TCP case reaches 29.77 %.

Note that when mean_bad_state value is 0.1 second, the percentage im-

42



800000 T T T T
— First Bar - No loss case

. - 7.40%
3 700000 - 10 38% Second Bar - Unmodified TCP -
2 1 Third Bar - Simple ICMP scheme
g 000 - Fourth Bar - Refined ICMP scheme |
= 600000
S X.xx % - % improvement over
§ ‘Un-modified TCP’
8 500000 ]
[=9
g
8 400000 i .
= 6.25%
E 300000 - ok
% 17.74% ]
£ 200000 i 24.39%
= 28.96%

100000 ' : ' .

16 32 43 64

Receiver’s advertised wnd size (in KB)

Figure 5.7: Propagation delay of wired link kept at 492 milli-seconds and

mean_bad_state kept at 0.1 second

Parameters

Value

Propagation delay of wired link

Error characteristics of wireless link

- GOOD state
- mean value of exponential distribution
- loss probability

- BAD state
- mean value of exponential distribution

- loss probability

50 to 100 milli-seconds

5 seconds

0

0.1 to 0.5 second
1

Table 5.3: Table showing parameter values used in the simulation (figure 5.8

to 5.16)
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provement of Refined ICMP scheme over Unmodified TCP case is not much.
But, a look at the corresponding value of percentage degradation shows that
the performance of Refined ICMP scheme in such cases, is already very close
to the ideal No loss case. For eg., table 5.4 shows that the percentage im-
provement of Refined ICMP scheme is in the range 3.78 % to 8.04 %. The
corresponding value of preformance degradation (figure 5.8) is very low and
is in the range 2.45 % to 6.35 %.

The performance of Simple ICMP schemeis, many a times, worse than the
performance of Unmodified TCP. This happens especially at higher values of
mean_bad_state and when receiver’s advertised window size is 4 KB. At these
values, Simple ICMP scheme recovers maximum number of losses through
retransmit timeout, which involves considerable waiting time.
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Figure 5.8: Propagation delay of wired link kept at 100 milli-seconds and
mean_bad_state kept at 0.1 second

Receiver’s advt. | % Improvement over Un-modified TCP case
window size Simple ICMP scheme | Refined ICMP scheme
4 -1.14 % 3.718 %
8 2.83 % 6.34 %
16 3.84 % 7.16 %
32 1.34 % 8.04 %
48 -0.65 % 5.35 %

Table 5.4: Table showing percentage improvement of the proposed schemes
over Unmodified TCP case (figure 5.8)
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Figure 5.9: Propagation delay of wired link kept at 100 milli-seconds and
mean_bad_state kept at 0.3 second

Receiver’s advt. | % Improvement over Un-modified TCP case
window size Simple ICMP scheme | Refined ICMP scheme
4 -24.73 % 8.46 %
8 -21.62 % 18.18 %
16 -14.66 % 23.04 %
32 - -2.18 % 26.18 %
48 -3.19 % 25.2 %

Table 5.5: Table showing percentage improvement of the proposed schemes
over Unmodified TCP case (figure 5.9)
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Figure 5.10: Propagation delay of wired link kept at 100 milli-seconds and

mean_bad_state kept at 0.5 second

Receiver’s advt. | % Improvement over Un-modified TCP case
window size Simple ICMP scheme | Refined ICMP scheme
4 -26.86 % 15.22 %
8 -17.53 % 23.68 %
16 -41.93 % 29.77 %
32 -63.52 % 24.71 %
48 -66.36 % 23.11 %

Table 5.6: Table showing percentage improvement of the proposed schemes
over Unmodified TCP case (figure 5.10)
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Figure 5.11: Propagation delay of wired link kept at 75 milli-seconds and
mean_bad_state kept at 0.1 second

Receiver’s advt. | % Improvement over Un-modified TCP case
window size Simple ICMP scheme | Refined ICMP scheme
4 -3.26 % 3.81 %
8 3.34 % : 8.00 %
16 2.18 % 8.50 %
32 1.83 % 6.61 % '
48 117 % 5.06 %

Table 5.7: Table showing percentage improvement of the proposed schemes
over Unmodified TCP case (figure 5.11)
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Figure 5.12: Propagation delay of wired link kept at 75 milli-seconds and
mean_bad_state kept at 0.3 second

Receiver’s advt. | % Improvement over Un-modified TCP case
window size Simple ICMP scheme | Refined ICMP scheme
4 -22.07 % 10.82 %
8 -18.10 % 19.77 %
16 -9.71 % 24.35 %
32 -13.97 % 19.35 %
48 ©-1181 % 2131 %

Table 5.8: Table showing percentage improvement of the proposed schemes
over Unmodified TCP case (figure 5.12)
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Figure 5.13: Propagation delay of wired link kept at 75 milli-seconds and

mean_bad_state kept at 0.5 second

Receiver’s advt. | % Improvement over Un-modified TCP case
window size Simple [CMP scheme | Refined ICMP scheme
4 -31.67 % 14.41 %
8 -44.32 % 25.87 %
16 . -61.42 % 26.36 %
32 -37.65 % 25.33 %
48 -39.29 % 23.79 %

Table 5.9: Table showing percentage improvement of the proposed schemes
over Unmodified TCP case (figure 5.13)
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Figure 5.14: Propagation delay of wired link kept at 50 milli-seconds and
mean_bad_state kept at 0.1 second

Receiver’s advt. | % Improvement over Un-modified TCP case
window size Simple ICMP scheme | Refined ICMP scheme
4 -1.63 % 443 %
8 1.46 % 5.01 %
16 0.64 % 6.52 %
32 -0.29 % ' 5.42 %
48 -2.50 % 4.20 %

Table 5.10: Table showing percentage improvement of the proposed schemes

over Unmodified TCP case (figurc 5.14)
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Figure 5.15: Propagation delay of wired link kept at 50 milli-seconds and
mean_bad_state kept at 0.3 second

Receiver’s advt. | % Improvement over Un-modified TCP case
window size Simple ICMP scheme | Refined ICMP scheme
4 -24.88 % 11.25 %
8 -16.03 % 17.78 %
16 -16.08 % 20.20 %
32 -19.16 % 16.86 %
18 -17.88 % 16.66 %

Table 5.11: Table showing percentage improvement of the proposed schemes

over Unmodified TCP case (figure 5.15)
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Figure 5.16: Propagation delay of wired link kept at 50 milli-seconds and
mean_bad_state kept at 0.5 second

Receiver’s advt. | % Improvement over Un-modified TCP case
window size Simple ICMP scheme | Refined ICMP scheme
4 -37.00 % 14.15 %
8 -55.45 % 20.95 %
16 -12.96 % 23.47 %
32 -5043 % 19.26 %
48 -18.67 % 18.33 %

Table 5.12: Table showing percentage improvement of the proposed schemes
over Unmodified TCP case (figure 5.16)
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5.5.4 Advantages of Refined ICMP scheme

Below, we summarize the advantages of our scheme.

Enhanced TCP, based on our scheme, performs very well over network
palhs involving wireless link, significantly improving the performance
of TCP. Also, its performance over pure wired network and its ability
to communicate with other TCP compliant hosts on the network is not
affected because of enhancement.

Overhead at the base station is minimal. The overhead of ICMP mes-
sages on the network is also very low. During simulation runs involving
a 10MB file transfer (10,000 packets transfer), 19 to 552 ICMP mes-
sages were generated (for different values of propagation delay and for
different values of receiver’s advertised window size). This is 0.19 % to
5.52 % of the total packets sent.

ICMP messages do not create any problem even if the source is not run-
ning enhanced TCP based on our scheme. These messages are silently
discarded.

Our scheme preserves the semantics of TCP, unlike the ‘Split connec-
tion’ approach.

In our scheme, generation of ICMP messages is triggered by the link
layer for the wireléss link. So, in the case when a wireless host (host
connected via wireless link to the wired network infrastructure) is acting
as the source of packets, ICMP messages will be triggered by the link
layer of the wireless host. This policy makes our scheme symmetric. It
does not require any additional handling when a wireless host acts as
the source.

The scheme does not make any assumption about the location of the
wireless link in the network path. We believe that there will be no
change in performance if a wireless link is an intermediate link, but we
have not studied it in detail.
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Chapter 6

Conclusion and future work

In this chapter, we briefly summarize the contributions of this thesis work
and discuss possible future extensions.

6.1 Summary

In this thesis work, we have proposed an ICMP based scheme to improve
the performance of TCP over network paths involving wireless links. In
our scheme, we have proposed enhancements to TCP to respond to certain
control information from the network. This enables TCP to differentiate be-
tween losses on a wireless link and those on the wired network, resulting in
significant improvement in performance. In our scheme, the control informa-
tion is generated by the base station, and is carried to the source using new
message-types in ICMP. The overhead of our scheme is also minimal.

As part of this thesis work, we have developed a network simulator for
evaluating the performance of the proposed scheme in a wireless computing
environment. The simulation results show that the proposed Refined ICMP
schemne achieves upto about 30 % improvement in performance (measured in
terms of the time take for completion of simulated data transfer) over the
Unmodified TCP case. The results also show that the scheme is significantly
more robust in face of burst errors on the wireless link and its performance
gain relative to the Unmodified TCP improves with the increase in frequency
of burst errors on the wireless link. It is also able to maintain its performance
close to the ideal No loss case.
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6.2

Future Work

6.2.1 Possible extensions to the proposed scheme

Following extensions may be made to the proposed scheme.

In this thesis, we have concentrated on studying the behavior of the
proposed scheme on a single, unilateral connection. Simulations of
multiple two-way connections would provide more insights and would
help in refining the proposed scheme.

It would be interesting to study and optimize the performance of the
proposed scheme over network paths involving multiple wireless links.

A simulated environment represents a controlled environment, lacking
randomness inherent in the real networks. It would be interesting to
implement the proposed scheme on a wireless testbed and study its
behavior and performance.

Another possible extension to this work would be to extend the scheme
for mobile computing environment. Since not all base stations in the
world can be expected to use the proposed scheme, a challenging task
would be to remove the dependence of the scheme on the control infor-
mation from the network. The source TCP should try to infer all the
information that is presently conveyed by the control information.

6.2.2 Possible extensions to the network simulator

Following extensions may be made to the network simulator.

The simulator is an initial implementation. Its capabilities should be
improved in future. ‘

An improved user interface would definitely enhance the ease of use of
the simulator.

Another possible extension would be to introduce components in the
simulator that simplifies the task of analysis of simulator output. A
simulation run of 10 MB file transfer typically produces an event trace
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file of 150 KB size and other huge trace files of important parameters.
Going through this information is a non-trivial task. It would be helpful

if some filter may be added to the simulator that allows a user to quickly
identify problem areas-and concentrate on that.
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Appendix A

IEEE 802.11 MAC Protocol

Study Group 802.11 was formed under IEEE project 802 to recommend an
international standard for WLAN. The scope of the study group is to develop
MAC layer and physical standards for wireless connectivity of fixed portable,
and mobile stations within a local area. This appendix present the design
objectives and the working of the recommended MAC protocol. The details
presented in this appendix are taken from [CG96].

A.1 Design Objectives

An important design requirement for WLANs is that mobile/wireless hosts
be able to communicate with other mobile/wireless hosts and wired hosts on
other IEEE 802 LANSs or networks in a transparent manner :

e A WLAN should appear as just another 802.x LAN to logical link layer
control (LLC) and above layers.

e The response time should not be so large that the productivity of end-
users is compromised.

The physical layers for which standards have been developed are di-
rect sequence spread spectrum (DSSS), frequency-hopping spread spectrum
(FHSS), and diffuse infrared.
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A.2 TEEE 802.11 MAC Protocol

The 802.11 MAC layer protocol provides asynchronous, time bounded, and
contention free access on a variety of physical layers. These functions are pro-
vided independent of the characteristics of underlying physical layers and/or
data rates. The basic access method in 802.11 MAC protocol is the dis-
tributed coordination function (DCF) which is best described as the carrier
sense multiple access with collision avoidance (CSMA/CA) protocol.

When using DCF, a station, before initiating a transmission senses the
state of the channel to determine if another station is transmitting. The
station proceeds with its transmission if the medium is determined to be
idle for an interval that exceeds the distributed interframes space (DIFS).
If the medium is busy, the station defers until after a DIFS is detected and
then generates a random backoff period for an additional defer interval before
transmitting. This minimizes collisions during contention between multiple
stations. The backoff period is used to initialize the backoff timer. The
backof timer is decremented only when the medium is idle; it is frozen when
the medium is busy. After a busy period, the decrementing of the backoff
timer resumes only after the medium has been free longer than DIFS. A
station initiates a transmission when the backoft timer reaches zero.

Since a transmitter cannot determine if the data frame was successfully
received by listening to its own transmission, immediate positive acknowl-
edgments are employed to determine the successful reception of each data
frame. This is accomplished by the receiver initiating the transmission of
an acknowledgment frame after a time interval, the short interframe space
(SIFS), that is less than the DIFS, immediately following the reception of
the data frame. The acknowledgment is transmitted without the receiver
sensing the state of the channel. In case an acknowledgment is not received,
the data frame is presumed lost.

Figure A.1 summarizes the basic access method.
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Figure A.1: Basic access method
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Appendix B

User’s Manual

B.1 Overview

The simulator takes as input a description of network topology and its com-
ponents. It produces as output, trace of important attributes and a trace of
events that took place during the simulation.

B.2 Simulator Input

The simulated network is modeled as a graph with nodes (vertices) and
communication links (links) as its components. The input to the simulator
is a description of these components. The input also describes some network
wide attributes.

The simulator reads this input from a file. For the sake of simplicity. the
name of this file has been fixed to datafile.dat). This file contains a list
of network components along with the value of their attributes. The general

structure of the file is as follows :

# commentl

name_of_componentl

{

name_of_attributel = valuel
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name_of_attribute2 = value?

# comment?2
name_of _component2
{

name_of_attribute3 = value3

1}

name_of_attribute4 value4d

Note that each <attribute, value> pair must be specified on a separate
line.

Comments may be placed anywhere in the file. A comment must be
preceded by a #.

B.3 Network components supported

This scction describes the different network components supported by the
simulator.

62



B.3.1 Component simulator

It specifies the value of network wide parameters.

Parameters :
Following parameters must be specified :

e system_simulation_time

It specifies the maximum value of simulated clock time (in milli-seconds).

Simulation is continued till the value of simulated clock time is less than
this value.

e print_interval

The simulator supports the concept of periodic trace generation. print_interval
specifies its frequency (in milli-seconds).

The periodic trace contains the state information of each of the node
present in this simulator. This trace is useful for detailed debugging
purposes. It is generated as part of the event trace.

e read from_trace
This attribute is useful when one and only one wireless link is present
in the simulated network topology.

If read_from_trace is set to 0, the simulator uses a trace file to de-
termine the time at which the wireless link should switch- from GOOD
state to BAD state and vice-versa, during the course of a simulation.
This feature is especially useful when the desired behavior of a wireless
link cannot be produced by a mathematical model.

If read_from_trace is set to 1, the simulator produces a trace of time
at which the wireless link switched from GOOD state to BAD state
and vice-versa, during the course of a simulation.

If read_from_trace isset to 2, a patch in the module defining behavior
of a wireless link gets activated. This patch is useful in dropping spe-
cific packets over a wireless link by forcing it into BAD state at specific
instants of time. The trace so generated records the desired behav-
ior of the wireless link. This trace may then be used in subsequent
simulations for defining the behavior of the wireless link.
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Note that when read from trace is set to 2, the mean value of ex-

ponential distribution characterizing the duration of stay of a wireless
link in BAD state, must be set to 0.

For the sake of simplicity the trace file used for the purpose is fixed to

trace.dat.
Example :

simulator

{
system_simulation_time = 4300000

# The time is specified in msecs.
print_interval = 500

# The time is specified in msecs.
read_from_trace = 1

# Value of 1 or 2 means trace_file will

# be generated. 1, no manipulations dome.

# 2, manipulations are also done.

# 0 means trace_file will be used for

# determining the wireless link

# characteristics.

}

B.3.2 Component wired sourcenode

Attributes :
Following attributes must be specified for this type of node :

e node_id

It specifies an id for this node. There should be a unique id for every
node present in the simulator.

64



dest_id

It specifies id of the destination node to which all the TCP packets will
be sent.

num_of _pkts_to_send
It specifies the number of packets that will be generated by this node.

pkt_size
It specifies the size (of data portion) of each TCP packet (in bytes).

recv_wnd_size

It specifies the value of receiver’s advertised window size (in KB). This
value remains fixed throughout the simulation.

Example :

wired_source_node

{

s |

node_id
This should be numeric & unique.
213

This should be numeric

i}

dest_id

num_of_pkts_to_send = 100
pkt_size = 1024
recv_wnd_size = 16

The value of receiver’s advertised window size.

B.3.3 Component wireless_sourcenode

Attributes :
Same as those of wired-source_node.

65



B.3.4 Component normal_router.node

Attributes :
Following attributes must be specified for this type of node :

e node_id
It specifies a unique id for this node.

e buffer_size

It specifies the size of buffers (in bytes) available with this node. A

packet is dropped if it is not possible to accommodated it in the avail-
able buffers.

e processing._delay

It specifies a constant processing delay (in milli-seconds) for every
packet processed by this node.

Example :

normal_router_node

{
node_id = 212
buffer_size = 512000

# Specified in bytes
processing_delay = 0
# Specified in msecs
b

B.3.5 Component base_station

Attributes :
Same as those of normal_router node.
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B.3.6 Component wired_sink node

Attributes :
Following attribute must be specified for this type of node :

e node._id
It specifies a unique id for this node.

Example :

wired_sink_node

{
node_id = 213

B.3.7 Component wireless_sink node

Attributes :
Same as that of wired_sink node

B.3.8 Component wired link

Attributes :
Following attributes must be spec1ﬁed for this type of link :

e link_id
It specifies a unique id for this link. Every link must have a unique id.

e bandwidth
It specifies the bandwidth of the link (in bits/sec).

e latency
It specifies the propagation delay (latency) of this link (in milli-seconds).

e node_id1l and node.id2
They specify the id of the endpoints of this link.

e loss_probability
It specifies the probability of a packet loss over this link.
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e random_seed
The random number generator for this link makes use of this seed.

Example :

wired_link

{
link_id = 101
bandwidth = 8000000
# ~ This is specified in bits/sec.

latency = 492

# The time is specified in msec.
node_id1l = 211
node_id2 = 212
# The node ids of nodes that this link connect.

loss_probability = 0

random_seed = 2;

B.3.9 Component wireless_link

Attributes :
Following attributes must be specified for this type of link :

e link_id
Same as in wired_link

e bandwidth
Same as in wired_link

e latency
Same as in wired. link

e node_idi and node_id2
Same as in wired.link
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mean_exp-distrib_good_state

It speciﬁe§ the mean value of the exponential distribution characterizing
the duration of stay in GOOD state.

mean_exp-distrib_bad_state

It specifies the mean value of the exponential distribution characterizing
the duration of stay in BAD state.

random_seed
Same as in wired_link

Example :

wireless_link

{
#
#
#

by

link_id = 102
bandwidth = 1000000

This is specified in bits/sec.
latency = 1

The time is specified in msec.
node_idl = 212
node_id2 = 213

The node ids of nodes that this link connect.
mean_exp_distrib_good_state = 5.0

The mean value of exponential distribution

(for GOOD state)

mean_exp_distrib_bad_state = 0.1

The mean value of exponential distribution
(for BAD state)

random_seed = 3;
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B.3.10 Component shared_links

This does not define a new component of the simulated network but is used
to modify the characteristics of a wireless link, defined earlier through the
wireless_link entry. Its attributes are a set of link ids of wireless links.

A wireless link component defined through a wireless_link entry is by
default full duplez. User may change its model to a shared link by mention-
ing its link id as part of the set of attributes of shared_links entry. All
the wireless links referred to in a shared_links entry shares the same band-
width although, each one has a different characteristic as defined by their
corresponding wireless_link entry.

All the wireless links referred in a shared_links entry must have their
corresponding wireless_link entry present earlier in the input file. This is
the only restriction on the ordering of the components in the input file.

More than one shared_links entry may be present in the input file.

Attributes :
A attribute set is a sequence of link_id(s) of existing wireless links.

Example :

shared_links

{
link_id = 102

B.4 Simulator Output

The output of the simulator is a set of trace files containing traces of impor-
tant parameters. A trace file is generated in a two column format and can

be viewed using gnuplot.
The name of the trace of a particular parameter is derived by concatenat-
ing the abbreviated name of that parameter with the id of the node. Thus,

<trace_file_name> = <node_id>-< abbreviated-attribute-name>
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For eg., the trace of congestion window of node whose id is 211 will be
placed in the file 211-congestion. :

The rule for deriving the name of the trace file for wireless link char-
acteristics is slightly different. The name is derived by concatenating the
abbreviated parameter name with the node ids of both the endpoint nodes.

The following is the list of various attributes whose trace is generated by

the simulator. In the brackets, the abbreviated names of these parameters
are mentioned.

Sequence number of the segments sent by the source (seqno)

Acknowledgments received at the source (ackno)

Congestion window (congestion)

Slow start threshold size (threshold)

Wireless link characteristics (wless_state)

Sequence number of packets as they arrive at a router (router_pkt_arrival)

e Amount of unacknowledged data bytes at the source (swnd_size)

The simulator also produces a trace of events that took place during a
simulation run. This event trace is produced on the standard output and
may be redirected to a file.

A sample event trace is given below :

s#%xk*% PKT CORRUPTED skkxkkx (DLL)

(CLOCK : 945)

The following pkt was corrupted due to BAD status of the link
The contents of DLL frame are :-— '

<SRC, DST, SEQ, ACK, Type>:- <212, 213, 15, -1, DATA>

The contents of IP pkt are :-

<SRC ID, DST ID> : <211, 213>

The contents of TCP segment are :—

<SEQ, ACK, Len, Type> : <15360, -1, 1024, DATA>
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*xxxx% PKT CORRUPTED ks (DLL)

(CLOCK : 956)

The following pkt was corrupted due to BAD status of the link
The contents of DLL frame are :-

<SRC, DST, SEQ, ACK, Type>:- <212, 213, 16, -1, DATA>

The contents of IP pkt are :-

<SRC ID, DST ID> : <211, 213>

The contents of TCP segment are :-

<SEQ, ACK, Len, Type> : <15360, -1, 1024, DATA>

skxkkk PKT CORRUPTED *x#xxxx (DLL)

(CLOCK : 967)

The following pkt was corrupted due to BAD status of the link
The contents of DLL frame are :-

<SRC, DST, SEQ, ACK, Type>:- <212, 213, 17, -1, DATA>

The contents of IP pkt are :-

<SRC ID, DST ID> : <211, 213>

The contents of TCP segment are :-

<SEQ, ACK, Len, Type> : <15360, -1, 1024, DATA>

sk*k*x*x PKT CORRUPTED #*kx**xx (DLL)

(CLOCK : 978)

The following pkt was corrupted due to BAD status of the link
The contents of DLL frame are :-

<SRC, DST, SEQ, ACK, Type>:- <212, 213, 18, -1, DATA>

The contents of IP pkt are :-

<SRC ID, DST ID> : <211, 213>

The contents of TCP segment are :-
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<SEQ, ACK, Len, Type> : <15360, -1, 1024, DATA>

*¥kkkk PKT CORRUPTED sk (DLL)

(CLOCK : 989)

The following pkt was corrupted due to BAD status of the link
The contents of DLL frame are :-

<SRC, DST, SEQ, ACK, Type>:- <212, 213, 19, -1, DATA>

The contents of IP pkt are :-

<SRC ID, DST ID> : <211, 213>

The contents of TCP segment are :-

<SEQ, ACK, Len, Type> : <15360, -1, 1024, DATA>

**xkkk PKT CORRUPTED *x**xxx (DLL)

(CLOCK : 1000)

The following pkt was corrupted due to BAD status of the link
The contents of DLL frame are :-

<SRC, DST, SEQ, ACK, Type>:- <212, 213, 20, -1, DATA>

The contents of IP pkt are :-

<SRC ID, DST ID> : <211, 213>

The contents of TCP segment are :-

<SEQ, ACK, Len, Type> : <15360, -1, 1024, DATA>

sxxx%x% PKT CORRUPTED s*sskk*¥x (DLL)

(CLOCK : 1011)

The following pkt was corrupted due to BAD status of the link
The contents of DLL frame are :-—

<SRC, DST, SEQ, ACK, Type>:- <212, 213, 21, -1, DATA>

The contents of IP pkt are :-

<SRC ID, DST ID> : <211, 213>
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The contents of TCP segment are :-
<SEQ, ACK, Len, Type> : <15360, -1, 1024, DATA>

sk*k*x*x PKT CORRUPTED skxkxkk* (DLL)

(CLOCK : 1022)

The following pkt was corrupted due to BAD status of the link
The contents of DLL frame are :-

<SRC, DST, SEQ, ACK, Type>:- <212, 213, 22, -1, DATA>

The contents of IP pkt are :-

<SRC ID, DST ID> : <211, 213>

The contents of TCP segment are :-—

<SEQ, ACK, Lem, Type> : <15360, -1, 1024, DATA>

sxx*** PKT CORRUPTED s*skxxkx (DLL)

(CLOCK : 1033)

The following pkt was corrupted due to BAD status of the link
The contents of DLL frame are :i=

<SRC, DST, SEQ, ACK, Type>:- <212, 213, 23, -1, DATA>

The contents of IP pkt are :- )

<SRC ID, DST ID> : <211, 213>

The contents of TCP segment are :-—

<SEQ, ACK, Len, Type> : <15360, -1, 1024, DATA>

Following frame could not be transmitted after 8 attempts :
The contents of DLL frame are :=

<SRC, DST, SEQ, ACK, Type>:- <212, 213, 23, -1, DATA>

The contents of IP pkt are :=

<SRC ID, DST ID> : <211, 213>

The contents of TCP segment are :=
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<SEQ, ACK, Len, Type> : <15360, -1, 1024, DATA>

TCP_SRC:: Fast Retransmit

TCP_SRC(Node-id - 211):: following TCP segment RETRANSMITTED(CLOCK : 1174
The contents of TCP segment are :-

<SER, ACK, Len, Type> : <15360, -1, 1024, DATA>
Processing SIMULATION_OVER event.

Terminating the simulator.

Normal Termination.
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