
Support For Host Anycast, Priorities AndNaming of Link-Local Addresses in IPv6A Thesis Submittedin Partial Ful�llment of the Requirementsfor the Degree ofMaster of TechnologybySameer Shahto theDEPARTMENT OF COMPUTER SCIENCE & ENGINEERINGINDIAN INSTITUTE OF TECHNOLOGY, KANPURAugust 1997

CERTIFICATEThis is to certify that the work contained in the thesis entitled Support For HostAnycast, Priorities And Naming of Link-Local Addresses In IPv6 by Shah Sameer M. hasbeen carried out under my supervision and that this work has not been submittedelsewhere for a degree. Dr. Dheeraj Sanghi,Assistant Professor,Department of Computer Science & Engineering,Indian Institute of Technology, Kanpur.

AbstractGrowth of the Internet raised issues that were not envisaged during design of itsunderlying protocol. Internet Protocol version 4 is faced with the twin problems oflack of scalability and
exibility. E�orts are ongoing in the design of next generationInternet Protocol (IPv6) that overcomes these drawbacks and provides future safeextensions. The base protocol and various supporting protocols have been standard-ized.Additionally various issues are being worked on and of experimental nature. Wehave studied and implemented three such issues - support for host based anycast ad-dressing, support for priority based tra�c classes, and a name service for link localaddresses. These require modi�cations at various layers of IPv6 stack - device, net-work, transport, BSD API, and application layers. The implementation can be usedfor experimenting with these issues to enable a better understanding of their feasibil-ity and for tuning to individual requirements. These mechanisms were implementedand tested on a Linux 2.1.21 based IPv6 stack.

AcknowledgmentI would like to express sincere gratitude to Dr Dheeraj Sanghi, for providing memuch needed encouragement and motivation throughout the duration of my stay. Ithank him for providing me valuable insight and guidance in various topics, withoutwhich I would still be struggling with my limited vision. I am also indebted tohim for allowing unrestricted use of his PC and o�ce during the �nal semester. Ithank Dr. Rajat Moona for helping me as a co-guide in the last semester and forenthusiastically teaching various systems concepts.Thanks to Novell, Bangalore, for �nancially supporting me during the �rst 20 monthsof my course. I thank people on the various mailing lists ipng, netdev, linux-kernel,for the amount of knowledge they shared and the interesting discussions.Two friends to whom I owe much are Nirav Shah and Biren Gandhi, it is only dueto their friendship and support that I ever thought of making it to IIT. I cherishthe long hours we worked together during our BE days. Jayaram greatly helped meduring initial stages of the thesis and I learnt the basics of kernel hacking from him.I thank the M Tech'95 and M Tech'96 batches for making my stay here a memorableone. I would like to particularly mention Samir Goel, Manu Thambi, K Srinivas andDeepjyoti Kakati for helping me in various ways. I also thank Vihari and Shyam forthe nice company they provided.My Parents, Bhai, Bhabhi and little Vidhi have always been very supportive andpatient with me.

Contents1 Introduction 11.1 Why IPng : 11.2 IPv6 Development : 41.3 Organization of Thesis : 52 Salient Features of IPv6 72.1 Base Protocol : 72.1.1 IPv6 Header : 72.1.2 Addressing Architecture : 82.1.3 Routing : 112.1.4 QoS Support : 122.2 Support Mechanisms : 132.2.1 Transition : 132.2.2 Neighbour Discovery : 142.2.3 Security : 142.2.4 Path MTU discovery : 153 Implementation of Host Anycast Support 163.1 Introduction : 163.2 Background : 193.2.1 TCP : 193.2.2 UDP : 213.2.3 Socket Demultiplexing : 213.3 Proposed Solution : 22i

3.3.1 Source Identi�cation Option : : : : : : : : : : : : : : : : : : : 223.3.2 Requirements for TCP : 243.3.3 Requirements for UDP : 253.3.4 Security Issues : 273.4 Implementation : 283.4.1 Network Layer : 283.4.2 TCP Layer : 303.4.3 UDP Layer : 393.4.4 Raw Socket : 423.4.5 Applications Programming Interface : : : : : : : : : : : : : : : 424 Priority Support 444.1 Introduction : 444.2 Discussion : 464.3 Overview of mechanism : 504.4 Implementation : 544.4.1 Weighted Fair Queueing : 554.4.2 Handling of P-bit : 604.4.3 Random Early Detection : 614.5 Testing and Results : 655 Naming of Link-Local Addresses 695.1 Introduction : 695.2 Proposed Solution : 715.3 Implementation : 775.3.1 Background : 795.3.2 Resolver Implementation : 825.3.3 Daemon Implementation : 835.3.4 Recommendations : 866 Conclusions and Future Work 89A Modi�cations Required 92ii

References 94

iii

List of Figures1 Aggregatable Global Unicast Address : : : : : : : : : : : : : : : : : : 102 TCP State Processing during Initial Handshake : : : : : : : : : : : : 203 Specifying the four tuple : 224 Source Identi�cation Option : 235 Active Connect on Anycast Destination : : : : : : : : : : : : : : : : : 326 Active Connect with Local Anycast : : : : : : : : : : : : : : : : : : : 327 Active Connect on Both Addresses of Anycast Host : : : : : : : : : : 368 Priority De�nition : 509 Forming a Link-Local Address : 6910 Format of Client Request Packet : 7211 Format of Server Advertisement Packet : : : : : : : : : : : : : : : : : 7312 Resolver Algorithm for Linkname mechanism : : : : : : : : : : : : : : 82
iv

Chapter 1IntroductionIn this chapter we motivate the need for a next generation of Internet Protocol (IPv6).We then discuss the ongoing work towards the design and de�nition of IPv6. Finallyan overview of the rest of the thesis is described.1.1 Why IPngRecent advances in networking, coupled with the availability of low-cost computingpower have led to an explosion in size of the Internet. Additionally a wide spectrum ofnew applications, that depend on the support of widely varying service requirements,are now available. The present Internet Protocol [Pos81a] is unable to cope withthe challenges posed by these developments. This led to the requirement for a nextgeneration of IP, which ful�lls present demands and provides future extensibility.A basic problem with the present IP (IPv4) is growth in the number of hosts andnetworks. When IPv4 was designed, the developers could not foresee the kind ofgrowth witnessed today. Surveys towards the beginning of 1996 indicate that thereare over 9 million hosts in 2,40,000 domains, spread over nearly 1,00,000 networks.1

In the early 90s, Internet has been doubling its size every 12 months. This hasresulted in problems with addressing and routing.Theoretically, a 32-bit IPv4 address can address over 4 billion hosts spread over16.7 million networks, but actual address assignment e�ciency is far less [Hui94].The problem is compounded by classi�cation of IP addresses into three classes - A,B and C. Assignment based on an in
exible class structure results in wastage oflarge number of addresses i.e., which are assigned but not used. Projections in 1990indicated that if assignment continued at the then rate, the class B space would beexhausted by March 1994 [BM95]. Hence further assignment from class B addresseswas restricted, and the solution adopted was to assign multiple class C addressesto organizations of moderate size. Revised estimates in 1994 put the exhaustion ofIPv4 space between 2005 and 2011.IPv4 supports a primitive two level hierarchy with each address comprising a host idand network id. The route to each IP network should be available in routing tablesof backbone routers. As there was no aggregation beyond the level of a network,each network occupied a separate routing table entry. With increased assignmentsfrom the class C address space, number of class C networks grew rapidly. This led toexplosion in the size of routing tables of the critical backbone routers, and associatedprocessing overheads during forwarding of packets and updation of tables.One solution to the routing problem was suggested in [FLYV93]. It proposed useof Classless Inter Domain Routing (CIDR) which eliminates concept of classes andtreats the 32-bit address as a continuous bit-maskable number. It allows the ag-gregation of multiple network ids in a single routing table entry. CIDR has largelyin
uenced the IPv6 addressing architecture.In addition to problems with addressing and routing, IPv4 lacks the basic mechan-isms to support the requirements of a variety of new applications. Future growth inthe Internet would be driven by newer markets, such as nomadic computing, net-worked entertainment and network controlled smart devices. A primary requirement2

of many such applications is support for Qualities of Service (QoS), where applic-ations specify a desired QoS in terms of bandwidth, end-to-end delay bound andtolerable loss, and the network either guarantees this or refuses the connection. Theprotocol processing overhead should be minimized. It should support mobility ofone or both nodes in a conversation. It should provide mechanisms to ease the con-�guration of addresses and other network layer information. Security mechanismsare a basic requirement for the growth of Internet commerce.IPv4 Address ExtensionSome solutions have been suggested to extend the life of IPv4, so as to delay transitionto IPng. One proposal suggested careful renumbering of major portions of Internet torecover and minimize unused addresses. But the e�ort involved would be enormous[Gro94].Another proposal was to use a dual network addressing scheme [WC92] using internaladdresses that are unique within a network, and a limited number of global IPaddresses that are shared among internal nodes. The latter are dynamically assignedwhen conversation with external nodes is desired. Problems with this approach arerestrictions on the number of simultaneous external connections, and lack of globallyunique addresses for internal nodes.Another proposal was to use the remaining class A addresses conservatively andsubnet them further for use with CIDR. Additionally, reserved addresses could beused to extend the length of an IP address to more than 32 bits.None of these techniques o�er a permanent solution to the address space crunch andonly postpone exhaustion by few years. Additionally they do not address require-ments of emerging applications such as QoS, mobility, autocon�guration, securityetc. 3

1.2 IPv6 DevelopmentIPv6 [DH95] is a result of the e�orts of several IETF working groups and proposalsin the last few years. A white paper was issued in [BM93] to solicit the perceivedrequirements of an IPng, from various viewpoints. Based on the received feed-back, several criteria were outlined in [PK94] - support for atleast 109 networksand 1012 hosts, architectural simplicity, free availability of speci�cations, topological
exibility, performance at par with commercial high-speed media, robustness,
ex-ible transition, media independence, underlying service based on datagrams, ease ofcon�guration, security, multicast support, extensibility, support for service classes,mobility, etc.IPv6 is designed as an evolutionary step from IPv4. It can be installed as a normalsoftware upgrade in internet nodes. It interoperates with IPv4 as long as the IPv4address space does not exhaust. It is designed to run well on the spectrum ofavailable link technologies, from low bandwidth networks such as wireless to highperformance networks like ATM.Proposed standards for the base protocol and various supporting mechanisms areavailable [DH95, CD95, NNS96, TH95, TN96, GN96, GTBS97, Atk95c]. But thereare various issues that are still being worked out in the IPNG working group and ofan experimental nature. These include end system designator (EUI) based address-ing, mobility, host anycasting, qualities of service, naming of link local addresses,dynamic host con�guration, operation over non broadcast multiaccess links, multi-homing, dynamic readdressing, support for site-local addresses, router renumberingetc.In this thesis, we have worked on three of these issues. These are support for hostanycast addressing, support for classes of tra�c based on priorities, and a nameservice for link-local addresses. The implementation can be used for experimentingwith these issues so as to enable a better understanding of their feasibility and fortuning to individual requirements. 4

We have used the Linux 2.1.21 OS for implementation and testing of these mechan-isms due to several reasons - Linux is a freely distributed, POSIX compliant OS,available on various hardware platforms. The base IPv6 protocol and supportingmechanisms have already been implemented in Linux and a set of applications andnetwork utilities have been ported to work over IPv6. Source code for the kernel,related documentation [Joh96] and supporting utilities are freely available. We alsobene�ted from past experience in implementing the basic IPv6 protocol and tunnel-ing mechanisms [Jay96].1.3 Organization of ThesisIn Chapter 2 we discuss the salient features of IPv6. An outline of the base protocolis given which includes the IPv6 header, addressing architecture, routing, QoS sup-port. We brie
y discuss other support mechanisms - transition, neighbour discoveryprotocol, security mechanisms and path MTU discovery protocol.In Chapter 3 we discuss our implementation of host anycast support in IPv6. Ananycast address identi�es a set of interfaces with the property that a packet sentto this address is delivered to only one of them. Two problems in using anycastaddresses are that they cannot be used as source address in any case, and theycannot be used as destination address if the protocol requires maintenance of state(like TCP). Even if a protocol does not require state (like UDP), applications mayinsist that all packets reach the same destination. In this chapter, we discuss asolution to this problem. The requirements at a host to support anycasting arespeci�ed. Actions are speci�ed at the network, transport and API layers. Thesemantics of anycast usage primarily depend on the nature of transport layer. Wehave focussed on mechanisms in TCP [Pos81b] and UDP [Pos80].Chapter 4 discusses implementation of priority support in IPv6. IPv6 provides a4-bit priority �eld, but the de�nition and intended usage are still experimental. In adecentralized Internet, di�erent providers/routing domains can implement priority5

di�erently based on the available resources, perceived application behaviour and localpolicy. There being no single approach acceptable to all, IPv6 priority is looselyde�ned. We discuss various issues related to IPv6 priority support. Based on thisan extended de�nition is proposed and various priority mechanisms are suggested.Chapter 5 describes a naming service for IPv6 link-local addresses. Link-localaddresses are designed for use on a single link for purposes of neighbour discovery,automatic address con�guration etc. These can be con�gured without a need for anyformal setup. A problem with link-local addresses is of associating correspondingsystem names. This association cannot be stored in DNS, without greatly increasingits complexity. Manual con�guration is undesirable. We describe a solution to thisproblem. A service is implemented on top of UDP that uses a multicast group ofservers running on individual nodes. Necessary implementation details are describedand recommendations for future implementations are provided.Finally, in Chapter 6 we conclude by summarizing the results of our e�orts anddiscuss areas of future work.

6

Chapter 2Salient Features of IPv6We study how IPv6 and its supporting mechanisms attempt to ful�ll the wide set ofcriteria mentioned earlier. The major improvements and new features are discussed.2.1 Base Protocol2.1.1 IPv6 HeaderAn IPv4 datagram contains a network layer header followed by upper layer data.IPv6 provides multiple network layer headers [DH95]. The base header is presentin all datagrams and occurs before all other headers and upper layer data. Betweenbase header and upper layer data, there may be several extension headers, that areoptional. The base header is simpli�ed compared to the IPv4 header. Some �eldshave been dropped or made optional to reduce the per hop processing cost and limitthe bandwidth cost of IPv6 header. Though the IPv6 address size (128-bit) is fourtimes that of IPv4, size of the base header is only twice the size. Fields are alignedto facilitate extraction of maximum performance for 64-bit architectures.7

Various extension headers have been de�ned, each identi�ed by a distinct value.This value is encoded in the Next Header �eld of a preceding header. The baseheader and all extension headers carry a Next Header �eld, which form a chain ofheaders terminated at the upper layer data. Currently de�ned headers are - Hop-by-Hop Options, Routing (Type 0), Fragment, Destination Options, Authenticationand Encapsulating Security Payload. None of these headers, except the Hop-by-HopOptions header, is examined by any intermediate router. Thus information intendedfor end hosts does not incur processing in routers.Header options have been encoded so as to allow e�cient forwarding, less stringentlimits on option length and greater
exibility to introduce new options in future.Each option carries a 3-bit �eld that indicates a default action when a node doesnot recognize the option; and the nature of the option whether it can change enroute.The latter information is used by security mechanisms.IPv6 also provides a mechanism to send jumbograms, packets of size greater than64k octets. Note that the IPv6 base header provides only a 16 bit Payload Length�eld.2.1.2 Addressing ArchitectureSize of an IPv6 address is 128 bit. This supports more levels of addressing hier-archy and much greater number of addressable nodes. It simpli�es address auto-con�guration. Based on a study conducted by Huitema [Hui94] regarding e�ciencyof current addressing architectures, he concludes that 128 bits can accommodatebetween 8x1017 to 2x1033 nodes. The IPv6 addressing architecture is de�ned in[HD97].An IPv6 address is an identi�er for an interface or set of interfaces. An interface canbe assigned multiple IPv6 addresses. Additionally a single address can be assignedto multiple physical interfaces if the multiple physical interfaces are presented to IP8

layer as a single interface. Though a subnet is associated to one link as in IPv4,more than one subnets can be assigned to the same link.There are various ways to represent IPv6 addresses in text strings. A preferredform is `x:x:x:x:x:x:x:x', where the x's are hexadecimal representation of the eight16-bit pieces of the address. Leading zeros within a piece need not be shown. Inanother form, multiple groups of 16-bit pieces of zeros can be replaced by a `::'notation. This can appear only once in a string. For convenience in handling ofIPv4 based IPv6 addresses, another form is `x:x:x:x:x:x:d.d.d.d', where the x's arehexadecimal representation of the six high-order 16-bit pieces of the address and thed's are decimal values of the four low-order 8-bit pieces of the address. A `pre�x' isany non zero number of contiguous bits starting from the left-most bit. Pre�xes canbe represented as `ipv6-address/pre�x-length' for example FE80::C00F:8F/64.The variable-length �eld comprising leading bits of an address that indicates the typeof an address is referred as the Format Pre�x (FP). Present assignment of formatpre�xes is available in [HD97]. Only 15 % of the address space is initially allocated,while the rest is reserved for future use.Basically there are three types of IPv6 addresses - unicast, anycast and multicast.These are described below.Unicast addressesA unicast address identi�es a single interface. Various forms of unicast addressesare de�ned - aggregatable global unicast address, NSAP address, IPX hierarchicaladdress, site-local address, link-local address, and IPv4-capable host address. Wediscuss the main categories of addresses here.Aggregatable global unicast addresses are de�ned in [HOD97]. This supports boththe current provider based aggregation and a new type of aggregation called ex-changes. An exchange is a special kind of provider that connects to multiple long-haul9

providers and independently assigns addresses to subscribers. Aggregatable globalunicast addresses will provide e�cient routing aggregation for sites that directlyconnect to providers or that connect to exchanges. The address format is shown inFigure 1.| 3 | 13 | 32 | 16 | 64 bits |+---+-----+-----------+--------+--------------------------------+|001| TLA | NLA* | SLA* | Interface ID |+---+-----+-----------+--------+--------------------------------+Figure 1: Aggregatable Global Unicast AddressHere 001 is the FP, TLA identi�es a Top Level Aggregator, NLA* identi�es NextLevel Aggregator(s), SLA* identi�es Site-Local Aggregator(s), and the Interface IDidenti�es a particular interface on a link. Delegation of pre�xes within NLA and SLAspace works similar to IPv4 CIDR delegation [FLYV93]. Interface ID is required tobe of 64 bits and is constructed in IEEE EUI-64 format [IEE97]. Interface IDs mayhave global scope or local scope.Two types of local-use unicast addresses are de�ned - Link-Local, used on a singlelink, and Site-Local, used in a single site. The former is identi�ed by a pre�xFE80::/64, while the latter is identi�ed by a pre�x FEC0::/64. Link-local addressescan be used for for purposes of automatic address con�guration, neighbour discoveryor if when routers are present. Site-Local addresses can be used for addressing insidea site without the need to obtain globally unique pre�x.IPv4-capable IPv6 addresses are useful during transition from IPv4 to IPv6. Anaddress of the type `::d.d.d.d' (or equivalently `::x.x') is termed an IPv4-compatibleIPv6 address and is assigned to hosts and routers that dynamically tunnel IPv6packets over IPv4 routing infrastructure. An address of the type ::FFFF:d.d.d.d istermed IPv4-mapped IPv6 address and is used to represent addresses of IPv4-onlynodes as IPv6 addresses. 10

Anycast addressesAn anycast address is an address assigned to more than one interface, with theproperty that a packet sent to this address is routed to the nearest interface havingthe address.Multicast addressesA multicast address identi�es a group of nodes and a packet sent to this addressis delivered to all the nodes. All multicast addresses have a format pre�x of 0xFF.Each multicast address contains - 4-bit scope, 4-bit
ags and 112-bit group ID. Scope�eld limits the scope of a multicast address in a limited region such as node-local,link-local, site-local, organization local and global. The
ags �eld classi�es multicastaddresses into - permanently (well-known) and non-permanently (transient) assignedaddresses. The meaning of a permanent multicast address is independent of itsscope and it can be assigned to popular services such as all NTP servers. Transientaddresses are meaningful only within the speci�c scope.2.1.3 RoutingThe routing function is identical to IPv4 routing under CIDR, except for the use of128-bit addresses. Current routing algorithms such as BGP, OSPF, IDRP etc. canbe used for IPv6 with few changes.Additionally IPv6 supports simple routing extensions that provide powerful func-tionalities such as provider selection (based on policy, performance, cost etc), hostmobility etc. A separate extension header, the routing header, can be used to listone or more intermediate nodes to be visited on a route to the destination. Rout-ing header allows de�ning multiple types of source routing. Type 0 source routingde�ned in [DH95], allows speci�cation of atmost 24 intermediate hops and a 24-bit11

bitmap speci�es type of each hop - whether strict or loose. The security inherent tosource routing [Bel89] is avoided by use of the IPv6 authentication and/or securitymechanisms [Atk95a, Atk95b].2.1.4 QoS SupportIPv6 provides support for Qualities of Service tra�c in two ways - a 4-bit priorityand a 24-bit
ow label. The priority is discussed in detail in Chapter 4. We discussthe
ow label here.Flow labels can be used to request special handling in routers such as non-defaultQoS or real-time service. Emerging applications such as video on demand, netphone,depend on the degree of consistent throughput, delay and/or jitter. Such applica-tions can use
ows that can be assigned �xed resources in the network (allocationmay be statistical). A
ow is a sequence of packets sent from a particular sourceto a particular destination that need the same type of service from routers. Theexact service speci�cation will be conveyed using signalling protocols such as RSVP[Wro96].Flow labels can be used in other ways, for example routers may opportunisticallyset up state for a
ow though no signalling protocol was used. They may cache theresult of initial datagram processing so as to speed up processing of later packets ofthe same
ow. It has also been suggested to use
ow labels in a hop-by-hop mannerfor example to carry a tag used by tag switching protocols so as to speed up theforwarding function.
12

2.2 Support Mechanisms2.2.1 TransitionTransition is a key issue for the successful deployment of IPv6. Two primary re-quirements are -
exibility of deployment, and ability of IPv4 nodes to communicatewith IPv6 nodes. A controlled transition of all IPv4 nodes to IPv6 is not possible forthe current scale of Internet. Applications designed to work on IPv4 should continueworking without change.IPv6 de�nes two basic mechanisms for transition [GN96].Dual IP layer To provide complete support for both IPv4 and IPv6 in hosts androuters. Such nodes can communicate with IPv4 nodes using IPv4 packets andwith IPv6 nodes using IPv6 packets. A dual node may be con�gured withboth IPv4 and IPv6 addresses. If such a node also implements the tunnelingfunction described next, then the two addresses resemble each other and theIPv6 address is termed as an IPv4-compatible IPv6 address.IPv6 over IPv4 tunneling IPv6 packets can be encapsulated in IPv4 headers andtunneled over IPv4 routing infrastructures. While the IPv6 infrastructure isbeing deployed, existing IPv4 routing domains can remain functional and cancarry IPv6 tra�c using tunneling. The two end-points of a tunnel are respons-ible to encapsulate/ decapsulate IPv6 packets. Based on the method used todetermine IPv4 address of remote tunnel endpoint, tunneling is classi�ed into- automatic and con�gured tunneling. In automatic tunneling, the Destinationnode has a IPv4 compatible IPv6 address and so it acts as the tunnel end-point.Con�gured tunneling is required when the Destination node does not supporttunneling, instead the tunnel end-point is an intermediate router. In this caseIPv4 address of this router needs to be con�gured at the encapsulating node.13

2.2.2 Neighbour DiscoveryA neighbour discovery protocol is used by IPv6 nodes to discover various informationabout neighbours [NNS96]. This protocol combines various IPv4 protocols such asARP, ICMP Router Discovery, ICMP redirect in a single mechanismand additionallyprovides other improvements. It de�nes mechanisms for - router discovery, pre�xdiscovery, parameter discovery, address autocon�guration, address resolution, next-hop determination, neighbour unreachability detection, duplicate address detectionand redirect. The protocol de�nes �ve new ICMP message types for its working.Providing these mechanisms on top of IPv6 layer allows use of the IPv6 securitymechanisms with the protocol.2.2.3 SecurityTwo mechanisms are de�ned to meet the security requirement - AuthenticationHeader (AH) and Encapsulating Security Payload (ESP) [Atk95c, Atk95a, Atk95b].These options can be used in isolation or in combination, to provide di�erent levelsof security.Authentication allows the receiver of a datagram to ascertain that the claimed senderis the actual sender and to ensure datagram integrity. AH allows conveying inform-ation related to authentication. The extension header is de�ned to be algorithmindependent and can support various algorithms. But implementation of the keyedMD5 algorithm is proposed to ensure interoperability in the Internet.ESP provides con�dentiality and integrity to IP datagrams. This implies that onlythe intended recipient can know what is sent but unintended parties cannot determinethe contents. This requires encryption of data using cryptographic keys. The use ofDES CBC algorithm has been proposed for universal interoperability.Though several proposals for key distribution algorithms exist, no speci�c mechanism14

is yet standardized.2.2.4 Path MTU discoveryIPv6 does not permit intermediate nodes to fragment datagrams, and encourageshosts to learn the path MTU of destinations. This reduces the processing overheadin routers, additionally attempt is made to avoid fragmentation in most cases. Ar-guments against fragmentation are discussed in [KM87]. Fragmentation leads toine�cient resource usage in terms of processing cost and bandwidth for additionalheader information. As IP reassembly is not robust, loss of a fragment causes theentire upper layer packet to be retransmitted. Also once fragmented, reassemblyoccurs only at the destination, thus bene�t of higher MTU links after a low MTUlink are not obtained.A Path MTU discovery algorithm for IPv6 is proposed in [MDM96]. A source startswith an initial MTU equal to the MTU of outgoing link. If the packet is too large foran intermediate router, it is dropped and an ICMP packet too big message is sentto source. This also conveys the actual MTU of its outgoing link. The source usesthis value in future packets. If this fails again, the cycle repeats itself until the exactMTU is discovered. The mechanism also allows a host to learn increases in MTUin the face of routing topology changes.
15

Chapter 3Implementation of Host AnycastSupport3.1 IntroductionThe IPv6 addressing architecture [HD97] de�nes a new type of address - the anycastaddress. This address is similar to a multicast address in the sense that it is assignedto a group of interfaces (typically belonging to di�erent nodes). But it is similar tounicast address in that a packet sent to this address is delivered to only one interface.A packet sent to an anycast address is routed to the \nearest" interface having thataddress, according to the routing protocols' measure of distance.Some uses of anycasting in router addressing are - to identify set of routers belongingto an organization providing Internet service, e.g., to enable provider selection; toidentify set of routers attached to a subnet; or those providing entry into a particularrouting domain, e.g., the home network for mobile nodes. In all these scenarios ananycast address is obtained from the network pre�x assigned to the particular levelof hierarchy the routers belong to and do not require special handling in the backbonerouters. 16

There are various scenarios of host addressing where anycasting can be bene�cial.An example is load sharing - all servers providing a service can be members ofan anycast group, and a client's request is automatically delivered to the nearestserver. Another example is fault tolerance - in case of failure of one server, requestsare automatically routed to another node in the group. Use of anycasting leads tooptimal routing paths and better network utilization.Despite the bene�ts of a host anycasting service, [HD97] prohibits assignment ofanycast address to IPv6 hosts till more experience is obtained and related problemsare solved. There are two main problems -� For every anycast address, there is a host-speci�c routing table entry in routersin the entire topological region covered by these hosts. This is acceptable ifthe region is small, like an Intranet, or a campus-wide network. But if there isa worldwide anycast group, then this implies having a host speci�c entry foran address in Internet backbone routers. This leads to routing table explosionand associated overheads in critical backbone routers.� Successive packets sent to an anycast address may not all be delivered to thesame node. There are two implications of this property. An anycast addresscannot be used as the source address in an IPv6 packet due to inability toidentify the originating node in case of error conditions. Stateful protocolscannot rely on the use of an anycast destination address throughout a session.Additionally a packet can be received by multiple anycast nodes due to du-plication and misrouting. So more than one node can reply simultaneously.Amongst the two problems, the former is unavoidable given the addressing archi-tecture of IPv6. We believe that the use of anycast addresses will be restricted toorganizational Intranets, and through controlled route leaking amongst Internet Ser-vice Providers. There may also be a mechanism to create global anycast groups ina regulated fashion. In this paper we provide a solution to the latter problem.17

A host anycasting service was proposed for IPv4 networks by Partridge, et. al.[PMM93]. They discuss ideas on semantics of usage, and give suggestions for imple-mentation. They allow use of an anycast source address in IP datagrams. A separateclass of IP address is proposed for anycast allocation. This way TCP can recognizean anycast address, and treat this di�erently. An anycast destination address canonly be used in the �rst segment. The remote host uses a non-anycast source ad-dress in the reply. The initiating host treats anycast address as wildcard (as they arerecognizable), so the reply matches the request. The requesting node then replacesthe anycast destination with the returned source address in local state. Future ex-changes use only the non-anycast address. The drawback of this scheme is use ofa separate space for anycast allocation. This results in huge routing overheads, asthey cannot be aggregated even in case of router addressing. The scheme has notbeen implemented in IPv4 networks.Bound and Roque [BR96] propose a solution for a IPv6 based host anycasting service.A new Destination option is proposed - the Source Identi�cation option. A nodewhich responds to a request addressed to an anycast address places its unicastaddress as IP Source address, and also indicates its anycast address using the newoption. TCP and stateful applications on top of UDP, can use the value of thisoption for demultiplexing and learning the unicast address of the peer. Furthercommunication solely uses unicast addresses. The authors have outlined actions ata host receiving the Source-Id option.In this chapter, we extend the anycast model of Bound and Roque in several ways.We de�ne the complete implementation at both ends of a communication that useshost anycast addresses. A set of requirements for a functional and
exible hostanycasting service are provided. Such a speci�cation is necessary in order to avoidambiguity in interpretation and to de�ne a correct implementation. In case of TCPwe allow use of the proposed option to identify the anycast address of a host doing anactive connect. When a Source-Id option is used, it must be used in demultiplexing.The earlier model [BR96] suggests using this as an optional mechanism. Changes tothe BSD API are provided to allow use of anycasting in a
exible manner. Using18

the proposed mechanism, many existing TCP and UDP applications continue towork unchanged. Applications that maintain state on top of UDP, across multipleTCP connections, or use end-point addresses at the application layer will need to bemodi�ed.Our implementation allows merging of Source-Id option with the Binding Updateoption proposed for mobility support in IPv6 [JP96]. Binding Update conveys in-formation about the care-of addresses associated with a mobile node's home address.An additional bit can be used to indicate the anycast case.These requirements were implemented and tested in a LAN environment among aset of machines. Normal usage cases of applications like telnet, ftp, rlogin continue towork unchanged (some of these applications depend on network addresses in specialcases which may need to be modi�ed).The rest of the chapter is organized as below. In Section 3.2, we give a brief back-ground relevant to rest of the chapter. This includes description of TCP and UDP,and how demultiplexing works. Section 3.3 describes the Source-Id option, an outlineof the proposed mechanisms for TCP and UDP, and discusses the issue of security.Section 3.4 discusses modi�cations required at various layers in the IPv6 stack.3.2 BackgroundA brief description on the working of TCP, relevant to the rest of the chapter isgiven. Implementation of datagram demultiplexing is also discussed.3.2.1 TCPTCP is an end-to-end, reliable, connection-oriented transport layer, that providesresequencing and
ow control [Pos81b]. It maintains state at the end-points of a19

LISTEN

CLOSED

SYN_RCVD SYN_SENT

appl:send data/

ESTABLISHED

recv: SYN

appl:passive open/

/

send:<nothing>

send:SYNrecv:RST

recv:

 RST

recv: SYN, ACK/
send:ACK

recv: ACK/
send:<nothing>

send: SYN, ACK

appl: active open/

send:SYN, ACK
recv:SYN/

 send: SYN

Figure 2: TCP State Processing during Initial Handshakeconnection and provides mechanisms for connection establishment, data exchangeand connection release/abort. The TCP state transition diagram is described in[Pos81b]. A modi�ed subset [Bra89] showing transitions during the initial three wayhandshake is shown in Figure 2. Here dotted lines indicate normal transitions forclients and dashed lines are normal transitions for servers.A server opens a connection in passive mode, enters LISTEN state and waits onconnection requests from clients. A client doing an active open sends a segmentwith the SYN bit set, advertising its initial send sequence number (ISS); and entersSYN SENT. The response to a SYN is a segment with both SYN and ACK bits set,acknowledging the clients' ISS and advertising the server's ISS. The server entersSYN RECEIVED state. On receiving a response, the initiating client veri�es theacknowledged sequence number, acknowledges the server's ISS in a reply segmentwith ACK bit set, and enters ESTABLISHED state. On receiving a valid ACK fromthe client, the server moves into ESTABLISHED state from SYN RECEIVED.TCP provides a mechanism (using RST bit) to reset the peers' connection whena packet is received for which no corresponding state exists locally. This provides20

recovery in case of loss of synchronization. TCP also allows the case of a simultaneousactive open at both ends.3.2.2 UDPUDP provides a simple datagram oriented transport service - the only services itprovides over IP are checksumming of data and demultiplexing by port numbers[Pos80]. The mechanisms at the UDP layer are simple compared to that in TCP,and it is the responsibility of applications to maintain any required state.3.2.3 Socket DemultiplexingA socket refers to an end-point of communication in the Berkeley networking system[Ste90]. An association is a 5-tuple that uniquely identi�es a connection comprisingfprotocol, local-addr, local-port, foreign-addr, foreign-portg. We refer to the protocolimplicitly and refer to this as the four tuple in rest of this chapter. A protocolcontrol block (PCB) is a conceptual data structure containing protocol speci�c in-formation for a socket. There is usually a one-to-one correspondence between socketand protocol control block in networking implementations.The local port and local address are set with the bind() system call. Most imple-mentations do not allow more than one socket to bind on the same local port. Butthis can be done by specifying the SO REUSEADDR socket option with setsockopt().The remote port and remote address members in a four tuple can be set usingconnect() system call. When a socket is unconnected, the remote address andremote port are wildcards. A connect() on a UDP socket does not involve dataexchange, but merely saves the remote address and remote port values in the PCB. AUDP socket can issue connect()more than once. Most implementations, includingours, implicitly convert the remote address to the loopback address if connect() is21

invoked with a wildcard remote address. Hence a connected socket cannot have awildcard remote address.Figure 3 shows possibilities for values in the four tuple [Ste94]. A p indicates aspeci�c value while, *" indicates wildcard.Loc-IP Loc-port Rem-IP Rem-port Descriptionp p p p restricted to one clientp p * * only dgrams arriving on Loc-IP* p * * all dgrams sent to Loc-portFigure 3: Specifying the four tupleThe order of the three rows in the table is the order used in demultiplexing a receiveddatagram to the corresponding socket. The �rst row with most speci�c binding istried �rst, and the last row with least speci�c binding is tried last.3.3 Proposed SolutionIn this section we describe the proposed Source-Id option, and how TCP and UDPshould use the option. We also discuss the issue of security.3.3.1 Source Identi�cation OptionThe Source Identi�cation option is used by a host to inform a peer about its anycastaddress. The client side uses an anycast address as the destination address, butthe server cannot use anycast address as the source address. If it were to use onlyits unicast address, the client would not be able to demultiplex it properly. Hence,the server sends its anycast address in the Source-Id option, in addition to using itsunicast address as the source address. The client can demultiplex using the received22

anycast address, and also notes down the unicast address for further communication.The proposed option is encoded in the Destination Extension Header of an IPv6datagram. The option is shown in Figure 4.0 1 2 30 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+| Option Type | Option Len |+-+| || Identifier || || |+-+Figure 4: Source Identi�cation OptionOption TypeIdenti�es type of the option. Its value should be assigned by the Internet AddressNumbering Agency (IANA). The most signi�cant 3 bits are 110. So a node notrecognizing the option type must discard the packet and, only if the packet's Des-tination Address was not a multicast address, return an ICMP Parameter Problem,Code 2, message to the packet's Source Address. The option data does not changeen-route.Bound and Roque [BR96] suggest a value of 000 for the most signi�cant bits, whichallows ignoring the option and further processing of datagram. But allowing furtherprocessing, when the option is not recognized will not be useful in most cases of TCPusage and will work in UDP only in some cases. It also leads to wrong demultiplexingin few cases. 23

Option LengthLength of the option data �eld of this option in octets. This will carry a value of 16.Identi�erThe anycast address of the node originating the datagram whose unicast address isindicated in the Source Address �eld of the IPv6 base header.3.3.2 Requirements for TCPThe mechanism should ensure proper synchronization with use of anycast addresses.A common scenario consists of a client doing active open on the server's anycastaddress. Client then waits in the SYN SENT state, for a matching response fromserver. The request is received by a server waiting either on the anycast address oron the wildcard address. In either case, the server response (containing SYN+ACKor an RST) must carry a Source-Id option to associate its unicast Source Addresswith its anycast address. At the receiving end, TCP must use the identi�er in theoption while demultiplexing. If a matching socket is not found, an RST is sent tothe remote host's unicast address. In this example, the server response matches theclient socket in SYN SENT. The client then switches to using the server's unicastaddress for all further exchanges.We also allow the possibility of using the anycast indication in an active connect. Inthis case, the socket already selects a unicast source address for use during the con-nection, but it also sends a Source-Id option with the �rst SYN segment to identifyitself with the anycast group. A matching socket at the remote TCP will be in one ofSYN SENT or LISTEN states. If the state is SYN SENT, this corresponds to a sim-ultaneous open scenario. If the socket is in LISTEN, it moves to SYN RECEIVEDupon receiving the request. The anycast address received in the option is saved in24

the PCB (separate from the sockets' four tuple), and can be provided to applicationwhen requested.The above discussion leads to following constraints on the interaction of TCP withhost anycast addressing:� An anycast destination can only be used in an active connect to a peer. Thusa segment with anycast destination is valid only if the SYN is set and the ACKor RST bits are not set.� A Source-Id option can be sent either in an active connect request, or in re-sponse to an active connect request that was received on the anycast address.Thus a segment with Source-Id option is valid only if the SYN or RST is set.The RST was sent in response to an active connect to the anycast address.The demultiplexing as mentioned above is conceptually simple. But there are fewsubtle cases resulting from TCP's reliability in the face of losses, old duplicates andretransmissions. We discuss the detailed algorithm later in this chapter.3.3.3 Requirements for UDPApplications should be able to specify the host's anycast address as a source addressfor outgoing datagrams. Since IPv6 does not allow anycast addresses as sourceaddresses, the UDP entity must replace the anycast address by an unicast addressbefore passing onto IP layer. It should also indicate that a Source-Id option beadded, before actual transmission.Upon receiving a datagram with Source-Id option, demultiplexing must use the iden-ti�er in the option as the remote host address. If no match is found, or the recipientapplication prohibits the option in some cases, the datagram should be discardedand an ICMP port unreachable message be sent to the sender on its unicast address.25

There is an exception to this case, that we discuss later. Bound and Roque [BR96]ignore the option if it is not selected by application and allow further processing.In this case demultiplexing can match another socket specifying a remote addressequal to the unicast address of destination (provided other members of four tupleare equal). It is incorrect to allow this in a host implementing anycast support, asthe intended recipient was a socket connected either to remote's anycast address ora wildcard.An application may notice a change in the address of responding node and takenecessary action, e.g., issuing a new connect() to remote's unicast address. TheAPI should allow applications to know the anycast address received in a Source-Idoption, on a per datagram basis.This proposal requires modi�cations to existing stateful applications. We propose afurther extension to minimize the amount of this change. A
ag state req can beprovided to indicate whether application maintains state and wants UDP entity toguarantee communication with a unique node. The default value of this
ag shouldbe false. Following action is invoked when a datagram with Source-Id option isdemultiplexed onto a connected socket and state req
ag is true:� If this is the �rst datagram to be received on the socket, then replace the remoteaddress in the four-tuple by its unicast address. Outgoing datagrams will thenuse only the unicast address� The anycast server may continue sending datagrams with Source-Id option set.Using the demultiplexing proposed above, a match will not be found (usually),once the above conversion occurs. To overcome this problem, the originalanycast address is remembered in the PCB (separate from its four-tuple) anddemultiplexing algorithm is modi�ed to allow this possibility.� If it is not the �rst datagram to be received on the socket, it implies thatprevious datagrams used the claimed anycast address as a Source Address.This occurs in case of improperly con�gured anycast hosts or an attempt to26

spoof the address. Do not change the remote address but log a system error.Nevertheless, datagram should be delivered to application.3.3.4 Security IssuesA mechanism to allow dynamic change of a peer's address in transport end-pointsis subject to threats similar to the source routing attack. For better security theproposed mechanism should be used in conjunction with replay protection and Au-thentication Header [Atk95a] as suggested in the mobile case [JP96]. Note that thesecurity association used in AH computation should correspond to the anycast groupaddress, instead of the Source Address of the datagram.We did not implement the interaction with security mechanisms because the IPv6AH computation was not available in the OS. We note that some amount of weaksecurity is inherent to the mechanisms we employ.� TCP accepts a response to an active connect only if the acknowledged sequencenumber matches the ISS sent in the request. Spoo�ng an address requires animpersonator to guess the ISS used by sender. As sequence numbers are chosenwith su�cient randomness [Bel96], it is di�cult to guess the ISS, unless anattacking node lies on the same subnet as the sender. But in this case otherforms of attacks are also available, and the threat is inherent to type of linktechnology rather than this protocol.Also note that this mechanism does not secure the case of a simultaneous open.� For UDP a datagram with Source-Id option received on a connected socketwith state req set, causes a change in the remote address in the four-tupleonly if it is the �rst datagram to be received.Additionally there can be applications without concern for security issues, e.g., a27

simple time of day service; or some environments may have a level of trust. In suchcases use of AH can be avoided.When a datagram with Source-Id option is demultiplexed to a TCP socket, we use a
ag to determine from one of three choices: AH not required, AH not required onlyif received in response to active connect (excluding the simultaneous open case), orAH required. For UDP the
ag indicates one of two choices: AH required or AHnot required.3.4 ImplementationThe implementation of host anycast support at the network, transport and APIlayers is discussed in this section.Design GoalsThe primary objective of the implementation is to provide a mechanism to supportuse of host anycast addressing in transport speci�c ways. The implementation shouldhave minimal per-packet processing overhead. There should be minimal changes toprotocol speci�cations.3.4.1 Network LayerThe network layer encodes a Source-Id option in outgoing datagrams when indicatedby the upper layer. On incoming datagrams it decodes the option, and passes theidenti�er to upper layer. Additional changes are discussed below.28

Con�guring an anycast addressWe provide a mechanism to manually con�gure an anycast address for an interface.The scope of an anycast address can be one of : link local, site local or global.Duplicate address detection is not done when con�guring an anycast address [TN96].The address is added to a list of addresses for the interface. Packets received witha destination address equal to this address will be handed to upper layers.Neighbour DiscoveryAnycast addresses are treated just like unicast addresses for the purpose of Neigh-bour Discovery except for minor exceptions [NNS96]. Neighbour Advertisementssent in response to a Neighbour Solicitation are delayed by a random amount oftime between 0 and MAX ANYCAST DELAY TIME to reduce probability of network con-gestion. Also, Neighbour Advertisements carry a value of 0 for the Override
ag.So, if multiple advertisements are received for the anycast address, the �rst one willbe used, instead of the most recent.Source Address SelectionThe network layer prohibits selection of an anycast address as a source address inoutgoing datagrams. When a request is received on anycast address, following arethe steps to determine a unicast source address for use in the response.� Find outgoing interface for the destination using Next Hop Determination al-gorithm [NNS96]. If no route found to destination, return error.� Select an unicast address with appropriate scope from list of addresses as-signed to the interface. If no such address available, select a unicast address29

with appropriate scope from addresses assigned to other interfaces. If no suchaddress found, return error.� The outgoing interface may di�er from that identi�ed by the anycast address.In this case further communication with unicast address may use an entirelydi�erent route than the route taken for anycast address. This may not alwaysbe desirable, but is allowed.3.4.2 TCP LayerActions at hosts sending or receiving Source-Id option are discussed below.BackgroundA socket in LISTEN state maintains a queue of connections doing initial handshake.The remote address and remote port of socket in LISTEN state are always wild-cards. Each connection doing handshake is represented as a variable of type structopen request. When the �nal acknowledgment in the three way handshake is re-ceived, a PCB is allocated for the connection and the PCB is inserted in a systemwide list of TCP PCBs. On receipt of a segment, this list is searched for a matchingsocket.Sending Source Identi�cationA
ag (sndany) is used to enable or disable Source-Id option on outgoing segments.If the
ag is not set, anycast TCP packets are responded with RST packets. TheSource-Id option is sent in two instances: First, request with anycast destination isreceived on a socket bound to the anycast or wildcard address. Second, a socketbound to anycast address initiates active open. In either case the local anycast30

address is remembered (as the variable loc anyaddr) in the PCB, separate from thefour-tuple. This is required in later demultiplexing, in special cases.Receiving Source Identi�cationOn receipt of a segment with Source-Id option, TCP must use the option valuein demultiplexing. The exact demultiplexing is discussed later. For now assume arecipient socket is found in demultiplexing. The further processing depends on stateof the socket. In all the following cases, a socket changes the remote address infour-tuple to the remote unicast address, and remembers the remote anycast addressalso (as the variable rem anyaddr).� If the socket is in SYN SENT state and segment is a response to an activeconnect on an anycast address, the state is changed to ESTABLISHED.� If the socket is in LISTEN state and segment is an active connect request fromthe anycast node, a new request is allocated on the listen queue and its stateis set to SYN RECEIVED.� If the socket is in SYN SENT state and segment is an active connect re-quest, this corresponds to simultaneous active open. The state is changedto SYN RECEIVED.� Otherwise the option is ignored.ExamplesAn example of active connect to remote anycast is shown in Figure 5. Conven-tions used in the �gure are - Segment with (B,A,X) implies Source Address = B,Destination Address = A and Id in Option = X. For a socket in LISTEN state,31

its listen queue is shown alongside. S1: (A,B,X,Y) indicates that for socket 1, loc-unicast IP = A, rem-unicast IP = B, loc anyaddr = X, and rem anyaddr = Y.If loc anyaddr is set, a Source-Id Option was sent to remote in the handshake. Ifrem anyaddr is set, a Source-Id option was received from remote host in handshake.TCP A TCP B, XS1:LISTEN(*,*)[]a) S1:(A,X, ,) ! <SYN>(A,X,) ! S1:LISTEN(*,*)[(B,A,X,)]b) S1:(A,B, ,X) <SYN,ACK>(B,A,X) S1:LISTEN(*,*)[(B,A,X,)]c) S1:(A,B, ,X) ! <ACK>(A,B,) ! S1:LISTEN(*,*)[] S2:(B,A,X,)Figure 5: Active Connect on Anycast DestinationIn line a) S1 on TCP A initiates active connect request to B's anycast address X andmoves to SYN SENT. TCP B matches this to S1 in LISTEN state, and respondswith SYN + ACK and a Source-Id for X (line b). Upon receipt of this response,S1 on TCP A changes to ESTABLISHED state and replaces remote address byunicast address of B. The �nal ack is sent to unicast address B (line c). On receiptof this ack, a PCB is allocated for the request on listen queue and it changes toESTABLISHED.An example of active connect with local anycast address is shown in Figure 6TCP A, Y TCP BS1:LISTEN(*,*)[]a) S1:(A,B,Y,) ! <SYN>(A,B,Y) ! S1:LISTEN(*,*)[(B,A, ,Y)]b) S1:(A,B,Y,) <SYN,ACK>(B,A,) S1:LISTEN(*,*)[(B,A, ,Y)]c) S1:(A,B,Y,) ! <ACK>(A,B,) ! S1:LISTEN(*,*)[] S2:(B,A, ,Y)Figure 6: Active Connect with Local AnycastPrelude to DemultiplexingWe discuss the modi�ed demultiplexing algorithm in rest of this subsection.32

A bind to anycast is treated similar to a wildcard bind due to following reasons.� A socket listening on wildcard local address, prevents other sockets to bindon the same port for any of the unicast addresses. An anycast bind is similarto a wildcard bind, because it can select any of the host's unicast address inresponse to incoming request.� For a connection doing initial handshake on a listen queue, all incoming seg-ments are matched to four tuple of the socket in LISTEN state. A connectioninitiated with anycast destination receives future segments with unicast des-tination which should be matched to the anycast (or wildcard) listening socket.For the same reason, we do not allow a socket bound to a wildcard or anycastaddress to enter LISTEN state, if another socket bound to any of the localaddresses (for the same local port), is in LISTEN state.Following routines are often referred in further discussion -� get sockany() corresponds to demultiplexing described in subsection 3.2.3and modi�ed to consider local anycast address as wildcard. Input to thisroutine is a four tuple, but we show only two arguments - local address followedby remote address. It returns a socket matching the four tuple which is not inCLOSED state. An example usage is -sk = get sockany(seg->dst IP, seg->src-unicast IP);� srch listenq() searches socket listen queue. Input consists of a socket andthree tuple (local port is same as that of socket in LISTEN state) and returnsa request doing initial handshake. We do not show local port in the discussion.� discard(seg) - silently discard segment.� send reset(seg) - send reset to remote in response to segment, reset is sentonly if RST is not already set on incoming segment.� deliver(sk,seg) - deliver segment to socket.33

Receiving a segmentIncoming segments are handled as follows -tcp rcv(seg)f if (Source-Id option received)if (!(SYN set or RST set))discard(seg), return;if (seg->dst IP is anycast)tcp dmuxany(seg);elseif (src ident option received)tcp dmuxdopt(seg);elsetcp dmux(seg);gUnicast Destination, No Source Identi�cationThis is the simplest case in demultiplexing. It is shown below -tcp dmux(seg)f sk = get sockany(seg->dst IP, seg->src IP);if (not found)send reset(seg), return;if (sk not bound to wildcard and anycast)34

deliver(sk,seg), return;if (sk bound to anycast)1) if (SYN set)send reset(seg), return;elsedeliver(sk,seg), return;/* sk bound to wildcard local address */op req = srch listenq(sk, seg->dst IP, seg->src IP)if (op req not found || SYN not set)deliver(sk,seg), return;2) if (op req->loc anyaddr is set)send reset(seg), return;elsedeliver(sk,seg), return;gDue to the special way we handle anycast bind, a segment with unicast destinationcan match anycast socket. This occurs only if an active connect was previouslyreceived on the anycast address, so later segments with unicast destination cannothave SYN set (excluding retransmissions). This is checked in line 1).An example of the anomaly handled in line 2) is shown in Figure 7.Two active connection requests are initiated simultaneously from the same host, oneon the remote's anycast address, and other on its unicast address. Both cannot beallowed to proceed, as it leads to the same four tuple. Uniqueness of the four tupleneeds to be enforced at the anycast host. It allows only one to proceed - the onewhich was received earlier, and the other request is aborted with a reset. In the�gure, the request on the anycast address was allowed to proceed, as it was received�rst. 35

TCP A TCP B, XS1:LISTEN(*,*)[]a) S1:(A,X, ,) ! <SYN>(A,X,) ! S1:LISTEN(*,*)[(B,A,X,)]: : : <SYN,ACK>(B,A,X) S1:LISTEN(*,*)[(B,A,X,)]b) S2:(A,B, ,) ! <SYN>(A,B,) ! S1:LISTEN(*,*)[(B,A,X,)]S2:Abort <RST>(B,A,) S1:LISTEN(*,*)[(B,A,X,)]c) S1:(A,B, ,X) <SYN,ACK>(B,A,X) : : :d) S1:(A,B, ,X) ! <ACK>(A,B,) ! S1:LISTEN(*,*)[] S2:(B,A,X,)Figure 7: Active Connect on Both Addresses of Anycast HostAnycast Destination AddressThe steps in demultiplexing a segment with anycast destination are shown below.Note that in this case, if RST is sent, the Source-Id Option is also sent.tcp dmuxany(seg)f if (RST set || FIN set || ACK set || not SYN set)discard(seg), return;reply-unicast IP = select source address for response;sk = get sockany(reply-unicast IP, seg->src-unicast IP);if (sk not bound to anycast and wildcard)1) if (sk->loc anyaddr == seg->dst IP)deliver(sk,seg), return;elsesend reset(seg), return;/* Is sending of src ident allowed */if (sk not found || sk->sndany not set)send reset(buff), return;if (sk bound to anycast)2) if (bound anycast address != seg->dst IP)36

send reset(seg), return;elsedeliver(sk,seg), return;/* sk bound to wildcard */op req = srch listenq(sk, reply-unicast IP, seg->src-unicast IP);if (op req not found)deliver(sk,seg), return3) if (op req->loc anyaddr == seg->dst IP)deliver(sk,seg), return;elsesend reset(seg), return;gA scenario where 1) is true is when both end-points of a connection, initiated throughanycast address, are in ESTABLISHED state and a duplicate of the �rst SYN isreceived. A scenario where 1) is false is similar to that shown in Figure 7, except thatin this case, the request with unicast destination was received �rst and was allowedto proceed. Line 2) checks the case when a host has multiple anycast addresses. Thecheck in line 3) is similar to that in line 1) except that in this case the other connectionis not in ESTABLISHED state, but is doing initial handshake on a LISTEN queue.Received Source-Id optiontcp dmuxdopt(seg)f sk1 = get sockany(seg->dst IP, seg->src-anycast IP);sk2 = get sockany(seg->dst IP, seg->src-unicast IP);if (sk1 not found)if (sk2 found and (sk2->rem anyaddr == seg->src-anycast IP))37

deliver(sk2,seg), return;elsesend reset(seg), return;if (sk1 disallows Source-Id)send reset(seg), return;if (sk1 state not LISTEN)f if (sk1 state not SYN SENT)log system error, send reset(seg), return;if (RST set || sk2 not found)deliver(sk1,seg), return;1) if (sk2 state not LISTEN)discard(seg), return;/* sk2 is in LISTEN state, check listen queue */op req = srch listenq(sk2, seg->dst IP, seg->src-unicast IP)2) if (op req found)discard(seg), return;elsedeliver(sk1,seg), return;g/* RST with src ident can't match anycast or wildcard */if (RST set)discard(seg), return;/* SYN with unicast dest can't match anycast socket */if (sk1 bound to anycast)send reset(seg), return;3) if (sk2 state not LISTEN)discard(seg), return;/* here sk1 == sk2 */op req = srch listenq(sk1, seg->dst IP, seg->src-unicast IP)38

if (op req not found)deliver(sk1,seg), return;4) if (op req->rem anyaddr != seg->src-anycast IP)discard(seg), return;elsedeliver(sk1,seg), return;gThe conditions in lines 1), 2), 3) and 4) are similar - a SYN with Source-Id is receivedand a matching socket is available, but there exists another connection with samefour tuple, either in synchronized state (cases 1 and 3) or on a listen queue (cases 2and 4). If the current segment is delivered, this leads to two connections using samefour tuple. Such a condition is usually checked at the remote host (it allows only oneconnection to proceed, and resets other), but this can occur for example if remotecrashed and lost state. In this case the incoming segment is silently discarded. Oneof the two sockets will ultimately be reset by the peer, when loss of synchronizationis detected on a retransmit attempt. Then the other connection can proceed.3.4.3 UDP LayerSending endAn application can specify an anycast address for outgoing datagrams in two di�erentways, by binding to an anycast address, and by specifying an anycast source addressas ancillary data in a call to sendmsg().We provide a
ag (sndany) that an application can use to enable/disable sending ofSource-Id option. When a socket is bound to an anycast address, value of the
agis tested for each outgoing datagram. A Source-Id option identifying the anycastaddress is sent only if it is set. If the
ag is not set, the e�ect of a bind to anycast39

address is to allow reception of incoming datagrams destined for the anycast address,but outgoing datagrams use a unicast address without the option. This handling issimilar to that for multicast addresses - a multicast address cannot be used as sourceaddress in outgoing packets [HD97].When a socket is bound to wildcard address, it can receive datagrams on all localaddresses. A robust server may use the destination address on incoming requests asthe source address for outgoing responses. Receiving destination address on incom-ing datagrams and specifying source address on outgoing datagrams is accomplishedusing ancillary data to recvmsg() and sendmsg() respectively [ST97]. When ananycast address is speci�ed as ancillary data to sendmsg() and sndany
ag is set, aSource-Id option is automatically added. If sndany is not set, the sendmsg() returnsan error.Receiving endDemultiplexing upon receiving a datagram without Source-Id option remains un-changed. This uses the algorithm speci�ed in subsection 3.2.3. The correspondingroutine is get sock().The modi�ed demultiplexing is shown below. This routine is handed all incomingUDP datagrams.udp rcv(dgram)f /* Check for Source-Id Option */if (Src-Id not received)fsk = get sock(dgram->dst IP, dgram->src IP);if (found)deliver(sk,dgram), return;else 40

send-icmp(dgram), return;g/* Source-Id received */sk = get sock(dgram->dst IP, dgram->src-unicast IP);1) if (found && sk->rem anyaddr == dgram->src-anycast IP)deliver(sk,dgram), return;sk = get sock(dgram->dst IP, dgram->src-anycast IP);if (not found || Src-Id not allowed by sk)send-icmp(dgram), return;2) if (sk is connected && state req set)if (first datagram on sk)fsk->rem IP = dgram->src-unicast IP;sk->rem anyaddr = dgram->src-anycast IP;g elselog system warning message;deliver(sk, dgram);g Algorithm for UDP DemultiplexingIf the condition in 2) is true, a datagram with Source-Id option matched a socketwith remote's anycast address in the four tuple. If this is the �rst datagram to bereceived, the remote address is set to unicast address and the anycast address isremembered in rem anyaddr. This is used in case 1) to receive datagrams with theSource-Id option on the same socket.When application reissues connect() on a socket or the state req
ag is changedfrom 0 to 1, rem anyaddr is set to the unspeci�ed address (all zeros) and a
ag toindicate receipt of any datagrams on the socket is reset.41

Receiving ICMP errorWhen an ICMP error is received for a previously sent datagram, the original data-gram in error is returned as part of the ICMP message [CD95]. A socket correspond-ing to the message is determined by using the Source and Destination address/portpairs in the datagram for demultiplexing. If the original datagram contains a Source-Id option, the identi�er in the option must be used instead of the Source Address.3.4.4 Raw SocketRaw socket provides a raw interface to the IPv6 layer that can be used, for example,by ICMPv6. The other use is to allow reading and writing IPv6 datagrams containinga Next Header �eld that the kernel does not process, e.g., OSPF over IPv6 or RSVP.Any datagram received at the IPv6 layer and destined for the local host, is deliveredto all raw sockets in addition to corresponding transport layer (if one exists), if thespeci�ed Next Header �eld matches. All �elds in a received IPv6 header (other thanthe version number and Next Header �elds) and all extension headers are also madeavailable to the application [ST97]. Hence no change needs to be made for receivinga Source-Id option, but applications are responsible to interpret this appropriatelyand may need to be modi�ed.For sending a Source-Id option on outgoing datagrams, handling is similar to thecase of UDP, i.e., by setting sndany and either binding to an anycast address orspecifying an anycast source address through ancillary data to sendmsg().3.4.5 Applications Programming InterfaceAn ioctl() is provided to assign an anycast address to an interface. Input to thisroutine is an interface index and an IPv6 address.42

An ioctl() is needed to determine if the input address is a local anycast address.Three socket options are required to get/set values of various
ags. These
ags con-trol per socket anycast handling. All these options are de�ned at the IPPROTO IPV6level:� IPV6 SNDANY - sndany
ag controls sending of Source-Id option on outgoingdatagrams. Possible reasons to disable this - higher demultiplexing overheadfor datagrams which carry the option, or working of some stateful applications,etc.� IPV6 RCVANY - rcvany
ag controls demultiplexing of datagrams with Source-Idoption. Values for this option correspond to those described in subsection 3.3.4.� IPV6 STATE REQ - state req
ag is speci�c to UDP.getpeername() returns the remote address member of the four tuple. The re-mote address may change in some cases of anycast usage. Applications may usegetpeername() to notice a change in the peer's address, e.g., after a connect()succeeds in TCP.Applications can also learn a peer's anycast address using ancillary data. UDP canreturn the anycast address received in the Source-Id option on a per datagram basisin a call to recvmsg(). TCP uses a call to getsockopt() to receive one or moreancillary data objects in the bu�er, for all the optional information it wants to receive.One of the optional information is peer's anycast address that is remembered in thePCB (as rem anyaddr). In order to receive this optional information, applicationsmust call setsockopt() to turn on a corresponding
ag.43

Chapter 4Priority Support4.1 IntroductionA priority mechanism can be used to allocate network resources di�erentially amongtra�c classes. Requirement for QoS support is recognized in IPv6 base speci�cation[DH95]. It provides two mechanisms for QoS support -
ow labels and priority.Flow labels can be used to specify quantitative requirements on desired QoS such asbandwidth, delay, incurred loss for individual
ows. This requires use of appropriateQoS control service such as those described in [Wro97, SPG97] in conjunction witha signalling protocol such as RSVP [Wro96] to convey the desired QoS to routers. Incontrast, priority usually speci�es qualitative QoS requirements for groups of
ows.It can be used for best-e�ort tra�c to avoid the overhead of reservations.Example usage of priority are - to identify customers with premium service, toindicate enhancement layers of video, to indicate interactive tra�c etc. Prioritycan be used in various ways and di�erent routing domains/providers may imple-ment priority di�erently based on local policies, available resources and perceiveduser/application behaviour. 44

In this chapter we discuss issues related to IPv6 priority use. We implement variousmethods of priority separation based on an extended de�nition of the priority �eld.IPv4 [Pos81a] provides an 8 bit type-of-service for QoS support. This consists of4-bit TOS and 3-bit precedence. TOS can be used to decide on the route takenby datagrams [Bak95, Alm92]. The host requirements and router requirements spe-ci�cations [Bra89, Bak95] mandates setting of appropriate TOS in datagrams andprovision of TOS �eld in routing tables but TOS routing is not widely used. Preced-ence roughly corresponds to IPv6 priority �eld. The original intent was to providehigh availability of critical defense data. But the concept can be applied to otherscenarios. Precedence support in IPv4 was not used until recent years.Deering and Hinden [DH95] de�ne an enumerated priority with values ranging from0 to 15, to identify priority relative to packets from the same source. Priorities0 to 7 are assigned to tra�c which backs o� in response to congestion e.g., TCP.Priorities 8 to 15 are for non congestion-controlled tra�c e.g., real-time packets sentat constant rate. It suggests example priority values for popular applications, in thecongestion-controlled range. In the non congestion-controlled range least priorityshould be used for packets, a sender is most willing to discard in congestion andhighest priority for data it is least willing to drop. No relative ordering is impliedbetween the two classes.Above de�nition was superceded by a di�erent proposal [Hin97]. This removedreference to drop based priority because it allows sending data that is ultimatelydropped and wasting network resources. The proposal declares 4-bits as rewriteableby routers/ISP for private purpose. Priority bits are not signi�cant to receivers.Following recommendations are provided - low order bit is an Interactive bit, thatcan be set by sender to mean delay is more important than throughput. Routers/ISPsshould use other bits before touching this bit. Priority a�ects only queueing, andnot routing as it is re-writable.We assign meaning to additional two bits and implement various queueing algo-rithms. A weighted fair queueing (WFQ) algorithm [DKS89, CSZ92] is used to45

distribute link bandwidth among some classes. Within these classes, various mech-anisms are provided to separate sub-classes. One of these includes implementationof random early detection (RED) congestion control [FJ93], with di�erential dropthresholds. These mechanisms were implemented and tested in a LAN environmentbetween two machines.Rest of the chapter is organized as follows. In Section 4.2, we discuss issues in IPv6priority usage. Section 4.3 provides an overview of our de�nition and algorithms.Section 4.4 describes implementation details. Results of the implementation arepresented in Section 4.5.4.2 DiscussionIssues related to de�nition and intended use of the IPv6 priority �eld are discussed.These are based on discussions in the IPng working group [Lis97b].A basic requirement is that, any priority mechanismshould be usable for both unicastand multicast tra�c. One issue is that a 4 bit priority may be insu�cient in somecases and more bits are needed. Additional bits could be obtained in various wayssuch as overloading the version �eld, using special
ow label values, using a shimheader before the IPv6 header etc.Another issue is whether priority is set by hosts or routers. Both of these are allowed,applications set priority to indicate desired QoS while routers can overwrite this toimplement local policy. Some bits such as the interactive bit are important at boththe end-hops and hence should not be usually overwritten. One suggestion was touse two priority �elds, one set by sender, other set by routers that indicates actualpriority being o�ered to a packet.We note that end-to-end priority selection is not �xed per application but dependson the current transaction, e.g., a WWW client may be interactive tra�c at one46

instance, and later switch to bulk transfer.Currently an isolated bit indicates interactive tra�c. An alternative is to use 4 bitsas an enumerated �eld and allow 16 values. One value can be assigned to interactivetra�c, allowing rest for use in provider speci�c ways.Priority can be compared within a single source (
ow) or it can be comparable acrosssources. The de�nition in [DH95] provides only the former. This can be used, forexample, among layers of a video from the same source, where an explicit resourcereservation for the application is available in intermediate routers. But it is unsuitablefor best-e�ort tra�c, as it would require dynamic caching of state for ongoing tra�c,resulting in increased router complexity and overheads. Additionally a mechanism toprovide some form of QoS across sources of best e�ort tra�c, without the overheadof reservations, is desirable. Hence priority is also comparable across sources. Weconcern only with the latter use, though this may implicitly achieve the former infew cases.As di�erent routing domains may implement priority di�erently, ingress and egressrouters will need a mechanism to map priority of transiting packets, from those inprevious domain to those in next domain.Priority should not provide incentive for misuse such as users setting high priorityin all data. An appropriate de�nition can mitigate this for example if interactive bitis set, a reduced throughput may be provided. Another solution is to implementusage based charging - high priority packets cost more than low priority packets.In absence of this, a suitable policing mechanism is required. It can punish noncomplying users for example by discarding packets or lowering the priority. Policingdoes not necessarily imply separate state for each source. It could be enabled in timesof persistent congestion e.g., RED provides an e�cient method to detect misbehavingusers. Additionally having a rewritable priority is necessary for the same reason.47

ImplementationConsider the likely ways in which priority can be implemented. One or more of thesemechanisms can be used in isolation or in combination. Priority ordered queueingcan be provided, where high priority packets are served ahead of low priorities orhave high probability of timely arrival. This corresponds to either strict ordering,with starvation of low priorities; or non-strict ordering without starvation. Anothermethod is to provide a drop based priority. In times of congestion, low prioritypackets are dropped or have higher drop probability. Priority can be used as a linksharing mechanism to distribute bandwidth among classes. We provide all thesemethods, the one being used can be con�gured by administration.There are other implementations of priority. It can be used to map to appropriatepriorities provided by some link layers. It can be used similar to IPv4 TOS. Thoughthe current proposal does not recommend this use, there is no separate mechanismfor TOS routing in IPv6 and some providers may need this mechanism.UsageOur implementation provides various ways of using priority. This is motivated fromthe wide applicability of a priority mechanism. Below we consider the various uses.Cocchi et al. [CESZ91] argue for providing users a price vs performance tradeo�.Performance penalty to users of low priority is o�set by reduced cost of service.Monetary penalty for users of high priority is o�set by improved performance. Theydemonstrate that, it is possible to set prices so each user is more satis�ed with thecombined cost and performance of the network. Note some backbone providers incurrent now provide premium services based on IPv4 precedence.Use of priority to indicate interactive tra�c is a present requirement especially on lowbandwidth links such as wireless. Target applications are X tra�c, RPC, keystrokes48

etc. It can be used to provide low delay and also high availability for defense data,network management packets and routing protocol exchanges.As a link sharing mechanism, priority can be used in various ways. It can identifysubscribers provided with guaranteed capacity. It can isolate classes that use di�er-ent congestion control algorithms such as those using TCP and those on top of UDP.It can be used to experiment with newer service models in the Internet [FJ95]. Anew link sharing class can be created for the model, in restricted parts of Internet,and the service expanded, if it becomes popular. For example this can be used tosignal MBone tra�c.A potential future application is layered video, where enhancement layers can bedropped in congestion. As the base layer is retained, performance is not badly af-fected. But there are concerns to such a use. McCanne et al. [MJV96] argue that,as drop priority does not badly a�ect end-to-end performance in congestion, thereis no incentive for users to send less (in absence of pricing/policing). Additionaltra�c is dropped, thus wasting resources upto the bottleneck. They propose a solu-tion for multicast group communication (can be simply extended to unicast case).Source sends di�erent layers of a video on di�erent multicast groups. Receivers in-dependently join and leave these groups, based on perceived congestion. In times ofcongestion, users can leave groups corresponding to enhancement data. Such backo� strategy leads to e�cient utilization of network resources.While this is true, the proposed feedback mechanism is an area of research. Suchfeedback may not react fast enough in case of large group. A drop priority can beprovided that only �lters transient congestion. We believe this can be accomplishedusing RED though we are not aware of any simulation results that prove this.Priority can be used as congestion indication bits i.e., instead of dropping packetsrouter may mark them and end-hosts use the feedback. Another use, suggestedby Dave Clark, is to mark packets as `in-pro�le' or `out-of-pro�le' with respect toa tra�c policing function, that was contractually negotiated between network andclient. Routers may choose to exclude them from the pro�le policing computation.49

4.3 Overview of mechanismThe aim of our implementation is to de�ne a priority with wide applicability. Inabsence of a single method acceptable to all, we de�ne a general mechanism that canbe tuned to suit local requirements. We assign meaning to two additional bits asshown in Figure 8.+---+---+---+---+| L | P | R | I |+---+---+---+---+L : Link sharing class0 = link sharing class 01 = link sharing class 1P : Priority within link sharing class0 = low priority1 = high priorityR : Reserved for future useI : Interactive class0 = non interactive1 = interactiveFigure 8: Priority De�nitionThe most signi�cant two bits are considered only if I = 0. At the top level there arethree classes - link sharing class 0, link sharing class 1, and interactive class. Eachclass is provided a relative apportionment of link bandwidth e.g., class 0 may have60 %, class 1 has 10 % and interactive class has 30 %. The link sharing is implementedusing weighted fair queueing algorithm [DKS89, CSZ92]. This provides isolationbetween classes, one class cannot interfere with tra�c in another class. The exactallocation can be set by local administration. When some classes are not using theirshare, excess bandwidth will be used by other classes; but in times of congestion, noclass can exceed its allocation. Classes can be assigned a weight of 0 %.The maximum queue length for each top level class is con�gurable. Interactive class50

is served by using a proportionately smaller maximum queue length, compared toclass 0 and class 1. Additionally it may be assigned a lower percentage of linkbandwidth to control misuse. If D is desired maximum queueing delay at a node,and R is the rate allocation, maximum queue length L is given by L = D � R. IfInteractive class is unable to use the allocated bandwidth due to higher packet loss,its assignment can be increased until the target throughput is achieved.Within each of class 0 and 1, one of several methods can be selected by administra-tion.FCFS Queueing This simply implies absence of priorities within a class. It canbe used if, only a link sharing mechanism is required.Strict Ordering High priority is always queued ahead of low priority. In conges-tion, packets at the tail of the queue are dropped.It can guarantee minimum delay and high availability for defense applications,network management data or routing protocol tra�c. It starves low prioritiesand may be undesirable in common user applications. In addition, applicationsmay react unfavourably to arbitrary reordering within a
ow.Ordering without Starvation It tries to limit the number of high priority packetsthat cut ahead of low priority packets. This avoids starvation of low priorities.We implement an algorithm similar to one suggested in [PP88].Absolute Drop Priority Priority is used only in times of congestion, to drop lowpriority packets before any high priority packets.It is similar to a cell loss probability bit in ATM. It can be used in applicationslike layered video or to indicate less important frames in a MPEG2 stream.RED - Random Early Detection is a new congestion control technique for gatewaysproposed in [FJ93]. RED detects incipient congestion by computing an averagequeue length. When this exceeds a minimum threshold, an incoming packet isdropped (marked) with a certain probability, that is a function of the average51

queue length. Above an upper threshold, all arriving packets are dropped.RED replaces the drop-tail strategy used in routers. It o�ers various bene�ts- maintains low average queue size while allowing occasional bursts; numberof dropped packets roughly correspond to bandwidth used by a connection;avoids global synchronization of many connections simultaneously backing o�during congestion.Priorities can be provided by assigning di�erent drop probabilities to di�erentclasses [Bak96]. As increasing number of Internet gateways will use RED orits variant, we believe this scheme may �nd wide usage.Below we discuss likely usage of the link shared classes 0 and 1. These can correspondto congestion-controlled and non congestion-controlled tra�c respectively. Class 0tra�c backs o� in response to congestion e.g., TCP. As TCP constitutes around80 % of wide area Internet tra�c, it may be assigned a relatively higher proportionof bandwidth. Additionally newer applications such as source- or receiver-based rate-adaptive video [BTW94, MJV96], which react to congestion by reducing the rate,can use this class.Within class 0, further separation using RED with di�erential drop probability canbe utilized in various ways.� There are two classes of users, with one being o�ered premium service. Thismay require more than one P bit, though.� In layered video as mentioned previously. Low priority has higher drop prob-ability, so end-to-end performance is not badly a�ected in transient congestion.But if congestion persists, the instantaneous drop probability of high priorityalso increases due to increased average queue length. This leads to drop inhigh priority tra�c too. Thus there is incentive for users to implement backo� in absence of pricing/policing. This would require careful tuning of REDparameters, based on actual measurements in an environment. A single P bitmay be su�cient for this. 52

� Congestion-controlled rate-adaptive applications may be assigned a higher dropprobability than TCP, because their response to congestion can be slow (dueto large group size). An alternative is to use the class 1 for such tra�c, anduse RED separately in both classes 0 and 1.Class 1 can be used for non congestion-controlled tra�c. Many applications, suchas multicast video, do not back o� in response to congestion. Mixing such tra�cwith tra�c that backs o� in congestion only harms the latter. For example Mbonetra�c can use the class 1. Though the best approach is to implement back o�mechanisms in applications (we are considering only best e�ort tra�c here), thisrequires changes to current applications, as also such mechanisms are an area ofresearch. Such applications can be isolated from congestion-controlled class and canbe provided a relatively smaller allocation.An alternative way to use the mechanism, is using all top level classes for subscriberbased link-sharing (thus semantics of I bit change). Our mechanism would allowthree subscriber classes. Though it may be desirable to have more than 3 classes inthis case.Another use is to experiment with new service models as earlier mentioned. Oneservice model where the class 1 can be useful is the `predictive' or controlled loadreal-time service [CSZ92, Wro97]. Receivers dynamically adapt to increased delayupto a threshold. Network attempts to deliver end-to-end behaviour similar to thatreceived by best-e�ort tra�c, under unloaded condition. This is achieved usingadmission control. [CSZ92] shows that such service can be provided with FIFOqueueing. This could be assigned a class 1 priority. The two classes based on Pbit, can be provided di�erent maximum delay bounds. The way this may operate is,senders use
ow labels to identify individual
ows. Ingress routers provide policingfunction. When a packet complies with the
ow's negotiated tra�c speci�cation, itspriority is set to a suitable class 1 priority. Internal routers need not look-up statefor individual
ows, and may simply use the received priority.53

4.4 ImplementationThe mechanism is implemented at the queues of outgoing interfaces. It can also beprovided at other processing points concerned with allocation of resources, such aspacket bu�ers or link layer connections [Bak95], but do not concern with such usage.The output routines of various network protocols - IPv4, IPv6, IPX etc. invoke acommon routine at the device layer for each outgoing packet. Device layer providesa generic interface to upper layers, and hides device speci�c features. It invokes adevice speci�c output routine, if device idle, otherwise packets are queued in devicequeues. Queued packets are transmitted from an interrupt service routine, invokedwhen the device completes �nishes transmission of current packet. Detailed descrip-tion of device layer handling in Linux is provided in [Cox96].Design GoalsThe primary objective is to provide a mechanism to support priority based tra�cclasses. The implementation should have minimal per-packet processing overhead.Local administration should be able to dynamically con�gure the employed mechan-ism and related parameters.Specifying Priority in Outgoing PacketsWe provide a way for applications to specify priority on outgoing packets. Prioritycan be speci�ed by setting the sin6 flowinfo member of following structure. Itcomprises the least signi�cant 4-bits, of the most signi�cant byte of sin6 flowinfo,considered in network byte order.struct sockaddr in6 f 54

u int16m t sin6 family; /* AF INET6 */u int16m t sin6 port; /* transport layer port # */u int32m t sin6 flowinfo; /* IPv6 flow information */struct in6 addr sin6 addr; /* IPv6 address */g;This structure is passed to output functions - connect(), sendto() and sendmsg().For transmitted packets of a passively accepted TCP connection, this can be speci�edduring bind(). Additionally a socket option SO PRIORITY is available to change thepriority on a socket. A router uses the priority on received packets while forwardingon outgoing link.4.4.1 Weighted Fair QueueingThe top level classes require apportionment of link bandwidth. Various algorithmshave been proposed in literature to accomplish this [DKS89, Zha90, FJ95]. Demerset. al. [DKS89] propose a fair queueing (FQ) algorithm to allocate bandwidth fairlyamong number of tra�c sources. This algorithm attempts to emulate a bit-by-bitround robin (BR) discipline which is always fair. They further generalize it to allowarbitrary bandwidth assignments. This modi�ed algorithm is referred as weightedfair queueing in [CSZ92]. [Zha90] describe a clock based algorithm that emulatesTDM discipline, while providing arbitrary assignments and statistical multiplexing.It is functionally similar to WFQ [ZK91]. [FJ95] propose a hierarchical link sharingmechanism based on use of estimator, general scheduler and link sharing scheduler.It di�ers from WFQ in that the assignments are guaranteed over an interval of time,while WFQ attempts instantaneous guarantees.We have implemented WFQ. A conceptual explanation is given here. Consider aBR discipline. Fair sharing implies sending one bit from each active source in one55

round. Weighted BR implies sending more than 1 bit from each source in a round,the exact number depending on individual allocation. Letn� : number of bits allocated to source � per each roundR(t): total number of rounds upto time t� : linespeed of outgoing lineA(t) : set of active sourcesN(t): total number of bits sent by active sources per each round = P� n�, � 2 A(t)Then @R=@t = �=N(t). A packet of size P � whose �rst bit is serviced at time t0will have the last bit serviced at time t such that R(t) = R(t0) + P �=n�. Let packeti from source � and size Pi� arrive at the queue at time ti�, then the �nishing round(Fi�) for this packet is given byif (� 2 A(t))Fi� = Fi�1� + Pi�=n�,else Fi� = R(ti�) + Pi�=n�With more than one packets in the queues, ordering of the Fi� values gives theorder in which various packets �nish transmission in a weighted BR scheme. Thepacket based WFQ algorithm is simply that whenever a packet is to be scheduled fortransmission, one with the smallest value of Fi� should be selected. This algorithmasymptotically approaches the fairness of the weighted BR scheme and the maximuminstantaneous discrepancy is bounded by Pmax/min(n�), where Pmax is the maximumpacket size.There are two issues in implementation of the above algorithm -� Computing the exact bit round in progress (R(t)) on packet arrivals is di�cult.One solution proposed in [DH90] is to approximate the current bit round in56

progress, by the bit round in which current packet transmission �nishes. Theyargue that the short-term unfairness introduced by this approximation wouldbe similar in magnitude to that introduced by departure of packet based WFQfrom weighted BR discipline. This considerably simpli�es the implementation[Kes91].� Within queues for class 0 and class 1, packets can be arbitrarily reordered,hence the �nishing round number of a packet cannot be computed upon packetarrival, instead this is done when selecting a packet for transmission from thequeues.Organization of QueuesBefore describing implementation of WFQ, we consider organization of the variousqueues. In our implementation, each interface is represented by a struct devicethat stores interface speci�c parameters such as name of interface, port, irq, mtu,etc., and pointers to device speci�c routines such as initialization, output etc. Eachlink shared class is represented by a struct link class shown below. The structdevice contains an array class[3] of type struct link class whose elementscorrespond respectively to the three classes - class 0, class 1, and interactive. Eachpacket on an interface lies on the bu�er queue of one of these classes and the packetat the head of each class's bu�er queue is the one to be considered when selectingthe next outgoing packet.struct link class fstruct buff *prev, *next; /* head,tail pointers to buffer queue */unsigned char q weight; /* Relative bandwidth allocation */unsigned long q len; /* Length of queue in # of bytes */unsigned long nq len; /* Length of queue in # of pkts */unsigned long maxq len; /* Maximum length of queue in # of bytes */unsigned long fin round; /* Finish round number i.e. F � */57

struct red data red; /* RED specific information */g;In addition to above, a packet on class 0 or class 1 queue also lies on another queuecorresponding to the value of its P bit. There are four such queues represented by anarray pclass[4] of type struct pri class in struct device. struct pri classcontains head and tail pointers of corresponding (low/high) priority queue. Opera-tions on this queue are described later.WFQ ImplementationEach bu�er contains a quantity num round not part of the actual transmitted data,that corresponds to Pi�=n� above. The fin round member of each link class is setto zero during initialization. Two routines that implement WFQ are dev queue(),invoked when a packet arrives on a device, and dev transmit(), invoked when apacket is to be selected for link layer transmission./* This prevents wrap around */# define MAXPRI 4000000000Udev queue(buff, dev) fi = link class queue for buffer, j = P bit of buffer;k = i + j;enqueue buff on dev->class[i];if (i != 2)enqueue buff on dev->pclass[k];if (dev->class[i].q weight != 0)buff->num round = buff->len/dev->class[i].q weight;58

elseif (dev->class[i].q len != 0)buff->num round = MAXPRI;elsebuff->num round = MAXPRI - dev->class[i].fin round;gdev transmit(dev)f unsigned long min round = MAXPRI, tmp round;int out q = -1, empty q = -1, empty class[3];for (i = 0; i < 3; i++)if (dev->class[i].q len != 0) ftmp round = dev->class[i].fin round +dev->class[i].next->num round;if (tmp round <= min round) fmin round = tmp round;out q = i;ggelseempty class[++empty q] = i;if (out q == -1)return; /* all queues empty */dev->class[out q].fin round = min round;while (empty q != -1)dev->class[empty class[empty q--]].fin round = min round;59

if (min round >= MAXPRI)for (i = 0; i < 3; i++)dev->class[i].fin round = 0;dev->ll transmit(dequeue(dev->class[out q].next));g4.4.2 Handling of P-bitFor non-interactive classes, the P-bit provides another level of priority handling.Insertion order of a packet on its class[i] queue depends on the currently con�guredqueueing algorithm as described below. In each case, the packet is also queued atthe tail of corresponding pclass[k] queue.In FCFS queueing, each packet is queued at the tail of the corresponding class[i]queue. If maximum queue length is exceeded, a packet at the tail of the class[i]queue is discarded.In Strict Ordering, a high priority packet is queued ahead of any low priority packeton the corresponding class[i] queue, while a low priority packet is queued at thetail of the class[i] queue. If maximum queue length is exceeded, packets arediscarded from the tail of class[i] queue.In Ordering without Starvation, each packet is associated with a priority number,locally within the node. The initial values in each of the two classes (separated byP-bit) are con�gured by administration e.g., high priority assigns 4, low priorityassigns 2. Packets are inserted on the class[i] queue sorted by their prioritynumber. When a high priority packet cuts ahead of other packets, priority numberof packets behind in the queue is incremented by 1. When maximum queue lengthis exceeded, packets are discarded from the tail of class[i] queue.60

In Absolute Drop Priority, insertion in class[i] queue is similar to that in FCFSqueueing. But when maximum queue length is exceeded, packets are discarded fromthe tail of low priority pclass[k] queue. If there are no low priority packets, thena packet at the tail of the high priority pclass[k] queue is discarded. Note thatStrict Ordering also implies an Absolute Drop Priority.In RED, the insertion order on class[i] queue is similar to that in FCFS queueing.But before insertion, the RED algorithm is invoked to determine if the packet shouldbe dropped due to large average queue length. The exact RED algorithm is discussedin the next subsection.4.4.3 Random Early DetectionFloyd and Jacobson [FJ93] propose the random early detection algorithm and dis-cusses various aspects such as selection of parameters, simulation results, suggestionsfor e�cient implementation, etc. A conceptual description of the algorithm follows.RED uses a low pass �lter based on an exponential weighted moving average of thequeue size, to determine current level of congestion. This allows for occasional burstsin the tra�c, as transient congestion does not signi�cantly increase the calculatedaverage. This is given by avg (1 � wq)avg + wqqThe weight wq is the time constant of the �lter. If wq is too large, the calculatedaverage will be more sensitive to short-term congestion. If wq is too small, thereaction to incipient congestion will be slow.When the average queue size is less than a lower threshold (minth), the packet isnot dropped. If it exceeds an upper threshold (maxth), the packet is surely dropped.When the average is greater than the minth, but less than maxth, the probability ofdropping arrived packet increases with increase in the average queue size. The lower61

threshold should be set su�ciently large to maintain a high link utilization in the faceof bursty sources. Value of the upper threshold a�ects the maximum average delayallowed at the gateway. The actual packet dropping probability (pa) is calculated intwo stepspb maxp(avg �minth)=(maxth �minth)pa pb=(1 � count � pb)pb varies linearly from 0 to maxp as the average varies from minth to maxth. Herecount is the number of packets since the last dropped packet. The computationfor pa guarantees that the inter-drop time (number of packets between two droppedpackets) is represented by a uniform random variable. When the average queue sizeis halfway between minth and maxth, the gateway drops, on the average, roughlyone out of 1/maxp arriving packets [FJ93].RED ImplementationSuggestions for e�cient implementation of RED are given in [FJ93]. Gaynor [Gay96]describes an implementation of RED alongwith a proposed variation termed as de-rivative random drop. We measure the average queue length in terms of number ofpackets for simplicity, though a byte based RED can estimate the delay accurately.The initialization routine is shown below.#define TIMES 10#define RANTBL SZ 256#define IWEIGHT 9 /* 1/512 */int rantbl[RANTBL SZ];int *ranptr; 62

/* Initialization of RED parameters */red init(dev)f struct red data *red;ranptr = rantbl;red->scale c1 = TIMES + log of (red->max th - red->min th) base 2;for (i = 0; i < 2; i++) fred = &dev->link class[i].red;red->avg = 0;red->qtime = current time;red->count = -1;red->c1[0] = (1 << TIMES)/red->maxp inv[0];red->c1[1] = (1 << TIMES)/red->maxp inv[1];tmp = (red->min th << TIMES)/(red->max th - red->min th);red->c2[0] = tmp/red->maxp inv[0];red->c2[1] = tmp/red->maxp inv[1];ggThe parameter red->qtime is set to the current time whenever the queue lengthbecomes zero during selection of a packet for link layer transmission. The followingis invoked upon packet arrivals to determine whether the packet should be discardedor queued.#define ZERO TABLE SZ 1200int zero que[ZERO TABLE SZ]; 63

/* returns 1 to indicate drop */random early drop(dev, i, p bit)f struct red data *red = &dev->link class[i].red;if (red->nq len != 0)red->avg = red->avg +((red->nq len << TIMES) - red->avg) >> IWEIGHT;else fdiff = current time - red->qtime;if (diff < ZERO TABLE SZ)red->avg >>= zero que[diff];elsered->avg = 0;gif (red->avg < red->min th)red->count = -1, return 0;if (red->avg >= red->max th)red->count = -1, return 1;red->count++;pb = ((red->avg * red->c1[p bit]) >> red->scale c1) - red->c2[p bit];if (red->count == 0) franptr = (ranptr + 1) % RANTBL SZ;return 0;gif ((red->count * pb) >= *ranptr)64

red->count = 0, return 1;return 0;g4.5 Testing and ResultsTesting of above mechanisms was conducted by running a number of experimentsbetween two machines - a 100 MHz Pentium (dheeraj), and a 50 MHz PC-486(godavari) both attached to the same ethernet LAN. In all these tests (except RED),a number of UDP sources on dheeraj send packets of size 1K, as fast as they can.The throughput obtained by each UDP source is measured at the sending end. Thisequals the number of packets each source could send during a �xed time intervaldivided by length of the interval. Note that the throughput calculated thus, correctlyrepresents actual throughput only if no packets were not dropped due to queueover
ows. The kernel was modi�ed to maintain a count of total packets dropped foreach priority class.Various tests and their results are described below. For each UDP source the socketsend bu�er size is 64k.a) Overhead of WFQProcessing overhead for maintaining three link shared classes is compared to FIFOscheme with single queue and no priorities. A typical run consists of 3 UDP sourcessending packets with priorities - 0, 8 and 1, over a 20 sec interval. Runs for the twoschemes were intermixed in alternate order.FIFO 65

Max queue length - 190 (hence no drop)Average aggregate throughput over 5 runs - 1078 Kbytes/secWFQMax queue length - 80 : 80 : 80 (for each linksharing class)Average aggregate throughput over 5 runs - 1072 Kbytes/secb) Link SharingImplementation of WFQ is tested. Typical run consists of 3 UDP sources sendingpackets at di�erent priorities - 0, 8 and 1, over a 40 sec interval. The assignedweights for the three classes were 3 : 1 : 2.Average throughput over 5 runs - 530 : 179 : 354 (Kbytes/sec)Ratio - 2.96 : 1.0 : 2.0c) Interactive ClassCon�guration consists of two UDP sources at priorities - 0 and 1. Additionally twoping programs were run at the same time with priorities 0 and 1, to measure theround-trip time.Total ping requests sent - 300 300Maximum queue length - 40 : 20Average round trip delay - 51.9 : 42.5 (ms)66

d) Strict OrderingTest setup consists of two UDP sources at priority 0 and 4 (class 0) sending packetsover an interval of 20 sec.Throughput obtained - 9 : 987 (Kbytes/sec)e) Ordering without StarvationAll tests were over an interval of 20 sec with two UDP sources at priorities 0 and 4.Init. Priority # Throughput (Kbytes/sec)0 : 12 385 : 4420 : 24 346 : 6000 : 64 188 : 742f) Absolute Drop PriorityThe maximum queue length was �xed to 60k. Hence for two UDP sources withpriority 0 and 4 and send socket bu�er size of 64k, the queue will over
ow. The timeinterval of tests was 20 sec.Total packets discarded due to over
ow - 54577 : 0Throughput - 185 : 866 (Kbytes/sec)g) REDA set of 12 TCP connections were setup between dheeraj and a 133 MHz Pentium(skaold) - one half with priority 0, and other half with priority 4.67

wq - 1/512minth - 2maxth - 10maxp - 1/16 : 1/64Packets discarded by RED - 174 : 2Aggregate Throughput - 465 : 492 (Kbytes/sec)

68

Chapter 5Naming of Link-Local Addresses5.1 IntroductionIPv6 link-local addresses are de�ned for use on a single link. Packets with a link-localsource or destination address are not forwarded on other links. Routers con�gure alink-local address for each of their interfaces [HD97]. Additionally, standards [TN96]require that interfaces on hosts should con�gure a link-local address. A link-localaddress is formed by prepending the pre�x FE80::0/64 to a 64-bit interface ID asshown in Figure 9 [HD97]. A link-local address has an in�nite lifetime and does nottime out. | 10 || bits | 54 bits | 64 bits |+----------+----------------------+-------------------------+|1111111010| 0 | interface ID |+----------+----------------------+-------------------------+Figure 9: Forming a Link-Local AddressLink-local addresses can be used in various scenarios. In absence of routers, on-link69

nodes can communicate solely with the use of link-local addresses, thus enablingplug-and-play capability. Routing protocols for IPv6 use link-local addresses forcommunication between neighbouring routers [CFM97], as these remain unchangedin the face of site renumbering events such as change in service provider. For asimilar reason neighbour discovery makes use of link-local addresses of routers inRouter Advertisement and Redirect messages [NNS96].But a facility for associating corresponding system names is lacking. It is inconveni-ent for humans to remember and work with hexadecimal representation of addressesas speci�ed in [HD97], for example when specifying a server machine to contact to,or in the output from system utilities such as netstat, route etc. Hence a mech-anism to associate names with addresses is desired. Various conventional methodsfor storing this mapping are - using a hierarchical set of distributed DNS servers[Moc87a, Moc87b]; static con�guration in a system �le (typically /etc/hosts onUnix systems); or static con�guration on central server with dynamic distribution inrestricted environment e.g., Network Information Service (NIS).Storing system names for link-local addresses in the DNS requires a name server todetermine relative locations of client and node for which lookup (or reverse lookup)is queried. Extending DNS to provide this information, would signi�cantly increaseits complexity. Manual mechanisms, either through a static �le or con�guration ona central server, are error prone and di�cult to maintain in case of large number ofon-link nodes or when the set of members is dynamic such as on wireless networks.Harrington [Har97] proposes a solution to this problem. It de�nes a service on top ofUDP that uses a multicast group address of link-local scope, to which all nodes join.The association at an individual node is advertised, periodically and/or in responseto a query. Our implementation is based on this proposal. We modify the originalproposal in several ways. The exact interaction between resolver and a linknamedaemon is speci�ed. Various options available to implementations are described.Based on our experience, recommendations for future implementations are provided.In related work, Simpson [Sim95] de�nes a proposal to use ICMP messages for70

obtaining the Fully Quali�ed Domain Name (FQDN) [Moc87a, Moc87b] associatedwith IP (v4) addresses. More recently Crawford [Cra97] proposes a protocol similarto that proposed by Simpson [Sim95] for IPv6 networks. It is based on queryingan IPv6 node to supply its FQDN, where the authorization based on DNS style ofdelegation is replaced by the routing infrastructure. It also uses ICMP messages.Though such a service shares few elements in common with the mechanismdescribedin this chapter, both are conceptually di�erent. We have implemented the mechanismon a Linux IPv6 stack running a modi�ed version of the BIND 4.9.4 resolver.The rest of the chapter is organized as below. Section 5.2 discusses the proposedsolution and related issues. Section 5.3 provides a detailed description of the imple-mentation.5.2 Proposed SolutionWe describe an outline of the proposed solution. Frame formats for client requestsand server advertisements are speci�ed. Various related issues such as the use ofFQDN, multi-homed nodes and security are described.Our goal is to provide a simple way to associate names with link-local addresses. Aclient that requires name to link-local address lookup (or vice versa), sends a queryon a multicast group address of link-local scope (or the speci�c link-local address). Aserver on the node for which lookup was requested, replies to the request by sendinga unicast reply directly to the client. Additionally, each server periodically advertisesthe local mapping at a node on the multicast group address. This information canbe cached in recipient nodes for later use. This protocol works on top of UDP. Amulticast group address, FF02::1:1, and UDP port, 1903 are reserved for use of thisprotocol [Har97]. 71

Client RequestFigure 10 shows the format of a client request.
0 8

Hostname.. (max 1024-octet)

16 31

Link-Local Address (128-bit)

Version (1) Type (1 or 2) Length

ReservedSequence

Figure 10: Format of Client Request PacketFields:Version Version of the protocol, currently 1Type Type of request1 : Lookup a name for given address i.e., a reverse lookup2 : Lookup an address for given name i.e., a forward lookupRequest of Type 1 is sent on link-local address being queried, whilerequest of Type 2 is sent on the multicast group address.Length Length of the packet in octetsSequence A value used in matching requests to responses and to avoidduplicatesLink-Local Address Link-Local address for which hostname is reques-tedHostname - Hostname for which link-local address is requestedHostname is expressed as a FQDN. The reason for this is explained later. Themaximum length of a FQDN is 1024 octets. For a request of Type 1, the Hostname72

should be empty, while for a request of Type 2, link-local address should be set tothe unspeci�ed address. In an alternative format, Hostname immediately follows theReserved �eld, in a request of Type 2, and the link-local address is absent. But forsimplicity, the �eld is retained and is set to the unspeci�ed address.Harrington [Har97] uses two �elds for specifying the type of packet - a ADV/RQST�eld speci�es whether it is an advertisement or request, and a TYPE �eld in arequest speci�es one of Type 1 or Type 2 request. Instead we use a single Type �eldfor all three functions where a value of 3 indicates an advertisement.Server AdvertisementThe format of an advertisement is shown in Figure 11.
0 8

Hostnames (variable)

16 31

Link-Local Address (128-bit)

Version (1) Length

Sequence

Type (3)

TTLFigure 11: Format of Server Advertisement PacketFields:Version Version of the protocol, currently 1Type In an advertisement this contains a value of 3Length Length of packet in octets73

Sequence When responding to a request, this is copied from Sequence�eld of request, otherwise it is set to zeroTTL Time-to-live for advertised association, a value of FFFF speci�esPermanent association which need not be timed-out, value of 0 in-dicates stale entry that should be
ushed, and a value between thesetwo speci�es maximum number of seconds for which association maybe considered validLink-Local Address The address for which association is advertisedHostnames List of host names of the node corresponding to the link-local address; more than one names indicate aliasesHarrington [Har97] allows the speci�cation of only a single name in each advertise-ment. We extend it to allow multiple names. Hostnames in the list are separated bydelimiters, i.e., a null character, which does not occur in any name.The solicited advertisement is sent on a client's unicast address, while periodicadvertisements are sent to the multicast group. A mechanism to explicitly en-able/disable either or both advertisements should be provided. Unsolicited advert-isements are not strictly periodic, but a randomization is introduced between sub-sequent transmissions, to reduce probability of synchronization with advertisementsfrom other on-link nodes [FJ94]. Each node maintains a timer. When an unso-licited advertisement is sent, the timer is reset to a uniformly-distributed randomvalue between the con�gured MinLLAdvInterval and MaxLLAdvInterval; expira-tion of the timer causes next advertisement to be sent and a new random value beingchosen.Specifying Host NamesHost names in request and advertisement packets are speci�ed as a FQDN for ex-ample `godavari.cse.iitk.ernet.in'. An alternative would be to use simple host names74

instead, for example `godavari'. But multiple nodes with the same simple hostnamemay co-exist on a link, such as `www.cse.iitk.ernet.in' and `www.ee.iitk.ernet.in'. Aquery on the name `www' leads to ambiguity as both nodes reply. Hence we requirethe use of FQDN in both request and advertisements. Hence in this example a queryon just `www' will not be answered by any node.Note that a resolver allows con�guration of domain names and search lists in system�les. These can be automatically appended to user speci�ed names so that the �nalquery, sent on the protocol is a FQDN, even though user speci�ed a simple name.Consider the case of a node not con�gured to use DNS. It is identi�ed by a simplename unquali�ed by any higher level domains. Additionally resolver on such a nodewill not (usually) recognize search lists or domain names. When such nodes coexiston a link with nodes that use DNS, users on such nodes are responsible to specifythe FQDN in forward lookups.Harrington [Har97] suggests that requests be made general as possible and answersshould be as speci�c as possible. For example a user may query on `www' and allnodes with simple namematching `www' respond, irrespective of their domains. Eachresponse contains FQDN of the host. When multiple responses are received, somecriteria can be used to select one of the responses, for example the longest response,the largest TTL, the �rst received response etc. However we do not recommendthis, instead it is required that requests and responses both should be as speci�c aspossible. This avoids ambiguity and simpli�es implementations.Multihomed NodesVarious scenarios of multi-homed server and clients are speci�ed in [Har97]. Firsta multihomed server should restrict advertisement of an address to the interface towhich it is assigned. Second a client may have a neighbour with multiple interfaceson the same link or which has multiple link-local addresses assigned to the same75

interface. In this case the server may respond with several advertisements, one foreach link-local address. A client should allow this and may use a criteria such asreturning the largest TTL, or the �rst received address. In our implementation wereturn all the addresses for a name (or list of names) provided they identify the samenode. The BSD socket API allows returning multiple addresses and aliases of a nodein the same system call.Consider the case of a multihomed client. Library functions for name/address look-ups do not provide a way to specify the outgoing/incoming interface. Additionallya user's knowledge about the multiple interfaces may be limited. Hence a query issent on all outgoing interfaces, and multiple responses are handled by returning the�rst received response. A di�erent criteria can be used in this case. In absence of amechanism to learn the incoming interface, the result may not always be desirable.Recommendation for a solution to this problem is made in Section 5.3.SecurityThe above protocol is vulnerable to security threats, where a node masquerades asanother node and advertises a malicious association. Note that as link-local addressesare con�gured automatically in most cases, the probability of this occurring throughaccident is very small. We consider solutions to the security problem here.The IP Hop Limit �eld is set to 255 on both requests and advertisements. A receivingnode checks this value before further processing. As each router decrements HopLimit before forwarding, if the Hop Limit does not equal 255 at a receiver, thepacket is discarded and a system warning logged. This protects against attacks fromo�-link nodes.Usually a single link may have a level of trust, but in case of large number of on-linknodes, security can be a concern. In an environment where a node can overhear otherconversations such as ethernet, other forms of attacks are possible and the threat is76

inherent to the type of link technology employed rather than this protocol.For forward lookups , the search order may be set so as to query DNS �rst; if thatfails a local �le be consulted (/etc/hosts); and invoke this protocol after othermethods have been attempted and failed. For reverse lookups, a local �le can besearched �rst, if that fails, then the protocol may be invoked. Additionally, clientsmay completely ignore multicast advertisements, and use only direct queries andresponses. If other nodes cannot overhear unicast tra�c (such as on ATM), onlythe intended node receives a query, and sends a unicast reply. This minimizes theamount of threat.Additionally a client may monitor responses. When multiple responses are received,it can increase the log level. The most e�ective solution to the security problem is touse the IPv6 security mechanisms [Atk95c], Authentication Header [Atk95a] and/orEncapsulating Security Payload [Atk95b]. But a standardized method to providesecurity associations required by these mechanisms is not available.5.3 ImplementationWe describe the implementation of naming support for link-local addresses in detail.We used the Linux 2.1.21 operating system as target operating system. The resolverwas a modi�ed version of BIND 4.9.4 available in [Met].Design GoalsThe primary goal is to provide a simplemechanism for associating system names withlink-local addresses. The new functionality should be transparent to applications andthey should work unmodi�ed. There should be few changes to the resolver code. Itshould be possible to con�gure the mechanism to suit link characteristics and localrequirements. 77

We consider how these goals are achieved and how they a�ect our implementation.� Applications invoke routines in the standard C library (libc) for commonlyused functions. Many operating systems, including Linux, support dynamicallylinked libraries. This allows modifying library functions without recompilingprograms, if the function call interface is not modi�ed. As the resolver is partof libc, modifying the resolver results in a new version of this library andapplication transparency is obtained.� There should be few changes to resolver code. This was suggested in [Bou96].It recommends using a cache �le similar in format to /etc/hosts and of adynamic nature, which resolvers can search when lookup is desired.We refer to this �le as /etc/llcache. When a matching record is not found in/etc/llcache, a request is sent to a linkname daemon on the same node. Thedaemon forwards requests to the multicast group or speci�c link-local address,and receives advertisements. It modi�es /etc/llcache on receipt of a validadvertisement. The resolver searches the �le again after a delay. If a matchingrecord is found, it returns success, else an error is returned.This results in minimal change to resolver and reuse of routines for parsing/etc/llcache. We revisit this issue towards end of this section. This imple-mentation can be further simpli�ed by completely eliminating direct queries.Resolver searches the cache once, and if no entry is found, it returns error.Servers work only in periodic advertisement mode. But this would requireselection of suitable timers for the periodic advertisements. If the value is toolarge, the mechanism responds slowly to changes. If it is too small, it resultsin network congestion and wastage of resources.� Con�gurability is provided in the implementation. The two types of advertise-ments - unsolicited and query responses can be individually enabled/disabled.Various timers can be speci�ed when the daemon is started. Additionallyresolver provides some amount of con�gurability.78

5.3.1 BackgroundIn this subsection we discuss the API provided by a resolver, resolver con�gurationand format of the cache �le.API FunctionsGilligan et. al. [GTBS97] discusses the library functions for forward and reverselookups. A new function is speci�ed for IPv6 hostname to address lookups.#include <sys/socket.h>#include <netdb.h>struct hostent *gethostbyname2(const char *name, int af);af speci�es the address family and is set to AF INET6 for IPv6. If successful, thefunction returns addresses in a struct hostent, otherwise it returns a NULL pointer.struct hostent is de�ned in <netdb.h>.struct hostent fchar *h name; /* official name of host */char **h aliases; /* alias list */int h addrtype; /* host address type */int h length; /* length of address */char **h addr list; /* list of addresses */g;#define h addr h addr list[0] /* address, for backward compatibility */The conventional function for forward lookup in IPv4 is79

struct hostent *gethostbyname(const char *name);This function returns IPv6 addresses instead of IPv4 addresses, if following resolverinitialization is invoked by applications#include <resolv.h>res init();res.options |= RES USE INET6;Internally gethostbyname() actually invokes the function gethostbyname2() forthe IPv6 lookup. A protocol independent function, getaddrinfo(), is describedin [GTBS97]. In our implementation this also invokes gethostbyname2() for IPv6forward lookups.Reverse lookup is provided by following function#include <sys/socket.h>#include <netdb.h>struct hostent *gethostbyaddr(const char *src, int len, int af);A protocol independent function is also de�ned, getnameinfo(), which invokes theabove function in our implementation. Thus changes to the resolver are restrictedto two within functions gethostbyname2() and gethostbyaddr().Resolver Con�gurationResolvers provide a range of con�guration options. Important ones relevant to thisdiscussion are summarized. A search order can be speci�ed in a system �le. Name80

of this �le di�ers on di�erent operating systems, example names are /etc/svc.conf,/etc/nsswitch.conf, /etc/host.conf. This speci�es the order for lookups suchas DNS/Local/Linkname, DNS/Linkname/Local etc. The BIND 4.9.4 used in ourimplementation does not provide such an option and the order is �xed in implement-ation. We implement the search order DNS/Local/Linkname.The �le /etc/resolv.conf allows speci�cation of a domain or list of domains. Thisis used to automatically qualify a user speci�ed simple name or incomplete FQDN,before actual lookup.As the underlying protocol (UDP) is unreliable, the resolver retransmits a querysome number of times if no response is received. The number of retries and delaybetween retries is speci�ed by two variables res.retry and res.retrans. Bydefault these are set to 4 and 5 seconds respectively.Format of cache �leThe cache �le is similar in format to /etc/hosts. In case of IPv4, this consists ofone record per line. Each record contains a numeric address in dotted quad notation,followed by hostname and aliases on the same line. A '#' indicates that rest of aline is a comment. For IPv6, this format is extended to allow multiple addresses perhost. Each record contains a list of addresses, followed by a list of host names.An example cache �le is shown below# This is the cache file for ipv6 link local addresses. It is# dynamically modified by the linkname daemon. Do not modify# this manuallyfe80::c00f:8f fe80::ffff:fffe godavari.cse.iitk.ernet.in godavari # 0 2fe80::df48:9d dheeraj.cse.iitk.ernet.in dheeraj # 863451875 281

This �le is modi�ed by the daemon. New records are appended towards the end. Todelete a record, the �rst character on a line is converted to '#'. Some information isshown within comments after each record. This is ignored by resolver, but used bydaemon. The �rst number indicates maximum time for which record is valid, whilethe second number identi�es the corresponding link. When the number of deletedrecords exceeds a maximum count, the �le is selectively purged.5.3.2 Resolver ImplementationThe linkname mechanism is invoked in two ways - from gethostbyname2() aftera forward lookup using DNS and local �le fails; and in gethostbyaddr() when areverse lookup using local �le fails. A simpli�ed algorithm is shown in Figure 12.parse cache();if (found)fill and return struct hostent;for (i = 0; i < res.retry; i++) fsend query();sleep(res.retrans);parse cache();if (found)fill and return struct hostent;greturn NULL;Figure 12: Resolver Algorithm for Linkname mechanismIn a forward lookup, the above algorithm is executed successively for each name,formed using search lists, when the previous name fails. The cache �le is lockedbefore parsing and unlocked after parsing completes. This prevents daemon frommodifying the �le while resolver parses the �le. send query() sends a query to thelocal daemon. The destination address of this query is the loopback address, ::1, andUDP port is set to 1903. 82

5.3.3 Daemon ImplementationInitializationInitialization performed during startup is described below. A linkname daemon ob-tains the list of multicast capable interfaces and corresponding link-local address(es)(if any). FQDN of the local node and its aliases are determined. The cache �leis created and initialized with information about the local mapping i.e., link-localaddresses and names of the local node.A UDP socket is opened, bound to the wildcard address and port 1903. Though itbinds to the wildcard address, all packets with a destination address not equal to theloopback address or the multicast address FF02::1:1 are silently discarded. On eachmulticast capable link, it joins the multicast group FF02:1:1, using a setsockopt().If periodic advertisements are enabled, an alarm() timeout is set for the initial timer.Processing of Requests and Sending AdvertisementsA request can be received from either a local resolver or a remote daemon. Localrequests are veri�ed as follows� Request must be of type 1 or 2� In a reverse lookup (Type 1), length of Hostname must be 0; in a forwardlookup (Type 2), link-local address must be unspeci�ed� In a Type 1 request, the address must be link-local� In a Type 2 request, length of Hostname must be non-zero� Minimum Length of packet should be 24 octets83

� Length of Hostname should not exceed maximum length of a FQDN (1024octets)If any of these conditions is false, the packet is silently discarded. Following are thesteps in further processing of local requests. following� Set version to 1� Increment a global counter and set Sequence number to its value. Keep trackof the sequence number in a bitmap, so a Sequence number of S, correspondsto the bit (S mod MAX BITMAP SIZE) in the bitmap� Send on all outgoing (multicast capable) links with a hop limit of 255. Hoplimit can be speci�ed as ancillary data to sendmsg() [ST97]. The destinationaddress for a Type 1 request is speci�ed as the requested link-local address,while for a Type 2 request it is speci�ed as FF02::1:1Veri�cation checks on a remote request include those mentioned for a local request,additionally the version must be 1 and received Hop Limit must be 255. Furtherprocessing occurs as follows.� For a forward query, if the Hostname matches a local name or one of the aliases,an advertisement is sent separately for each of the link-local address assignedto the incoming interface� For a reverse lookup, if the Link-local address in packet matches any of thelink-local address assigned to the incoming interface, an advertisement is sentfor the particular address� All the local names and aliases are provided in each advertisement� Sequence number on advertisement is copied from Sequence number on thequery 84

� The response is sent directly to a requesting node, with hop-limit set to 255and outgoing interface same as incoming interface of requestIn addition to above, unsolicited advertisements are periodically sent on all inter-faces on the multicast destination address. Each advertisement contains a link-localaddress assigned to the interface and list of host names and aliases.Processing of Received AdvertisementsFollowing are veri�cation checks on receiving an advertisement.� Version must be 1� Source address must not be the loopback address� If Sequence number is non-zero, the advertisement must not a duplicate re-transmission� Hop limit must be 255� Advertised address must be link-local� Any of the advertised names must not exceed 1024 octetsFollowing are the steps in further processing of an advertisement.� Lock the cache �le� Search cache �le for an entry with the same interface, as the incoming interfaceof advertisement, and the same list of hostnames as provided in the Hostnames�eld of the advertisement 85

� If no matching entry found, append a new entry in the cache �le if advertisedTTL is non-zero� If a matching entry was found, it is deleted and a new entry is formed bymerging with received information� In the previous step, if advertised TTL is 0, a new entry is not appended� Unlock the cache �le� If the minimum timeout changed as a result of above processing, set the systemalarm() to a new timeout5.3.4 RecommendationsBased on the above implementation experience, we o�er several recommendations.The packet format can be further simpli�ed by eliminating the Length �eld. Lengthcan be obtained from the UDP length information returned by system calls such asrecvfrom().Locking of Cache FileOur implementation of �le locking is rudimentary. It can be improved by imple-menting 'readers/writer' mutual exclusion with priority to writerWe reconsider the recommendation to minimize change in resolver code. The solutionas we have implemented has a problem - it requires locking of cache �le. While thisoperation is done in the resolver or the daemon, there is no mechanism to preventmisbehaving users from locking the �le and cause starvation.A better solution would be not to use a cache �le. Instead this information canbe maintained in-core by the daemon, and provided upon query from resolver. We86

believe that while this increases resolver complexity, the amount of change is notsigni�cant. Additionally it speeds up lookup as �le operations are eliminated.Use of a `.link' pseudo-domainHarrington [Har97] proposes the use of a new pseudo-domain, `.link'. User may su�xa `.link' to the name in forward lookups, such as `godavari.cse.iitk.ernet.in.link'. Aresolver can interpret this to mean that linkname protocol should be invoked �rst,before other methods. But such use of a new pseudo-domain is discouraged [Lis97a].Speci�cation of a search order can be provided through de�ning suitable resolveroptions, instead of overloading DNS like names.While we agree with this, there exists another scenario where such a facility can bebene�cial. As mentioned earlier, the present API does not provide a mechanism tospecify outgoing/incoming interface in name/address lookups. An extended formof the `.link' method can be used to provide this without modifying the API. Wedescribe our proposal below.Instead of a `.link' domain, su�xes of the form `.link<id>' should be allowed, whereid indicates the index of a particular interface. The BSD API for IPv6 provides auniform way to identify interfaces at a node using an interface index [GTBS97]. Thiscan be used to specify the outgoing/incoming interface. We consider the two cases- a forward query and a received advertisement.� In a forward query, if no such domain is su�xed or the interface index is 0(an index 0 is not valid for any interface), the normal processing as describedpreviously occurs i.e., query is sent on all outgoing interfaces. But if a nonzero and existing index is speci�ed, query must be sent only on the particularinterface. The Hostname in the packet should not carry the pseudo-domainthough. 87

� A received advertisement includes names and aliases of the advertising node.The API provides the ability to receive multiple names of a node. In additionto the received list of names, another list of names can be constructed by thedaemon by su�xing each received name with the `.link<id>' domain, whereid is set to that of the incoming interface.

88

Chapter 6Conclusions and Future WorkWe looked at salient features of IPv6 which are targetted to achieve a wide set ofobjectives laid out for a next generation IP. A study of three experimental issues wascarried out in this thesis. Below we summarize what has been achieved and areas offurther work.Host Anycast SupportA solution is discussed for the problem with host anycast addresses that they cannotbe used as source address of datagrams and as destination address in ongoing statefulcommunication. Requirements at both end-points of a communication, the anycasthost and another host communicating with the anycast host, are speci�ed. Wefocus on mechanisms in the two transport protocols, TCP and UDP. API extensionsare suggested to provide
exible usage of host anycasting by applications. Thismechanism allows many TCP/UDP applications to work unchanged. Applicationsthat maintain state across multiple TCP connections or on top of UDP, or whichuse the end-point addresses at the application layer will need to be modi�ed. Thesolution is implemented in and tested in a LAN environment.89

More work needs to be done for secure communication using anycast address. Inter-action with AH needs to be provided. Research is required to design a solution forkey distribution in an anycast group. A recent standard [EK97] provides storage ofauthenticated public keys in DNS. It may be used to learn a public key of an anycastgroup during an initial query on anycast group name. Currently no mechanism isavailable to determine the required action when a datagram is received for whichcorresponding security association does not exist. It may be possible to query DNSto obtain keys in this case but this introduces complexity in protocol processing.Research is also required to solve the problem with Internet wide routing of hostanycast addresses.Priority SupportWe discuss the de�nition of priorities in IPv6. Priority is loosely de�ned to permit
exible use. Issues related to a priority mechanism and likely usage are discussed.We utilize two additional bits and implement various algorithms. Top level classes areisolated using WFQ and priorities within these classes are separated using variousqueueing algorithms - FCFS queueing, Strict Ordering, Ordering without Starva-tion, Absolute Drop Priority and RED. These mechanisms are implemented in andtested in a LAN environment between two machines. Various parameters can becon�gured dynamically, thus permitting tuning of the mechanism to suit individualrequirements.In further work, the various mechanisms should be tested in realistic conditions ofnetwork con�guration and application behaviour to determine the actual bene�t ofa priority mechanism. Work needs to be done for providing an e�cient policingmechanism. Our implementation ignores interaction with other network protocolssuch as IP, IPX, etc., on the same node. A hierarchical link sharing mechanismshould be implemented to completely isolate di�erent network protocols. This can beprovided using WFQ recursively or with class based queueing [FJ95]. Additionallysome problems have been cited with the RED algorithm proposed in [FJ93]. This90

needs to be looked into.Naming Link-Local AddressesThe problem of naming IPv6 link-local addresses is discussed. The name to addressassociation cannot be stored in DNS. A proposed solution to this problem is dis-cussed. This proposal is modi�ed in several ways to provide simplicity and
exibility.Exact interactions between resolver and server are speci�ed. Finally recommenda-tions are provided to further improve the protocol operation. These mechanisms havebeen implemented on a Linux IPv6 stack running a modi�ed version of the BIND4.9.4 resolver. It was tested between two hosts.The implementation can be further improved by implementing the suggested re-commendations. Also, interaction with IPv6 security mechanisms can be provided.Harrington [Har97] suggests an extension where a node may act as proxy for a set ofnodes and provides a proxy bit for this. This mechanism can be incorporated withfew modi�cations in our implementation.
91

Appendix AModi�cations RequiredFollowing is a list of bugs in the present implementation.� Special handling is provided when a packet with anycast destination address isreceived on a socket in TIME WAIT state. There is a useful BSD violation ofthe host requirements RFC - if a new request matches a socket in TIME WAITstate and the initial send sequence number is greater than any sequence num-ber used on the matched socket, then the connection is moved to CLOSEDstate and the segment is demultiplexed again to �nd another matching socket.Presently we provide such action in the case when a request is received witha anycast destination address. Instead this should be done only if the socketin TIME WAIT was the result of a connection establishment on the anycastaddress.� The special handling for UDP based on use of state req
ag needs to beimplemented.� In absence of AH, the IPV6 RCVANY
ag for TCP and UDP can be assignedonly one of two values, true or false.92

� The API implementation lacks two functionalities - ioctl() to determine ifgiven address is anycast and a setsockopt() to return peer's anycast addressin recvmsg() and getsockopt().� There is a single set of RED variables. It is only implemented in the class 0priority. It should be moved to the per device structure, and should have twosets of variables one each for class 0 and class 1 priorities.� The check for measuring maximum queue length is currently packet based,it should be byte based. On over
ow only a single packet is discarded, thisshould consider more than one packets.� Request for a reverse query is sent on the multicast group address, insteadof speci�c link-local address. Advertisements are not restricted to a speci�cinterface.� The maximum size of a domain is set to 255 instead of 1024 octets, and eachhostname is assumed to be null terminated.� The randomization in periodic advertisements needs to be provided.� Handling of SIGHUP signal needs to be provided, to initialize interface inform-ation without having to stop the daemon.� Con�guration options cannot be set on the command line, instead daemon pro-gram has to be recompiled. Solicited responses cannot be disabled presently.� A correct way to determine name and aliases of local host is required as DNSdoes not return this information.
93

References[Alm92] P. Almquist. Type of Service in the Internet Protocol Suite. RFC: 1349,July 1992.[Atk95a] R. Atkinson. IP Authentication Header. RFC: 1826, August 1995.[Atk95b] R. Atkinson. IP Encapsulating Security Payload (ESP). RFC: 1827,August 1995.[Atk95c] R. Atkinson. Security Architecture for the Internet Protocol. RFC: 1825,August 1995.[Bak95] F. Baker. Requirements for IP Version 4 Routers. RFC: 1812, June 1995.[Bak96] F. Baker. Mail to IPng Mailing List regarding use of IPv6 Flow Labelfor tag switching, October 11, 1996. Archive available by subscribing to`ipng' at majordomo@sunroof.eng.sun.com.[Bel89] S. Bellovin. Security Problems in the TCP/IP Protocol Suite. ACMComputer Communications Review, 19(2), March 1989.[Bel96] S. Bellovin. Defending against sequence number attacks. RFC: 1948, May1996.[BM93] S. Bradner and A. Mankin. IP: Next Generation (IPng) White PaperSolicitation. RFC: 1550, December 1993.94

[BM95] S. Bradner and A. Mankin. The Recommendation for the IP Next Gen-eration Protocol. RFC: 1752, January 1995.[Bou96] J. Bound. Mail to IPng Mailing List regarding draft-ietf-ipngwg-linkname-01.txt, February 13, 1996. Archive available by subscribing to`ipng' at majordomo@sunroof.eng.sun.com.[BR96] J. Bound and P. Roque. IPv6 Anycasting Service: Minimum Require-ments for End Nodes. Internet Draft, June 1996. Work in Progress.[Bra89] R. Braden. Requirements for Internet hosts { communication layers. RFC:1122, October 1989.[BTW94] J. Bolot, T. Turletti, and I. Wakeman. Scalable Feedback Control for Mul-ticast Video Distribution in the Internet. Proceedings of SIGCOMM'94,24(4), October 1994.[CD95] A. Conta and S. Deering. Internet Control Message Protocol (ICMPv6)for the Internet Protocol Version 6 (IPv6) Speci�cation. RFC: 1885,December 1995.[CESZ91] R. Cocchi, D. Estrin, S. Shenker, and L. Zhang. A Study of PriorityPricing in Multiple Service Class Networks. SIGCOMM'91 Conference,21(4), September 1991.[CFM97] R. Coltun, D. Ferguson, and J. Moy. OSPF for IPv6. Internet Draft,March 1997. Work in Progress.[Cox96] A. Cox. Network Bu�ers and Memory Management. Linux Journal,October 1996.[Cra97] M. Crawford. IPv6 Name Lookups Through ICMP. Internet Draft, March1997. Work in Progress.[CSZ92] D. Clark, S. Shenker, and L. Zhang. Supporting Real-Time Applicationsin an Integrated Services Packet Network: Architecture and Mechanism.SIGCOMM'92 Conference Proceedings, 22(4), October 1992.95

[DH90] J. Davin and A. Heybey. A Simulation Study of Fair Queueing and PolicyEnforcement. ACM Computer Communications Review, 20(5), October1990.[DH95] S. Deering and R. Hinden. Internet Protocol Version 6 (IPv6) Speci�ca-tion. RFC: 1883, December 1995.[DKS89] A. Demers, S. Keshav, and S. Shenker. Analysis and Simulation of a FairQueueing Algorithm. SIGCOMM'89 Symposium, 19(4), September 1989.[EK97] D. Eastlake and C. Kaufman. Domain Name System Security Extensions.RFC: 2065, January 1997.[FJ93] S. Floyd and V. Jacobson. Random Early Detection Gateways for Conges-tion Avoidance. IEEE/ACM Transactions on Networking, 1(4), August1993.[FJ94] S. Floyd and V. Jacobson. The Synchronization of Periodic RoutingMessages. IEEE/ACM Transactions on Networking, April 1994.[FJ95] S. Floyd and V. Jacobson. Link Sharing and Resource Management Mod-els for Packet Netoworks. IEEE/ACM Transactions on Networking, 3(4),August 1995.[FLYV93] V. Fuller, T. Li, J. Yu, and K. Varadhan. Classless Inter-Domain Routing(CIDR): an Address Assignment and Aggregation Strategy. RFC: 1519,September 1993.[Gay96] M. Gaynor. Proactive Packet Dropping Methods for TCP Gateways.Unpublished manuscript, October 1996. Available at URL http://www.-eecs.harvard.edu/~gaynor/�nal.ps.[GN96] R. Gilligan and E. Nordmark. Transition Mechanisms for IPv6 Hosts andRouters. RFC: 1933, April 1996.[Gro94] P. Gross. A Direction for IPng. RFC: 1719, December 1994.96

[GTBS97] R. Gilligan, S. Thomson, J. Bound, and W. Stevens. Basic Socket Inter-face Extensions for IPv6. RFC: 2133, April 1997.[Har97] Dan Harrington. Link Local Addressing and Name Resolution in IPv6.Internet Draft, January 1997. Work in Progress.[HD97] R. Hinden and S. Deering. IP Version 6 Addressing Architecture. InternetDraft, June 1997. Work in Progress.[Hin97] Robert Hinden. Meeting Minutes of IPng working group at the Mem-phis IETF, April 10 & 11, 1997. URL http://playground.Sun.COM/ipng/minutes/IPng-Meeting.April97.txt.[HOD97] R. Hinden, M. O'Dell, and S. Deering. An IPv6 Aggregatable GlobalUnicast Address Format. Internet Draft, May 1997. Work in Progress.[Hui94] C. Huitema. The H Ratio for Address Assignment E�ciency. RFC: 1715,October 1994.[IEE97] IEEE. Guidelines for 64-bit global identi�er (EUI-64) registration au-thority, March 1997. URL http://standards.ieee.org/db/oui/tutorials-/EUI64.html.[Jay96] M. Jayaram. Implementation of IPv6 for Linux. Master's thesis, In-dian Institute of Technology, Kanpur, Computer Science & EngineeringDepartment, June 1996.[Joh96] M. Johnson. The Linux Kernel Hackers' Guide. On-line document, URLhttp://www.redhat.com:8080/HyperNews/get/khg.html, 1996.[JP96] D. Johnson and C. Perkins. Mobility Support in IPv6. Internet Draft,November 1996. Work in Progress.[Kes91] S. Keshav. On the E�cient Implementation of Fair Queueing. Journal ofInternetworking: Research and Experience, 2(3), September 1991.97

[KM87] C. Kent and J. Mogul. Fragmentation Considered Harmful. SIGCOMM'87 Workshop on Frontiers in Computer Communications Technology,17(5), August 1987.[Lis97a] IPng Mailing List. Discussion on draft-ietf-ipngwg-linkname-01.txt,January 31 to February 25, 1997. Archive available by subscribing to`ipng' at majordomo@sunroof.eng.sun.com.[Lis97b] IPng Mailing List. Discussion on IPv6 priority �eld usage and Qry onTra�c Policing (IPv6 header changes), March 4 to June 21, 1997. Archiveavailable by subscribing to `ipng' at majordomo@sunroof.eng.sun.com.[MDM96] J. McCann, S. Deering, and J. Mogul. Path MTU Discovery for IP version6. RFC: 1981, August 1996.[Met] Craig Metz. inet6 applications kit for Linux. URL ftp://ftp.inner.net/inet6-apps-0.04.tar.gz.[MJV96] S. McCanne, V. Jacobson, and M. Vetterli. Receiver-driver Layered Mul-ticast. Proceedings of SIGCOMM'96, 26(4), August 1996.[Moc87a] P. Mockapetris. Domain Names - Concepts And Facilities. RFC: 1034,November 1987.[Moc87b] P. Mockapetris. Domain Names - Implementation And Speci�cation.RFC: 1035, November 1987.[NNS96] T. Narten, E. Nordmark, and W. Simpson. Neighbor Discovery for IPVersion 6 (IPv6). RFC: 1970, August 1996.[PK94] C. Partridge and F. Kastenholz. Technical Criteria for Choosing IP TheNext Generation (IPng). RFC: 1726, December 1994.[PMM93] C. Partridge, T. Mendez, and W. Milliken. Host anycasting service. RFC:1546, November 1993.[Pos80] J. Postel. User Datagram Protocol. RFC: 768, August 1980.98

[Pos81a] J. Postel. Internet Protocol. RFC: 791, September 1981.[Pos81b] J. Postel. Transmission Control Protocol. RFC: 793, September 1981.[PP88] W. Prue and J. Postel. A Queueing Algorithm to Provide Type-of-Servicefor IP Links. RFC: 1046, February 1988.[Sim95] W. Simpson. ICMP Domain Name Messages. RFC: 1788, April 1995.[SPG97] S. Shenker, C. Partridge, and R. Guerin. Speci�cation of GuaranteedQuality of Service. Internet Draft, February 1997. Work in Progress.[ST97] R. Stevens and M. Thomas. Advanced Sockets API for IPv6. InternetDraft, March 1997. Work in Progress.[Ste90] R. Stevens. Unix Network Programming. Prentice Hall, Englewood Cli�s,NJ, USA, 1990.[Ste94] R. Stevens. TCP/IP Illustrated: The Protocols, volume 1. Addison-Wesley, Reading, MA, USA, 1994.[TH95] S. Thomson and C. Huitema. DNS Extensions to support IP version 6.RFC: 1886, December 1995.[TN96] S. Thomson and T. Narten. IPv6 Stateless Address Autocon�guration.RFC: 1971, August 1996.[WC92] Z. Wang and J. Crowcroft. A Two-Tier Addess Structure for the Internet:A Solution for the Address Space Exhaustion. RFC: 1335, June 1992.[Wro96] J. Wroclawski. The Use of RSVP with IETF Integrated Services. InternetDraft, October 1996. Work in Progress.[Wro97] J. Wroclawski. Speci�cation of the Controlled-Load Network ElementService. Internet Draft, May 1997. Work in Progress.[Zha90] L. Zhang. VirtualClock: A New Tra�c Control Algorithm for PacketSwitching Networks. SIGCOMM'90 Symposium, 20(4), September 1990.99

[ZK91] H. Zhang and S. Keshav. Comparison of Rate-Based Service Disciplines.SIGCOMM'91 Conference, 21(4), September 1991.

100

