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Abstra
tMany large web sites get more than 100 million hits everyday. They need as
alable web server system that 
an provide better performan
e to all the 
lientsthat may be in di�erent geographi
al regions. Higher delays and losses are 
ommonon WAN links. To provide a better servi
e to all the 
lients, it is natural to havefully repli
ated web server 
lusters in di�erent geographi
al regions. In su
h anenvironment, one of the most important issue is that of server sele
tion (and loadbalan
ing). The 
lient's request should be dire
ted to one of the servers in a waythat the response 
an be qui
k. We assume that web servers are fun
tionally homo-geneous, i.e. any one of them 
an serve any 
lient request. Another important pointis that this system should not require modi�
ation of any 
lient side 
omponent orexisting standard proto
ol.In this thesis, we have developed a test bed to emulate the world wide webenvironment and 
ompare di�erent s
hemes. A large number of systems have beenproposed to do this load balan
ing. We also propose a new s
heme whi
h is basedon estimating the round trip time between the 
lient and various server 
lusters.The proposed s
heme is shown (through emulation) to perform signi�
antly betterthan many of the existing s
heme.
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Chapter 1Introdu
tion
1.1 MotivationNumber of users a

essing the Internet is in
reasing quite rapidly and it is 
ommonto have more than 100 million hits a day for popular web sites. For example,nets
ape.
om website re
eives more than 120 million hits a day. The number ofusers is expe
ted to 
ontinue in
reasing at a fast rate and hen
e any website thatis popular, fa
es the 
hallenge of serving very large number of 
lients with goodperforman
e. Full mirroring of web servers or repli
ation of web sites is one wayto deal with in
reasing number of requests. Many te
hniques exist for sele
tion ofnearest web server from the 
lient's point of view. Ideally, sele
tion of best servershould be done transparently without the intervention of the user.Many of the existing s
hemes do only load-balan
ing. These s
hemes assumethat the repli
ated site has all the web servers in one 
luster. This is alright formedium sized sites, but beyond a 
ertain amount of tra�
, the 
onne
tivity to thisone 
luster be
omes a bottlene
k. So large web sites have multiple 
lusters, and it isbest to have these 
lusters geographi
ally distributed. This 
hanges the problem to�rst sele
t the nearest 
luster and then do load balan
ing within the servers of that
luster. Of 
ourse, if all servers in a 
luster are heavily loaded then another 
lustershould have been 
hosen. So the problem is more 
omplex in su
h an environment.Designing su
h system involves making de
isions about how best server is sele
ted1



for a request su
h that user re
eives response of request in minimum time and howthis request is dire
ted to that server. In most strategies, a server is sele
ted withouttaking into a

ount any system state information, e.g. random, round robin et
.Some poli
ies use weighted 
apa
ity algorithms to dire
t more per
entage of requeststo more 
apable servers. But few strategies sele
t a server based on the server stateand very few strategies take 
lient state information into a

ount. There is alwaysa tradeo� between the overhead due to 
olle
tion of system state information andperforman
e gain by use of available state information. If too mu
h state information(of server or 
lients) is 
olle
ted, it may result in high overheads for 
olle
tion ofinformation and performan
e gain may not be 
omparable to overheads. So wemust 
arefully 
olle
t only that state information that might improve performan
eof system as seen by 
lients but do not result in very high overheads.In this thesis, we have proposed a new s
heme based on 
olle
ting informationabout the load on ea
h server as well as estimating round-trip time between 
lustersand those 
lients whi
h make large number of requests.To study the tradeo�s and impa
t of di�erent parameters on a web server system,a framework is required. The framework should enable evaluation and 
omparisonof performan
e of distributed web server systems. The framework should allow easyimplementation of any s
heme and analyze the performan
e of web server systemwith new poli
ies.In this thesis, we have designed and implemented a test bed to provide su
h aframework. We have also measured performan
e of few poli
ies implemented in thistest bed through emulation of world wide web s
enario.1.2 Steps in HTTP request servi
eBefore we dis
uss further, it is important to understand how a HTTP request isservi
ed, so it is brie�y dis
ussed here. A 
lient's request for desired obje
t isful�lled in following steps:� Domain name to IP address mapping : The domain name present in URLmust �rst be translated to an IP address. The 
lient software requests its lo
al2



resolver for it, if this mapping is not in its 
a
he. The resolver in turn returnsthe IP address for that domain name, that it may get from Intermediate nameservers (whi
h may have 
a
hed this mapping) or from dire
tly from authorizedDNS for that domain name either re
ursively or iteratively. More details aboutDNS me
hanism 
an be found in RFC 1034 [26℄ and RFC 1035 [27℄.� Request for obje
t to server with that IP address: Then 
lient softwaresends request for obje
t to server having that IP address. The server mayreturn requested obje
t dire
tly or it may redire
t it to other server usingHTTP header options or fet
h the obje
t from other server and deliver to
lient or may transparently forward the request to other server whi
h repliesdire
tly to 
lient with address of forwarding server, et
.Thus HTTP request servi
e path allows us to distribute requests at two levels,�rst at DNS at the time of resolution of domain name to server IP address, andthe other at server when request rea
hes at that server. Any system 
onsistingof multiple servers and some request distribution me
hanism is termed DistributedWeb Server System (DWSS).Time taken for servi
e of any HTTP request submitted by 
lient depends on twomajor fa
tors namely network 
onditions and server load. Even if there is a 
apableserver system present, but the 
onne
tivity of 
lient in terms of delay, availablebandwidth or pa
ket loss is not good, it will sees large delays. If server system issaturated with requests, time taken for servi
e is very large. So for keeping responsetime minimum, web server system should take into a

ount both the fa
tors.1.3 OutlineIn 
hapter 2, we �rst present a brief survey of existing approa
hes for request dis-tribution me
hanisms. In 
hapter 3, design goals for system, system model taken,approa
h used and algorithms for ea
h server side 
omponent of proposed ar
hite
-ture are dis
ussed.To evaluate the performan
e of proposed ar
hite
ture and 
ompare it with otherexisting proposals, a �exible test bed was designed to emulate real Internet like3



s
enario in whi
h various ar
hite
tures for Distributed Web Server System 
an beemulated with minimal e�orts. In 
hapter 4, design goals, overview and di�erent
omponents of this test bed are des
ribed. In 
hapter 5, di�erent algorithms imple-mented on the test bed and measured performan
e are brie�y dis
ussed and �nallythe performan
e results obtained for various s
hemes are 
ompared. In 
hapter 6,we �nally present 
on
lusion and future extensions. In appendix, we give shortdes
ription of softwares used by us.

4



Chapter 2Related Work
2.1 Relation with load balan
ing in distributed sys-temsLoad balan
ing in distributed systems has been the subje
t of resear
h for last fewde
ades. The traditional load balan
ing problem deals with load unit migration fromone pro
essing element to another when load is light on some pro
essing elementsand heavy on some other pro
essing elements. It involves migration de
ision, i.e.whi
h load unit(s) should be migrated and then migration of load unit to othernodes.Both of these parts 
an be 
arried out either lo
ally or globally. Load balan
ing
an be 
lassi�ed a

ording to the de
ision base and migration spa
e [29℄. If migrationde
ision is 
arried out a

ording to lo
al load situation and that of neighbors, it is
alled lo
al de
ision base. If this de
ision is based on load 
ondition of subset ofthe whole network, then it is 
alled global de
ision base. Similarly if load unit ismigrated to dire
t neighbors, then it is 
alled lo
al migration spa
e, otherwise it is
alled global migration spa
e. So a

ording to de
ision base and migration spa
e,four di�erent 
ategories of s
hemes emerge:� Lo
al De
ision base Lo
al Migration Spa
e (LDLM)� Lo
al De
ision base Global Migration Spa
e (LDGM)5



� Global De
ision base Lo
al Migration Spa
e (GDLM)� Global De
ision base Global Migration Spa
e (GDGM)A taxonomy for load balan
ing in distributed systems is presented in [10℄.However, these approa
hes for load balan
ing are not suitable for load balan
ingin the web 
ontext for several reasons. First, in the web 
ontext there are multi-ple points for load balan
ing (e.g. at the DNS or at the server) while traditionalte
hniques assume a single point. Se
ondly, the 
ost fa
tors are not homogeneous inweb and 
an vary a lot, while in traditional systems most servers are assumed to begenerally of similar 
apa
ity and 
apability. Thirdly, the jobs were assumed to be
ompute intensive and hen
e the fo
us was to distribute the 
ompute load. In theweb, on the other hand, the load is mostly I/O oriented where 
a
hing plays a verysigni�
ant role in performan
e and will impa
t the s
hemes. Even 
ost of migrationof load unit and granularity of load varies for di�erent points of load balan
ing. Dueto these, and other reasons, it is best to 
onsider the load balan
ing problem in theWeb as a new problem, whi
h requires di�erent approa
hes.In web 
ontext, whi
h server to sele
t has been mostly studied from 
lient pointof view, i.e. either 
lient side DNS or 
lient proxy or 
lients themselves de
ide whi
hserver to 
hoose. Usually, these entities send probes to multiple servers and sele
tbest server based on probe results or they take into a

ount previous history ofresponses sent by server. But these probes are usually not su�
ient to a

uratelymeasure server load 
onditions, sin
e load on servers 
an 
hange easily with timeand usually these probes 
an not �nd 
urrent load on the servers and until all 
lientsuse su
h softwares and there is 
o-operation with server side entities (it is howeververy di�
ult to rea
h at 
ommon method a

eptable to all), they will either in
urtoo mu
h overhead or will not give mu
h better performan
e.Example of 
lient themselves sele
ting server is Nets
ape [15℄ or Java Appletrunning at 
lient to probe servers is [31℄. In s
heme proposed by Be
k and Moore[7℄ in their I2-DSI system, DNS resolver at 
lient side sends probes to server tosele
t server with minimum response time. In s
heme proposed by Baentsh et al [6℄servers send information about other servers in hierar
hy through extra http headersto 
lient side proxy and then 
lient side proxy sele
ts server.6



There are various proximity metri
s 
onsidered for sele
tion for best server by
lients. Crovella et al [14℄ 
ompare random server sele
tion, hop 
ount and round triptime based sele
tion and �nd that RTT has relatively higher 
orrelation with laten
yper
eived by 
lient. Sayal et al [25℄ also in
lude HTTP laten
y (time measured bysending HTTP HEAD request) and all server polling in their study and �nd HTTPlaten
y has highest 
orrelation with a
tual server response time for other requestsand present refresh based algorithms for best server sele
tion at 
lient side.Client side approa
hes are not general, sin
e they assume modi�
ation in 
lientside 
omponents, some approa
hes even modify proto
ols. Thus these types ofapproa
hes 
an not improve performan
e for all the 
lients.Gwertzman et al [21℄ �rst pointed out the need of 
reating 
a
he server on otherside of USA when demand from that side in
reases. Guyton et al [20℄ fo
us on hop
ount based metri
 and 
ost of 
olle
tion of information for server sele
tion.Server sele
tion at server side DNS is done based on geographi
al proximityapproximated using 
lient IP address or hop 
ount information obtained from routersin Cis
o's Distributed dire
tor [11℄. Given that 
lients are distributed geographi
allyfar apart, stati
 and relatively less 
ostlier metri
s like hop 
ount for proximityinformation are not found good in study by [14℄. Ammar et al [32℄,[17℄ propose lo
alany
ast resolver that is near a large number of 
lients, to whi
h servers push theirperforman
e information and probing agent probes servers for path information.This proposal assumes use of any
asting domain name(ADN) and any
ast resolvernear 
lients, whi
h on
e again la
ks general appli
ability.In next se
tion we present a brief survey of me
hanisms used for distribution of
lient requests.2.2 Me
hanisms for request distributionCardelini et al [9℄ 
lassify web server ar
hite
tures based on the entity whi
h dis-tributes the in
oming requests among the servers in four 
lasses of methods. Someof the methods in ea
h 
ategory use feedba
k based algorithms and some use non-feedba
k algorithms as dis
ussed in [1℄. So we 
an 
ategorize the request distribution7



me
hanisms based on entity that routes the request as follows:� Client-based approa
h� DNS-based approa
h� Dispat
her-based approa
h� Server-based approa
h� Any
astLast me
hanism, Any
asting does not involve any expli
it routing by web serversystem, but is automati
ally done as part of IPv6 proto
ol by internetworks [8℄.These me
hanisms o�er transparen
y at various levels: manual sele
tion o�ersno transparen
y be
ause URLs are di�erent; Client and DNS-based me
hanisms mayo�er URL level transparen
y, i.e. URL is same but resolved IP addresses may bedi�erent; Dispat
her based approa
hes usually o�er IP address level transparen
y,i.e. even resolved IP address is also same.Some me
hanisms are geographi
ally s
alable, i.e. 
luster of servers 
an be eitherin LAN or WAN. Some approa
hes are fault tolerant and highly available but othersare not. Some approa
hes require repli
ation of whole web-site, while others allowpartial repli
ation.2.2.1 Client-based approa
hIn this approa
h, 
lient side entity is responsible for sele
ting the server so no serverside pro
essing is required for sele
tion of server. The routing to repli
a is done by
lient software (browser) or by 
lient-side DNS or proxy servers. So these s
hemes
an be 
ategorized as follows:� Web 
lients : In this approa
h 
lients are aware of existen
e of repli
asof same resour
e on multiple servers and they 
hoose the repli
a themselves.Following are two s
hemes that utilize 
lient software for server sele
tion.8



1. Nets
ape's Approa
h : This approa
h is taken by Nets
ape Navigatorbrowsers [15℄. On a

ess to Nets
ape home page, browser generates a ran-dom number X between 1 and 32 and a

esses http://homeX.nets
ape.
om.Ea
h server 
an have multiple homeX aliases pointing to it so that 
lientsoftware need not to be modi�ed in 
ase more servers are deployed, just
hanging aliases will su�
e.This approa
h is not generally appli
able as not all 
ompanies 
an 
on-trol 
lient software, it requires re-installation or 
hange of web 
lients ifnumber of aliases in
rease. Also, it does not guarantee server availabilityand load balan
ing of servers be
ause if any server is down or overloaded(and the aliases has not been 
hanged), random sele
tion will still try toa

ess resour
e from that server.2. Smart Clients : In s
heme proposed by Yoshilakawa et al [31℄, a JavaApplet is run on the 
lient side, whenever user a

esses the DistributedWeb Server System. This Applet knows all the IP addresses of serversin the System. Applet sends messages to probe node load, response timeand network delays, et
., and sele
ts the best node.This approa
h does not require 
lient software modi�
ation and providess
alability and availability, but downloading the Java Applet requires aTCP 
onne
tion, and extra probe messages 
ause delay and in
reasednetwork tra�
. Also all 
lients might not be 
apable of running the JavaApplet.� Client's DNS resolver : This s
heme is used by Be
k and Moore [7℄ inI2-DSI system. In this s
heme, 
lient's lo
al DNS resolver issues probes toservers instead of web 
lient and may 
hoose the server based on responsetime or previous a

ess performan
e reports from 
lient.This s
heme requires 
ustomized DNS and 
lients must also be modi�ed forgiving reports. If the server address is 
a
hed, then all requests in future willgo to the same server. So load balan
ing may not be a
hieved. If 
a
hing isrestri
ted by a lower TTL value, then we are putting additional load on DNSinfrastru
ture. 9



� Client Side Proxy : This s
heme was proposed by Baentsh et al [6℄. Serversform a hierar
hi
al stru
ture and 
ontent repli
ated on ea
h server is somepart of URL name spa
e. Ea
h parent server in hierar
hy propagates informa-tion about repli
as present on dire
t des
endents in extra HTTP headers inresponse to request for resour
e. Client-side proxy learns about repli
as andnext time request 
an go to server 
ontaining repli
a of resour
e.This approa
h requires both server software and proxy modi�
ation to giveinformation about repli
a and pro
ess extra HTTP headers respe
tively.All these approa
hes require 
hange in 
lient side 
omponents, whi
h are not
ontrolled by the e-Commer
e 
ompany or the hosting ISP, So these approa
hessu�er from the problem of limited appli
ability.2.2.2 DNS-based approa
hIn this approa
h, server side authorized DNS maps domain name to IP address ofone of the nodes of the 
luster, based on various s
heduling poli
ies. Sele
tion ofrepli
a o

urs at server side DNS so it does not su�er from appli
ability problem of
lient-side me
hanisms. But DNS has limited 
ontrol over requests rea
hing at serverbe
ause of 
a
hing of IP address mapping at several levels viz., by 
lient softwares,lo
al DNS resolvers, intermediate name servers, et
. Besides the mapping, a validityperiod for this URL to IP address mapping, known as Time-To-Live (TTL) is alsosupplied. After expiration of TTL period this mapping request is again forwardedto authorized DNS. Setting this value to very small or zero does not work be
auseof existen
e of non 
ooperative intermediate name servers and 
lient level 
a
hing.Also, it in
reases network tra�
 and DNS itself 
an be
ome bottlene
k.Several DNS based approa
hes are dis
ussed in [9℄and [12℄. DNS based algorithms
an be 
lassi�ed on the basis of the s
heduling algorithms used for server sele
tionand TTL values.
10



� Constant TTL algorithms : These are 
lassi�ed on the basis of the systemstate information used by DNS for server sele
tion. The system state informa-tion 
an in
lude both 
lient and server state information, like load, lo
ationet
.1. System stateless algorithms : Most simple and �rst used algorithmof this type is round robin (DNS-RR). It was used by NCSA (NationalCenter for Super
omputing Appli
ations) [24℄ to handle large tra�
 vol-ume using multiple servers. In this approa
h, primary DNS returns IPaddresses of servers in the round robin fashion.It su�ers from uneven load distribution and server overloading, sin
e largenumber of 
lient from same domain (using same proxy/gateway) are as-signed same server. Also, whole do
ument tree must be repli
ated onevery server or network �le system should be used.2. Server state based algorithms : A simple feedba
k me
hanism fromservers about their loads is very e�e
tive in avoiding server overloadingand not giving IP address of unavailable servers. The s
heduling poli
ymight be to sele
t the least loaded server any time.This approa
h solves overloading problem to some extent yet 
ontrol overrequests is not good be
ause of 
a
hing of IP addresses. Some implemen-tations try to solve this problem by redu
ing TTL value to zero but it isnot generally appli
able and puts more load on DNS.3. Client state based algorithms : In this approa
h, two types of in-formation about 
lients, the typi
al load arriving to system from ea
h
onne
ted domain (from same proxy/gateway) and the geographi
al prox-imity 
an be used by DNS for s
heduling.Requests arriving from domains having higher request rate per TTL value
an be assigned to more 
apable server. Proximity information 
an beused to sele
t nearest server to minimize network tra�
.One mode of Cis
o Distributed Dire
tor [11℄ takes 
lient lo
ation (ap-proximated from 
lient's IP address) and 
lient-server link laten
y into11



a

ount to sele
t the server by a
ting as primary DNS.This approa
h also su�ers form same problem experien
ed by Server statebased algorithms.4. Server and Client state based algorithms : Cis
o Distributed Di-re
tor takes server availability information along with 
lient proximityinformation into a

ount while making server sele
tion de
ision. Thesealgorithms 
an also use various other state estimates for server sele
tion.Su
h algorithms give the best results.� Dynami
 TTL algorithms : These algorithms also 
hange TTL values whilemapping host name to address. These are of two types [12℄:1. Variable TTL algorithms : As server load in
reases these algorithmstry to in
rease DNS 
ontrol over request distribution by de
reasing TTLvalues.2. Adaptive TTL algorithms : These algorithms take into a

ount thedomain request rate (number of requests from a domain in TTL timeperiod) and server 
apa
ities, for assigning TTL values. So a large TTLvalue 
an be assigned for a more 
apable server and less TTL value forthose mappings that have high domain request rate.These are most robust and e�e
tive in load balan
ing even in presen
eof skewed loads and non-
ooperative name servers, but these don't takegeographi
al information into a

ount.DNS based approa
hes are more suitable for stati
 repli
ation s
hemes and areless suitable for dynami
 repli
ation s
hemes be
ause 
hanging pla
e of repli
atedobje
t may require 
hange in mapping. In general these approa
hes su�er fromlimited 
ontrol over request problem due to 
a
hing of resolved IP addresses atvarious levels.
12



2.2.3 Dispat
her-based approa
hThis approa
h gives full 
ontrol over 
lient requests to server side entity. In thisapproa
h, the DNS returns the address of a dispat
her that routes all the 
lientrequest to other servers in the 
luster. Thus it a
ts as a 
entralized s
heduler atthe server side that 
ontrols all the 
lient request distribution. It presents single IPaddress to outside world, hen
e is mu
h more transparent. These me
hanisms 
anbe 
ategorized as follows:� Pa
ket single-rewriting by the dispat
her : In this approa
h, all pa
kets�rst rea
h dispat
her be
ause IP address of dispat
her is provided by DNS.All the servers in 
luster have di�erent private addresses visible within the
luster. The dispat
her sele
ts server in the 
luster using simple algorithmslike round robin et
. and 
hanges the in
oming pa
ket's destination addresswith the private address of sele
ted servers in the 
luster. It also maintainsa list of sour
e IP addresses for a
tive 
onne
tions and sends the re
eivedpa
kets from ea
h TCP 
onne
tion to the same server node. Further, nodesin the 
luster need to repla
e sour
e address in response pa
kets with the IPaddress of dispat
her.Although this solution maintains user transparen
y, it requires 
hanges in thekernel of all the servers sin
e pa
ket rewriting o

urs at TCP/IP level. Thissystem 
ombined with DNS-based solution for dispat
her, i.e primary DNSresolving host name to IP address of one of dispat
her for ea
h 
luster, 
ans
ale from LAN to WAN.� Pa
ket double-rewriting by the dispat
her : This approa
h is similar tothe above s
heme, ex
ept that all address 
hanges are done by the 
entralizeddispat
her, not by nodes in 
luster. The dispat
her �rst 
hanges ea
h in
omingIP pa
ket's destination address to that of sele
ted server and sends it to thesele
ted server node in the 
luster. It also needs to modify the pa
kets on theway ba
k to the 
lient, i.e., now in response IP pa
ket, it repla
es the sour
e IPaddress of sele
ted server with its address. The algorithm for server sele
tion
an be round robin, random, et
. 13



Cis
o lo
al dire
tor sele
ts the server with least a
tive 
onne
tions. Magi
router [4℄ uses a appli
ation level pro
ess that inter
epts all pa
kets between
lient and server and modi�es address and 
he
ksum �elds.This approa
h has advantage that it does not require modi�
ation of all nodesin 
luster.� Pa
ket forwarding by the dispat
her : This approa
h is des
ribed in [18℄.In this approa
h instead of IP pa
ket rewriting dispat
her forwards pa
kets tonodes in 
luster using MAC address.IBM Network Dispat
her's LAN solution assumes that server nodes are on thesame LAN and share the same IP address but nodes have disabled ARP me
h-anism, so all pa
kets rea
h to dispat
her. The dispat
her then forwards thesepa
kets to sele
ted servers using their MAC addresses on the LAN withoutmodifying its IP header. The s
heduling poli
y 
an be based on server loadand availability.This me
hanism is transparent to both 
lient and server. No pa
ket rewritingis required by dispat
her or servers as they share same IP address.IBM Network Dispat
her's WAN solution is based on dispat
her at two levels.Centralized �rst level dispat
her uses single-rewriting me
hanism to forwardthe pa
kets to one of the se
ond level dispat
hers (on WAN) for ea
h 
luster,i.e. it repla
es its IP address from pa
kets to that of sele
ted dispat
her(ea
h
luster has its dispat
her). Se
ond level dispat
her (at ea
h 
luster) 
hangesits IP address in pa
ket ba
k to that of �rst level dispat
her and forwards itto sele
ted server on LAN using MAC addresses. Sele
ted node responds withIP address of primary dispat
her as in the previous approa
h.� ONE-IP address : This approa
h is des
ribed in [16℄, multiple ma
hines inthe web server system have same se
ondary IP address. This se
ondary IPaddress is then publi
ized by DNS. It is of two types:1. routing-based dispat
hing : In this approa
h all pa
kets with ONE-IP address are dire
ted to IP address dispat
her by the subnetwork router.14



The dispat
her sele
ts the server by applying hash fun
tion on the 
lientIP address and then reroutes the pa
kets to sele
ted server using its pri-mary IP address. Sin
e hashing fun
tion is applied on 
lient IP address,all pa
kets from same 
lient rea
h to same server.2. broad
ast-based dispat
hing : In this approa
h subnetwork routerbroad
asts the pa
kets having destination ONE-IP address to all serversin web server 
luster, the servers themselves 
ompute hash fun
tion on
lient IP address to de
ide whether they are a
tual destination or not. It
auses more server overhead.Using simple hash fun
tion guarantees that same server will be sele
ted fora given IP address but at the same time it is also the weakest fa
tor in dy-nami
 sele
tion of server for load balan
ing. By 
hanging hash fun
tion fault-toleran
e 
an be a
hieved. Still hash fun
tion on 
lient IP address is stati
assignment of server to ea
h 
lient.� HTTP redire
tion by Dispat
herIn this approa
h 
entralized dispat
her redire
ts the HTTP requests amongthe web server nodes by spe
ifying appropriate status 
ode in response andindi
ating the sele
ted web server node address in its header. Dispat
hing 
anbe based on load on servers or lo
ation.This approa
h is transparent to user as most browsers support it, but user
an per
eive little bit more delay. No pa
ket rewriting is required in thisapproa
h but state information of the server, i.e. load, number of 
onne
tionset
. should be 
ommuni
ated to dispat
her in this 
ase.The Distributed Dire
tor [11℄ in se
ond mode uses estimate of 
lient serverproximity and node availability to sele
t the server and redire
ts the 
lient tosele
ted server. Its main disadvantage is dupli
ation of TCP 
onne
tions andhen
e in
reased delay in response.
15



2.2.4 Server-based approa
hThis approa
h allows two-level dispat
hing, �rst by 
luster DNS and later ea
h servermay reassign a re
eived request to one of the other server in the 
luster. This solvesthe problem of non-uniform load distribution of 
lient request and limited 
ontrolof DNS.� HTTP redire
tion by ServerThe approa
h is used in SWEB [3℄. First request rea
hes to host in 
lus-ter using normal DNS resolution but it 
an further redire
t request to otherserver. It does se
ond level dispat
hing through the redire
tion me
hanism ofthe HTTP proto
ol. This redire
tion may depend on the load of server or maybe done in a round robin fashion. The servers need to ex
hange status infor-mation periodi
ally for taking redire
tion de
isions but this 
ost is negligiblewith respe
t to tra�
 generated by 
lient requests. Its main disadvantage isdupli
ation of TCP 
onne
tions and hen
e in
reased delay in response.� Pa
ket Forwarding by ServerIn this approa
h, �rst level s
heduling is done using round robin DNS me
ha-nism, the se
ond level dispat
hing is done by pa
ket rewriting me
hanism thatis transparent to users. So �rst request rea
hes to any node in 
luster, if thatnode �gures out that other node is better for serving this request, node usesMAC address to reroute the pa
ket to sele
ted sever.It does not require HTTP request redire
tion hen
e it is better in terms oflaten
y time. The server sele
tion 
an be stateless i.e. based on hash fun
tionor based on load information on servers. If loading information is used forrerouting, server need to ex
hange load information among themselves. Alsothis s
heme 
an work with both LAN and WAN based solution.� Akamai's Approa
hAkamai's approa
h [2℄ is very di�erent. In their approa
h, URLs of obje
tsembedded in HTML page, like images, Java Applets, multimedia 
omponentset
., are modi�ed by proprietary software Laun
her running at server, to the16



URLs of the obje
ts available at any Akamai server nearest to 
lient. It is
laimed that these embedded obje
ts 
omprise nearly 70% of typi
al pagein overall bytes. A map of 
urrent Internet tra�
 
onditions, the loads ofall Akamai servers worldwide, and the lo
ations of Internet users is built forsele
tion of server. This map is updated on
e per se
ond. While makingsele
tion of server, it is made sure that no server is overloaded and number ofservers 
ontaining repli
a is proportional to number of requests for the obje
t.This approa
h is very useful when page 
ontains large multimedia obje
ts.It requires proto
ol for getting information about other servers distributedgeographi
ally, and 
lient lo
ation. It s
ales geographi
ally well but it alsorequires pages to be modi�ed a

ording to the 
lient lo
ation.2.2.5 Any
astIn IPv6, an any
ast servi
e [8℄ will be supported. This servi
e assumes that thesame IP address is assigned to a set of hosts, and IP router has path to its 
losesthost in routing table. Thus di�erent IP routers have paths to di�erent hosts withthe same IP address.This approa
h automati
ally sele
ts the 
losest host, thus load distribution 
ausesno overhead. But it also implies almost stati
 repli
ation sin
e 
hanges in routingtable take time. Whi
h 
an be solved in future through A
tive Networks, in whi
hsimple program inje
ted by appli
ation 
an be exe
uted at routers.These me
hanism have their relative pros and 
ons. Client side approa
h doesnot require any server side pro
essing but su�ers from limited appli
ability problem.DNS based approa
hes su�ers from problem of limited 
ontrol over 
lient requestdue to 
a
hing and non-
ooperative name servers. They provide 
oarse level 
ontrolover 
lient request but these approa
hes do not su�er from single point of failureproblem whi
h is present in Dispat
her based approa
hes. Dispat
her based ap-proa
hes give �ner level 
ontrol over 
lient request. Pa
ket forwarding approa
hesare most suitable for LAN based solutions and 
an s
ale to WAN solution. Serverbased approa
hes o�er �ne grain 
ontrol and do not su�er from single point of failure17



problem but redire
tion 
auses in
rease in laten
y period.Our fo
us is on a general s
heme that 
an be fully implemented at server sideand 
an be very easily deployed with 
urrently used infrastru
ture and standardproto
ols. Hen
e we do not 
onsider 
lient side approa
hes and do not assumeexisten
e of any support or spe
ial 
omponent or modi�ed proto
ol running at 
lientside. We 
onsider whole server ar
hite
ture for 
olle
tion of metri
s required forsele
tion of server, role of ea
h entity and method of request distribution.

18



Chapter 3Proposed Ar
hite
ture for WebServer SystemIn this 
hapter we dis
uss design goals for system ar
hite
ture, system model usedand algorithms at ea
h server side entity.3.1 Design goalsA Distributed Web Server System (DWSS) 
onsists of a large number of servers withsome me
hanism to distribute the in
oming 
lient requests among those servers. Wehave the following design goals for the DWSS ar
hite
ture:� Components used should be 
ompatible with 
urrent proto
ol and networkelements, i.e. they 
an be deployed in 
urrent infrastru
ture and proto
olsuite very easily.� It should not require 
hange of 
omponents at 
lient side or 
omponents onwhi
h website administrator has no 
ontrol, i.e. 
hange in only server side
omponents is allowed.� System should be geographi
ally s
alable, i.e. more servers in 
lusters 
an beadded when needed in LAN environment and besides that more 
lusters (thatmay be geographi
ally far apart) 
an be added in web server system on WAN.19



� System should give better performan
e in terms of laten
y per
eived at 
lientside, i.e. time lag between request submission by user and 
ontent rea
hing at
lient side software should be minimized.� System should be user transparent, i.e. single virtual interfa
e to a

ess websiteshould be provided at the URL level, request should be dire
ted to appropriateserver automati
ally by web server system.� System should be fault tolerant, i.e. system should 
ontinue working (maybe with degraded performan
e) even if some servers or 
lusters fail or takeno�-line.� System should avoid overloading of any server, i.e. requests beyond 
apa
ityof any server should not rea
h to it, sin
e it may result in 
rashing of servers.� System should not in
ur too mu
h additional overhead for its fun
tioning, interms of 
omputation required or network tra�
 generated.3.2 System modelOur system model taken by us is shown in Figure 3.1. Di�erent steps in HTTPrequest servi
e are shown in this �gure. Client software �rst asks its lo
al resolverfor IP address of web server, if lo
al resolver or intermediate resolvers do not havethis mapping or TTL has expired, this request rea
hes to server side authorized DNSin step 1 and DNS replies with IP address of front node of one of several 
luster(sele
ted a

ording to algorithm, whi
h we dis
uss later) in step 1.1. In step 2,
lient software or some entity on behalf of 
lient (
lient proxy or gateway) sendsrequest to front node of that 
luster using obtained IP address in step 1. Front nodede
ides whi
h server in the 
luster should serve the request (algorithm for sele
tionis des
ribed later) and request is forwarded to that server by front node in step 3.Finally, in step 4, sele
ted server replies with request obje
t on behalf of front node.We have 
hosen 
luster based model be
ause it 
reates additional level for systemstate information 
olle
tion and gives full 
ontrol over dispat
hing of ea
h HTTP20



Figure 3.1: System Model
onne
tion. Besides, our assumption is that 
lients are geographi
ally distributedin distant parts of world and 
ompany 
an pla
e ea
h 
luster at strategi
 lo
ationnear its 
ustomers, where they 
an serve 
ustomers better. This model also allowswebsite administrator to 
hange number of servers in any 
luster as well as 
hangethe number and lo
ation of 
lusters easily.This model allows us to 
olle
t �ner level information about ea
h server at the
luster level and aggregated information about ea
h 
luster 
an be passed to en-tity(DNS in our 
ase) requiring this state information for making request distribu-tion de
isions at 
oarser level.3.3 Request distribution strategyOur aim is to assign ea
h 
lient request to the best server su
h that 
lient experien
esminimum laten
y between HTTP request and re
eption of requested obje
t.21



First level de
ision 
an be taken by DNS itself, DNS 
an resolve IP address of
luster whi
h 
an give better servi
e to this 
lient. Parameters a�e
ting delay inservi
e of HTTP request are load at sele
ted server (and hen
e 
luster) and path
hara
teristi
s between 
lient and server. So to take this de
ision, DNS shouldhave re
ent 
luster state information and proximity of 
lient with 
lusters. DNShas information about 
lient IP address and 
luster IP addresses. Sin
e 
lustersare under 
ontrol of website administrator, they 
an provide any state informationrequired by DNS. Sin
e only server side 
omponents 
an be modi�ed, they willhave to gather the proximity information themselves. There are various metri
s tomeasure proximity between the 
lient and 
lusters. Some metri
s are:� Geographi
al distan
e between 
luster and 
lient� Network distan
e in hops between 
luster and 
lient� Round trip time (RTT) between 
luster and 
lient� Available bandwidth on path between 
luster and 
lient� Response time of any prior web do
ument fet
h� Laten
y of any prior web do
ument fet
hGeographi
al distan
e is signi�
ant only when time taken for transmission ofrequested obje
t and propagation delay on wire are 
omparable, i.e. propagationdelay is also signi�
ant. Propagation delay is signi�
ant for very large distan
es evenat speed of light (
an be 100s of millise
onds). But transmission media used for longdistan
es (usually opti
al �ber) has very low delays and if satellite 
ommuni
ationis used for even lo
al 
onne
tions, geographi
al distan
es may not 
orrespond toa
tual delays on network. Nevertheless, it results in lesser tra�
 on long distan
elines and usually 
orresponds to lower delays in pra
ti
e. Geographi
al distan
e 
anbe approximated by IP address of 
lient if su
h database is available. A

ording toRFC 1466 [19℄ di�erent IP address ranges were allo
ated to di�erent geographi
alregions to keep routing tables shorter. Using higher 8 bits of IP address only,geographi
al region of 
lient 
an be approximated.22



Network distan
e in hops is also a good metri
 and 
an be obtained from routers.But it does not take into a

ount bandwidth available in path, 
urrent tra�
 on thepath between 
luster and server. In short, available bandwidth for transfer on pathand delays in ea
h hop are not taken into a

ount. It is usually a stati
 measure ofproximity, sin
e as found by Paxon [28℄ that 68% routes on the Internet are stablefor at least a week and 87% routes on Internet are stable for at least six hours. Also,studies by Crovella et al [14℄ have found that the hop 
ount has very low 
orrelation(0.16) with response time (measured at 
lient side). So it does not seem very goodmetri
 to use.Round trip time is another metri
 that 
an give better and relatively a

uratedelay experien
ed in path and to some extent, a lower RTT indi
ates higher availablebandwidth. However, it is very dynami
 in nature, it 
hanges qui
kly over relativelyshort period of time. It has mu
h more variation for di�erent 
lusters 
omparedto hop 
ount, it gives better path information between 
lient and 
luster. On thedownside, it is relatively 
ostlier to measure and requires more frequent refreshes.Measuring bandwidth, by using tools like path
har [22℄ or even using other moree�
ient 
urrent te
hniques [23℄, generates lots of additional network tra�
 and takeslong time, so use of this metri
 is not pra
ti
al.Last two metri
s 
an be used only after a number of 
lusters are tried (whi
hresult in degraded performan
e for 
lient) and a huge database is maintained. Still,load on 
lusters 
an 
hange over time and older information may not predi
t good
luster. These metri
s are really useful for 
lient side server sele
tion only.After 
omparing these metri
s for 
lient-
luster proximity, we 
on
lude that RTTis the best metri
 to use for getting path information. It requires periodi
 refresh andis relatively 
ostlier to measure (
ompared to hop 
ount or geographi
al information)but it provides 
urrent and better network 
hara
teristi
s information. So we shouldtry to limit overheads in measuring it. Crovella et al [14℄ found in their study thatwhen used at 
lient side it resulted in less than 1% additional network tra�
 and gavevery good results when three ping messages were used to measure RTT information.To further minimize overhead, instead of all 
lusters measuring RTT for ea
h
lient, we propose to do the measurement only for a small subset of 
lients with23



very high request rate. Arlitt et al [5℄ �nd out that 75% of total HTTP requests toany server 
ome from 10% of networks. So if we 
olle
t information about only veryhigh request rate generating 
lients, we 
an use that information for all 
lients onthe same network. We 
an further limit number of 
lusters whi
h should measureRTT based on geographi
al information (approximated by use of 
lient IP address)and having less load to 
ertain maximum number(say at most 3).In our approa
h, ea
h server gives state information to front node in the 
lusterand this aggregated state information is used for assigning requests within the 
lusterand is propagated to DNS in aggregated form to make 
oarse grain (per 
lient IPbased) request assignment to 
luster. More details 
an be found in se
tion 3.6. Wegather this proximity information on
e high request rate is reported by 
luster toDNS, so it does not delay reply from DNS, however �rst reply for even those 
lientsis based on geographi
al proximity information approximated using IP addresses (itis used for all 
lients, who either do not generate large number of requests or queryDNS �rst time after long interval).3.4 Overview of ar
hite
tureWeb server system 
onsists of many 
lusters distributed geographi
ally all over theworld pla
ed at strategi
 lo
ations, similarly 
lients are also in di�erent geographi
alregions. Thus it enables us to take into a

ount variation of request rate from ea
hgeographi
 region.Our approa
h is to dynami
ally distribute requests based on 
urrent systemstate information. All servers in 
luster report state information to front nodeand front node uses this information to distribute individual 
lient requests (ea
hTCP 
onne
tion) 
oming to 
luster among servers in 
luster intelligently. Frontnode reports aggregated 
luster load information to DNS like a single node of high
apa
ity. Whi
h on
e again uses this information to resolve IP address of a 
lusterfor queries from 
lient to provide them better servi
e in terms of per
eived delay.Colle
ting only server state information is not su�
ient, servers also 
olle
t numberof requests 
oming from ea
h IP address and send to front node whi
h aggregates24



Figure 3.2: Additional messages ex
hanged among 
omponents in DWSSthis information and reports IP addresses of 
lients having very high request rateto DNS. It has been found that more than 75% requests 
an 
ome from 10% ofnetworks. Using request rate information, DNS asks few 
lusters to 
olle
t 
lusterto 
lient proximity information only for those 
lients. Cluster to 
lient proximity isfound by sending ICMP E
ho request messages to 
lients. Additional messages sentamong entities are shown in Figure 3.2.For 
lient request distribution inside ea
h 
luster, IP pa
ket forwarding by 
hang-ing destination IP address of request pa
kets only 
an be used as shown in Figure 3.3.Every IP pa
ket that rea
hes at front node for HTTP 
onne
tion is diverted at IPlayer before delivery to TCP layer. A program running at the front node sele
tsserver for this 
lient based on 
lient IP address and server load information, addressof sele
ted server is �lled in destination address �eld of IP pa
ket and pa
ket isre-inje
ted ba
k on network, so it rea
hes the sele
ted server. At server this pa
ketis on
e again diverted and destination address is set ba
k to IP address of front node25
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Figure 3.3: One way distributed IP pa
ket rewriting me
hanismand is re-inje
ted in TCP/IP sta
k of server node. Ea
h server has se
ondary IPaddress (ARP disabled) same as IP address of front node, so HTTP server a

eptsthis pa
ket and response pa
kets dire
tly go to 
lient from sele
ted server withoutdoing any additional modi�
ation or delay. This results in additional delay of aboutone millise
ond for ea
h in
oming pa
ket, if servers and front node are on same LAN.Sin
e this pa
ket forwarding 
an be done at appli
ation layer, it was 
hosen for emu-lation, however in a
tual system, pa
ket forwarding inside kernel using MAC address
an be done or dedi
ated hardware 
an be used for more e�
ient dispat
hing.3.5 AlgorithmsLoad balan
ing is done at two pla
es in path of HTTP request servi
e, �rst atthe DNS level and se
ondly at the front node of 
luster. DNS tries to balan
eload on 
lusters by providing IP address of appropriate 
luster's front node. Whenrequest rea
hes the front node, it balan
es load amongst the servers in that 
luster.In ex
eptional 
ases when 
luster is overloaded (due to uneven request rate from
lients and 
a
hing of DNS entries), HTTP requests 
an be redire
ted to other26



lightly loaded 
luster(s).Within ea
h 
luster, every server periodi
ally sends its load information to frontnode, whi
h sends aggregated load information about 
luster to DNS. This loadinformation transfer 
an take pla
e aperiodi
ally too if load 
ondition 
hanges sud-denly at any 
omponent, say any server be
omes overloaded.A number of system state information parameters are 
olle
ted by ea
h server,for example, system load averages, system and user 
pu utilization, free RAM, Bu�erRAM, number of disk a

esses, free swap, number of pro
esses, number of requestsserved in last 64 se
onds and number of bytes transferred in last 64 se
onds. Usingaverage number of 
onne
tions sent (dispat
hed and 
urrently a
tive) to parti
ularserver in past prede�ned time interval and its load 
ondition in that time interval (auser de�ned fun
tion depending on bottlene
ks present) 
apa
ity of ea
h server, i.e.average number of 
onne
tions it 
an serve without signi�
ant in
rease in responsetime is dynami
ally estimated and updated with every load update from server byfront node. Similarly every front node aggregates load information of every serverand informs available free 
apa
ity of whole 
luster to DNS periodi
ally.We des
ribe algorithm below at ea
h 
omponent (DNS, front node and serversin ea
h 
luster).3.5.1 Load balan
ing at DNSIn response to query from 
lient for resolving domain name, DNS returns IP addressof server. All requests are sent to server having that IP address for time period
alled Time to live (TTL). After expiration of TTL, query is on
e again sent toDNS. Sin
e within TTL period all requests from that 
lient (or its gateway) are sentto the same server, if number of request generated by that 
lient are higher thanothers it 
an 
reate load skew. Aim should be to assign 
lients having high requestrates to servers having higher 
apa
ity. Again TTL value should be small be
auseload skew is 
reated by these 
lients.For getting request rate (number of requests in unit period), servers (or frontnodes of 
lusters) should send this information periodi
ally to DNS. We distinguishbetween 
lients based on their request rates. Servers send information of request27



rate only when 
lient request rate is higher than a threshold. DNS instru
ts fewpossibly nearest 
lusters (having remaining 
apa
ity higher than request rate) to getround trip delay to 
lient.For 
lients having high request rate, we maintain information about their requestrate, list of few 
andidate servers(say 3) having enough remaining 
apa
ity at timeof RTT probe with RTT, time stamp of last RTT probe.Pro
edure re
vmsgs is pro
edure responsible for re
eiving messages of di�erenttypes and dispat
hing these messages to appropriate handler fun
tions dependingon type of message, pseudo 
ode below shows main messages re
eived :pro
edure re
vmsgs{Input: So
ket for re
eiving messagesOutput: Noneread message from so
ket and determine type of messageswit
h(message type){
ase load_info:/* Message from front nodes about load information on ea
h 
luster */
all update_loadbreak;
ase request_rate:/* Message from front nodes about request rate of 
lients */
all update_requestratebreak;
ase ip_request:/* Message from DNS for preferred IP address of 
lient */
all resolve_ipbreak;
ase rtt_reply:/* Message from front nodes about RTTs between 
luster and 
lients */28




all update_rttsbreak;} Pro
edure update_request_rate is 
alled when front node sends this request rateinformation to DNS.pro
edure update_request_rate{Input: Client IP addresses, request rateOutput: Nonefor ea
h IP address of 
lient (or its gateway) {if(no request rate available for this IP)add request rate re
ord for this 
lient with 
urrent time stampelseupdate request re
ord for this 
lient with 
urrent time stampif(no 
andidate server in list or time stamp of probe is too old)send_probes_for_rtt(Client IP)}update average request rate information.} If no request rate information about a 
lient IP is re
eived for few periods ofrequest update then that entry is deleted.Pro
edure send_probes_for_rtt adds IP address of 
lient for sending probe formeasuring rtt to list of new nearest and not overloaded 
lusters.pro
edure send_probes_for_rtt{Input : IP address of 
lient to probe29



Output: Nonesele
t few 
lusters nearest (approximated using IP address) to 
lient havingremaining 
apa
ity > request rate of 
lientfor ea
h 
luster in above listadd 
lient IP for sending request for rtt probes for this 
lusterupdate probe timestamp for 
lient with 
urrent time} A
tual message 
ontaining Client IP addresses is sent to ea
h 
luster periodi
allyafter every �xed interval or su�
ient number of 
lients are already queued.Pro
edure update_rtts is exe
uted when message from 
luster front node aboutinformation of round trip time between them and 
lient is re
eived.pro
edure update_rtts{Input: Cluster IP, Client IP, rtt, number of su

essful rtt probesOutput: Noneif(number of 
andidate servers is less for Client IP)add_
andidate(Client IP,Cluster IP,rtt,num probes)else if(any 
andidate server has higher rtt in 
andidate server listor had less number of su

essful probes)update_
andidate(Client IP,Cluster IP, rtt, num probes)} add_
andidate and update_
andidate keep a list of rtt re
ords in as
endingorder of round trip time and number of su

essful rtt probes for given 
lient IP.Pro
edure update_load is exe
uted when message from front node of any 
lusterabout load information is re
eived. 30



pro
edure update_load{Input: IP address of 
luster's front node, 
apa
ity, loadOutput: Nonefind re
ord for nodeupdate load information of 
lusterupdate available free 
apa
ity of 
luster and whole system} Finally 
lients request for host name to IP address resolution.pro
edure resolve_ip{Input: IP address of 
lient (or its gateway, i.e. firewall et
.) and domain nameOutput: IP address of front node of 
lusterif (information about 
lient request rate is available){if(probe time stamp is too old)send_probes_for_rtt(
lient IP)find list of 
lusters sorted on previously probed rtt to 
lientfor ea
h 
luster in list in as
ending order of rttif(available 
apa
ity of 
luster > request rate of 
lient){redu
e available 
apa
ity of 
luster by 
lient request ratereturn(Cluster IP address);}/* If all servers probed are overloaded */send_probes_for_rtt(
lient IP)}else{ set request_rate to average request rate of all 
lients.find list of nearest 
lusters sorted on nearness approximated by IP address31



for ea
h 
luster in list in as
ending order of proximityif( available 
apa
ity of 
luster > request rate of 
lient){redu
e available 
apa
ity of 
luster by 
lient request ratereturn(Cluster IP address);}}/* If no 
luster is yet sele
ted, all servers are overloaded */sele
t 
luster in proportion to free 
apa
ityreturn(Cluster IP address)}3.5.2 Load balan
ing at front node of ea
h 
lusterFirst front node 
olle
ts information about request rates from ea
h 
lient IP, thenperiodi
ally it sends request rate information of only those 
lients whi
h have highrequest rate to DNS.Similar to DNS, front node also re
eives di�erent types of messages and invokesappropriate message handler based on type of message, main messages are serverload information and 
lient request rate from ea
h servers in 
luster, request formeasuring RTT to 
lient from DNS and it also sele
ts server in 
luster for ea
h newTCP 
onne
tion from 
lient and rewrites destination address of IP pa
kets 
omingfrom 
lients with sele
ted address.Ea
h server periodi
ally (at large intervals of order of minute) sends request rateinformation of 
lients in terms of number of requests by that 
lient. On re
eipt ofrequest rate update message, re
eive_request_rate pro
edure is invoked.pro
edure re
eive_request_rate{Input: Client IP addresses, requestsOutput: Nonefor ea
h Client IP addressupdate_request_rate(Client IP,number of requests)32



update global request rate information} update_request_rate 
reates new re
ord or �nds re
ord for given 
lient IP andaggregates request rate information about ea
h 
lient.Periodi
ally 
luster sends aggregated request rate information of 
lients whi
hgenerate high number of requests than average 
lient.pro
edure send_request_rate{Input: Client IP and their request ratesOutput: None (sends this info to DNS)
al
ulate Threshold based on average request ratefor ea
h Client IP having request rate > Threshold{add Client IP and request rate in queueif(queue is full)send queued request rate information of 
lients to DNS}send queued request rate information of 
lients to DNS} Front node re
eives detailed load information from ea
h server periodi
ally. Usingaverage number of 
onne
tions sent to it in that prede�ned interval and obtainedload information from server, front node estimates number of 
onne
tions server 
anserve, i.e. 
apa
ity of server. This estimate is updated with every load update fromserver.pro
edure re
eive_server_load{Input: Server IP address, load 33



Output: Nonefind re
ord for server using IP address and update server loadestimate and update number of 
onne
tion server 
an serveupdate 
luster's load information and available 
apa
ity} Cluster sends aggregated load information periodi
ally to server or when load
ondition 
hanges signi�
antly.When DNS requests for measuring RTT between 
lient and Cluster, followingpro
edure is exe
uted.pro
edure re
eive_probe_for_rtt{Input: Client IP addressesOutput: Nonefor ea
h Client IP address in listsend predefined number of e
ho requests to 
lient periodi
ally} Clients reply with E
ho reply for ea
h e
ho request, RTT is measured and av-eraged. Average RTT along with number of su

essful probes are sent to DNSperiodi
ally.Finally it forwards requests to servers in 
luster in proportion to remaining 
a-pa
ity of ea
h server,pro
edure forward_request{Input: IP pa
kets from 
lients for HTTP requestOutput: IP pa
kets with destination address of sele
ted serverif(
onne
tion already exists for this 
lient IP and port){34



if(pa
ket is fin)move this 
onne
tion re
ord to a list where it will be re
y
led after fewminutesupdate time stamp for this 
onne
tionwrite IP address of server in destination field and re inje
t on network}else if(pa
ket is syn){sele
t servers in proportion to their remaining 
apa
ity
reate new 
onne
tion re
ord with 
urrent time stampwrite IP address of server in destination field and re-inje
t on network} else drop this pa
ketif(load on ea
h server > 
apa
ity and least loaded 
luster list not empty)redire
t request to other 
lusters in proportion to their free 
apa
ity} All the 
onne
tion re
ords for 
onne
tion on whi
h there was no pa
ket trans-mitted from sour
e for a long time are also freed periodi
ally.3.5.3 Support at ea
h serverEa
h server sends its load information to front node periodi
ally or when its load
ondition 
hanges signi�
antly.pro
edure send_server_load{Input: Current loadOutput: Sends load information to front nodeget 
urrent load information from system35



send_load_to_front_node(load)} Ea
h server also sends 
lient request rates to front node periodi
ally however atlonger interval (order of minute).pro
edure send_request_rate{Input: Client IP and their request ratesOutput: None (sends this info to front node)read html a

ess log file and aggregate number of requests from ea
h 
lientsend_request_rate_to_frontnode(Client IP, request rate)} Also ea
h server has se
ondary aliased IP address same as front node's IP addressso when pa
ket is re
eived using other IP address, this pa
ket should be re-inje
tedba
k in proto
ol sta
k with 
hanged destination IP address of front node.pro
edure 
hange_destination_address{Input: In
oming IP pa
kets for HTTP 
onne
tionOutput: IP pa
kets with 
hanged destination addressfor ea
h in
oming IP pa
ket for HTTP 
onne
tionrewrite destination address to IP address of front node(and se
ondary IP)and re-inje
t it ba
k in TCP/IP sta
k} Thus IP pa
kets re
eived by front node are forwarded to server using lo
al privateIP address of server and then server rewrites dest address ba
k to 
luster IP addressand to t
p layer it seems that this pa
ket 
ame with destination address of aliasedse
ondary IP address dire
tly. 36



Chapter 4Test bed for Measuring Web ServerSystem Performan
eWe needed a framework for studying tradeo�s and impa
t of di�erent parameterson a web server system, this framework was required to test performan
e of Dis-tributed Web Server System proposed by us and 
ompare its performan
e with otherar
hite
tures proposed earlier e.g., round robin, random, weighted et
.To 
ompare various poli
ies for request distribution at server side, we designedand implemented a test bed whi
h tries to emulate real network s
enarios and followsall steps in HTTP request servi
e. In fa
t, all standard 
omponents used in theInternet are used in this test bed, for example, BIND (Berkeley Internet DomainName Server) is used for DNS and Apa
he web servers. We have used Webstone [30℄for generating HTTP requests. We have modeled WAN delays and bursty pa
ketlosses whi
h are 
ommon on Internet links. All ma
hines used are Pentium PCsrunning Linux operating System.In this 
hapter, we �rst des
ribe design goals, and then dis
uss our assumptions.After a brief overview of the test bed, we des
ribe request distribution me
hanismsused at the front node and DNS. Lastly we des
ribe various 
omponents of the testbed.
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4.1 Design goalsThe test bed was designed to fa
ilitate easy measurement of various parameters ofweb server performan
e like average response time for requests and the throughputof Web Server system. While setting up the test bed following goals were kept inmind:1. The test bed should emulate real Internet s
enario in the lab environment. Itshould use standard 
omponents and follow standard proto
ols used in Inter-net.2. Test bed should be general enough so that di�erent poli
ies for request dis-tribution at front node and DNS 
an be easily in
orporated in this test bed.Thus it should make 
omparison of di�erent s
hemes very easy.3. The test bed should be �exible enough to modify only sele
ted 
omponentswithout needing many 
hanges in other 
omponents.4. Servers should pass their state information to front node and front nodesshould pass 
luster state information to DNS so that various dynami
 poli
iesbased on system state information for request distribution 
an be implementedand 
ompared easily.5. Design of test bed should be su
h that it does not 
onstrain or �x the numberof servers, 
lusters and 
lients to be used in the test bed.6. It should only fo
us on distributed web sever system implementation and weshould be free to use standard ben
hmarking software like "Webstone" fortesting the performan
e of system.4.2 AssumptionsSin
e test bed was 
reated for emulation of Internet environment in lab, we madethe following assumptions: 38



1. In IP pa
ket forwarding me
hanism, it was assumed that ea
h IP pa
ket will
ontain TCP header, i.e., IP pa
kets are not fragmented. In Linux, higherlayers indeed use maximum transfer unit information so that pa
kets do notneed fragmentation and reassembly in LAN environment.2. To avoid any 
entral entity like router from be
oming bottlene
k, pa
ket lossesand delays in one dire
tion are introdu
ed by front node when pa
kets rea
hto web servers and by 
lients themselves when pa
kets arrive from servers forthem.3. We have implemented one way distributed pa
ket rewriting for request dis-tribution at front nodes and all servers have to rewrite in
oming IP pa
ketsfor HTTP 
onne
tions. We assume that overhead of rewriting in
oming IPpa
kets for re-inje
tion in TCP/IP sta
k with aliased se
ondary IP address isnegligible.4.3 Overview of test bedDi�erent steps for measuring performan
e of distributed web server system areshown in Figure 4.1. Load generator (any third party ben
hmark program) runson nodes at 
lient side and generates HTTP requests to distributed web server sys-tem. Distributed web server system is part of test bed and its 
omponents aremodi�ed 
orresponding to load balan
ing strategy used in web server system. Ad-ditional software 
omponents running at these nodes 
olle
t statisti
al information,whi
h is 
olle
ted and pro
essed. After pro
essing this statisti
al data, performan
eis analyzed and results are presented.Web server system in test bed uses the same general hierar
hi
al stru
ture shownin Figure 3.1. This model allows one to emulate behavior of multiple networksin di�erent geographi
al regions. Single server 
an be used instead of one 
luster
ontaining front node and multiple servers, so this test bed allows us to emulate
luster based as well as independent server based ar
hite
tures or web server systems
ontaining mixture of both. 39



Figure 4.1: Blo
k diagram of Test bedWeb server system 
onsists of many 
lusters distributed geographi
ally all overthe world pla
ed at strategi
 lo
ations in possibly di�erent time zones. Similarly
lient domains modeled by multiple 
lient pro
esses on one or more 
lients also aredivided in di�erent geographi
al regions. Thus it enables us to take into a

ountvariation of di�erent parameters like delay, loss, request rate et
. from ea
h geo-graphi
al region.Sin
e we have tried to emulate real Internet like system and used standard 
om-ponents and proto
ols, we expe
t to use same test bed for measuring performan
eof almost every load balan
ing web server system with minimal modi�
ation insome 
omponents 
orresponding to me
hanism used in the system. Below we brie�ydes
ribe software 
omponents that run on di�erent 
omponents of test bed
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4.3.1 Software 
omponent at ea
h serverSoftware running at ea
h server in 
luster 
olle
ts system state information likeload average (i.e. average number of pro
ess ready to run in last 1, 5 and 15minutes), CPU and memory utilization, number of a
tive 
onne
tions, number ofserver pro
esses running to handle 
lient requests (with Apa
he server, the number ofpro
esses running to handle requests is automati
ally determined based on numberof requests).This software periodi
ally obtains system load at short intervals (every 500 mse
)and if load has 
hanged sin
e last update 
onsiderably, 
hange in load is propagatedto front node. Otherwise, if load does not 
hange appre
iably, still load updateis sent every four se
ond (8 
lo
k ti
ks of 500 mse
) to front node as heart beatmessage to inform that it is still alive and update its load information. To maintain
onsistent view of load information of all servers in 
luster, all servers send thisperiodi
 load update at approximately the same time to front node.Using web server a

ess log (whi
h is assumed to be in the standard Common-Log Format [13℄), number of requests from ea
h 
lient domain (IP address of 
lient)is determined and this information is propagated to front node. This information is
olle
ted and sent periodi
ally at larger intervals (128 ti
ks of 500 mse
, i.e. every64 se
onds).At every server, every in
oming pa
ket for HTTP 
onne
tion is diverted fromTCP/IP sta
k and after 
hanging destination address ba
k to that of IP address offront node, it is re-inje
ted ba
k in TCP/IP sta
k. Now this pa
ket is re
eived byHTTP server, running at that server, as normal pa
ket 
oming to it from interfa
ehaving IP address of front node.4.3.2 Software 
omponents at front node of ea
h 
lusterFront node is responsible for distributing requests 
oming to 
luster, it takes intoa

ount load on ea
h server and previous request rate of 
lient (if available), beforedispat
hing request to any server. We are using only in
oming IP pa
ket destinationIP address rewriting to dispat
h 
lient requests among servers in 
luster. So sele
tedserver depends on 
lient IP address (hen
e its previous request rate) and server41



load. We use IP �rewalling me
hanism that in turn uses Berkeley pa
ket �lterfa
ility inside the kernel at low level to �lter pa
kets 
oming for HTTP port andusing divert so
ket (that stops pa
ket from going up in TCP/IP sta
k) pa
kets arere
eived by appli
ation program, whi
h sele
ts server and writes sele
ted server's IPaddress in destination address �eld and re-inje
ts that pa
ket ba
k in the network.Front node also re
eives load updates (heart beat messages) and asyn
hronousalarm messages about overload and underload situations of server. It also re
eives
lient request rate in the last 64 se
onds from ea
h server and aggregates this infor-mation. Ea
h front node is in syn
 with DNS for alarm ti
ks. So all front nodes inthe system, re
eive load updates at almost the same time, aggregate and send theaggregated load information to DNS. Thus DNS re
eives latest and 
onsistent infor-mation about all 
lusters. Front nodes also send request rate information of 
lientshaving very high request rate (above the average request rate of 
lient domains) toDNS but this information 
an put more load on DNS so this information is sent indistributed manner by di�erent front nodes every 64 se
onds.Separate optional appli
ation on front node also re
eives requests from DNS tosend ICMP e
ho requests to sele
t 
lients. It sends ICMP e
ho request messages tothose 
lients and reports RTTs between 
lients and that 
luster. Sin
e only smallper
entage of 
lients are sent ping messages, and 
lients whose re
ent RTT infor-mation is available are 
onta
ted only after a refresh time interval in our proposedar
hite
ture, load on the front node due to it is not expe
ted to be high. Thisresponsibility 
an be handed over to the least loaded server in 
luster easily.4.3.3 Software 
omponents at DNSDNS may use load information of ea
h 
luster, 
lient request rate and proximityinformation to resolve IP of any 
luster (i.e. IP of front node or shared se
ondary IPaddress of ea
h server in 
luster). Current implementation of domain name server(BIND-9.1) do not have any support for weighted 
apa
ity of IP resolution or anyother dynami
 poli
y based on 
urrent load, et
. It only supports random sele
tionof IP address for Address query when multiple IP addresses are present for singleserver as spe
i�ed in RFC 1034 [26℄ and RFC 1035 [27℄. We have extended BIND42



for this purpose.For sele
tion of desired IP address depending on 
lient IP address, we have
reated a separate appli
ation that 
an run on the same DNS ma
hine or any otherma
hine. BIND has been modi�ed to send 
lient IP address to this appli
ation,whi
h sele
ts 
luster IP address for that 
lient as per poli
ies implemented andBIND returns that IP address to 
lient. That appli
ation may sele
t IP addressof 
luster based on loads of server and proximity approximated by IP addresses of
lusters and 
lients, if no real proximity information(e.g. RTT) is already availablefor any 
lient, e.g. if 
lient is sending request for the �rst time or after a long timewhen its information is deleted or the 
lient does not generate enough requests.Optionally, this appli
ation 
an send queries to front nodes for di�erent 
lients, itthen re
eives and automati
ally updates RTT between 
lusters and 
lient.DNS re
eives load updates periodi
ally from ea
h 
luster. If load on 
luster isvery high or load information is not re
eived, DNS may not resolve IP address ofthat 
luster further till load 
onditions return to moderate level on 
luster dependingon poli
y used. DNS also re
eives IP addresses of high request rate 
lients from ea
h
luster at larger interval (ea
h 
luster sends this information every 64 se
onds). Thisinformation 
an be used in di�erent poli
ies if desired, for example, in ar
hite
tureproposed by us, DNS sele
ts a subset of 
lusters (3 
lusters at most) whi
h arenearer to 
lient (approximated using IP addresses) and are not overloaded. ThusDNS 
olle
ts 
lient IP addresses whom di�erent sele
ted 
lusters should ping tomeasure RTT. Requests to measure RTT to 
lients are sent by DNS to 
lusters.These 
lusters measure RTT to ea
h 
lient and return measured RTTs to DNS,DNS updates proximity information for ea
h 
lient in hash table and for next addressresolution reply to 
lient, this proximity information 
an be used.4.4 Request distribution me
hanismsWe have implemented me
hanisms for request distribution at two pla
es, at DNSand at the front nodes.
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4.4.1 At DNSAt DNS, using a separate appli
ation, whi
h runs along with modi�ed BIND server,desired 
luster IP address for di�erent 
lients 
an be sele
ted a

ording to desiredpoli
y. We have already implemented four poli
ies : random, round robin, weightedand nearest server sele
tion (proposed by us). In our appli
ation, there is a methodsele
t_
luster whi
h takes input 
lient IP address and sele
ts 
luster as per poli
yspe
i�ed. New poli
ies 
an be implemented very easily by modifying this method.All available information about 
lusters and 
lients having high request rate (ifpresent) is a

essible easily using their IP addresses. Information about all 
lusters
an also be obtained sequentially.4.4.2 At Front nodesAt front node, using our appli
ation ea
h new TCP 
onne
tion from 
lients forHTTP request 
an be s
heduled on desired server. Similar to DNS, we have im-plemented three poli
ies for server sele
tion at front node : random, round robin,weighted round robin (based on 
urrent load of servers). By modifying a method
alled sele
t_server whi
h takes 
lient IP address as input and returns server IPaddress to whi
h this new 
onne
tion should be forwarded, s
heduling poli
ies 
anbe easily 
hanged. Currently, distributed IP pa
ket rewriting me
hanism is used, soonly 
lient IP address and TCP port number of 
lient side 
an be used to determinewhi
h server to sele
t.All available information about servers and 
lient request rate information (forprede�ned time interval in past and average) is a

essible easily using their IP ad-dresses. Information about all servers 
an also be obtained sequentially.4.5 Experimental setupWe have setup a test bed having 3 
lusters on di�erent logi
al networks modelingthree di�erent geographi
al regions. Ea
h 
luster has one front node and two servers
onne
ted to front node for that 
luster. Servers are 
on�gured to have aliased44



se
ondary IP address same as 
luster IP and have lo
al private IP address that isused for IP pa
ket forwarding by the front node.We have used ten 
lients to generate requests to web server system. Clients werealso assigned IP addresses in su
h a way that 
lients in same geographi
al regionhad higher order seven bits as mentioned in RFC 1466 [19℄ des
ribing guidelines formanagement of IP address spa
e. Using this RFC, we modeled three geographi
alregions for 
lusters - region1 as Europe (ma
hines had IP addresses in 194.*), re-gion2 as North Ameri
a (ma
hines had IP addresses in 198.*) and region3 as Pa
i�
Rim (address with 202.*). Similarly three 
lients ea
h were present in region1 andregion2 and two 
lients in region3. We also had three more 
lients in other regionswhi
h represent mix of 
lient not falling in either of three regions. A DNS was alsosetup to resolve IP addresses of 
lusters. A
tual test bed setup used for performingexperiments is shown in Figure 4.2.To model WAN e�e
ts, arti�
ial delays and pa
ket losses were introdu
ed usingNistnet software. Half of delay (in spe
i�ed range) and losses o

urred in one di-re
tion and half in the reverse dire
tion. Front nodes introdu
ed delays and pa
ketlosses for pa
kets transmitted by 
lients and 
lients introdu
ed similar delays andlosses after re
eiving pa
kets from servers but before giving it to the higher proto
ollayers.We have 
on�gured lower delays for IP pa
kets sent and re
eived between 
lientsand servers in the same geographi
al region and relatively higher delays for pa
ketsbetween 
lients and servers in di�erent geographi
al regions. These delays weregenerated randomly within spe
i�ed range (say, 10-50 ms round trip delay in thesame region and 50-250 ms delay a
ross the regions).Similarly we 
on�gured lower pa
ket losses with higher 
orrelation between dropof pa
kets to model bursty lower pa
ket losses in small distan
e links for links insame geographi
al region and higher pa
ket losses with high 
orrelation betweensu

essive pa
ket drops for links a
ross di�erent geographi
al regions (e.g. 5% losswith .9 
orrelation on links in same region and 10% loss with .85 
orrelation on links
onne
ting di�erent regions).
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More details about experiment are dis
ussed in the next 
hapter 
ontaining re-sults.
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Figure 4.2: Test bed used in Experiments
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Chapter 5ResultsWe des
ribed the setup of test bed used for performing experiment in the last 
hap-ter. To generate load and measure performan
e we have used Webstone originallydeveloped by Sili
on Graphi
s and is now maintained by mind
raft.
om. This isstandard software used to ben
hmark 
ommer
ial web servers. Di�erent s
hemeswere tested with everything kept identi
al ex
ept poli
y for 
luster sele
tion at DNS.Webstone software's master pro
ess 
ontrolling 
lients was run on one of 
lient PCs.Experiments were 
ondu
ted by varying number of 
lient pro
esses from 20 to120 in steps of 10. Webstone tries to exe
ute roughly equal number of pro
essesat ea
h 
lient. To generate uneven distribution of requests, we wrote the ID ofsame 
lient ma
hines multiple times in its 
on�guration �le. These ma
hines thengenerated more load than others. When number of 
lient pro
esses were 20,40,..,120,
lients in all geographi
al regions generated almost equal load (per 
lient load i.e.number of pro
esses running were still di�erent). When number of 
lient pro
esseswere 30,50,..,110 
lients in region1 and region2 were running twi
e as many 
lientpro
esses as they were running with 10 less 
lient pro
esses (i.e. at 20,40...), whileother 
lients were still running same number of pro
esses, so load was highly uneven.We have run at least ten iterations of one minute duration ea
h for ea
h datapoint and taken average of them for plotting. Ea
h Webstone 
lient pro
esses madejust single query to DNS before sending requests to servers (
lusters) and usedresolved mapping for whole testing period of one minute. So due to appli
ation48



level 
a
hing by webstone 
lients, requests from same 
lient pro
ess rea
hed to same
luster for one minute duration regardless of TTL value provided by DNS.5.1 Ar
hite
tures emulated on test bedIn our experiments, we were unable to stress web server with heavy load due tolimited available RAM (32 MB) and 
lient ma
hines were not able to handle heavydata rate or run large number of webstone pro
esses. Due to pa
ket delay software(whi
h was run as kernel module), when data rate was high, bu�ering large amountof data for delay period 
onsumed more RAM and generated very high interrupt rateand Linux kernel did not handle the situation gra
efully. Even kernel 
ompiled withoption "CPU is too slow to handle full bandwidth" did not make systems stablewhen the data rate was high. Due to these limitations, we 
ould not 
reate thesituations when queuing or pro
essing delays at server dominate network delays.We have emulated four poli
ies for 
luster sele
tion at DNS in our test bed andwe dis
uss the results obtained for those poli
ies below:5.1.1 Round robin sele
tionIn round robin s
heme, DNS resolves address of �rst 
luster for �rst DNS query, ofse
ond 
luster for se
ond query and so on. After giving addresses of all servers, itstarts resolving address of �rst server again.Round robin sele
tion poli
y is very popular DNS s
heme. It is used to equallydistribute load on multiple servers of same 
apa
ity if it is assumed that all the
lients generate same number of requests. But in pra
ti
e, many 
lients generatevery high or very low load thus resulting in load skew.Average response times as reported by webstone is plotted in Figure 5.1. It isquite 
lear that there is not mu
h variation in average response time as servers werenever bottlene
k in servi
e of requests and their servi
e time did not 
hange mu
h.
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Figure 5.1: Average response time with Round robin poli
y used at DNS
5.1.2 Random sele
tionAs the name indi
ates, random poli
y sele
ts any 
luster randomly for ea
h querythus this poli
y should also resolve IP address of ea
h 
luster equal number of timein the long duration. But as opposed to round robin, for very small duration IPaddress of one 
luster may be resolved many times more than that of others. This isthe poli
y (however 
oupled with shu�ing of IP addresses) implemented in BIND.Average response times reported by webstone is plotted in Figure 5.2. Sin
esele
tion of server was random, average response time measures also seems to haveno �xed pattern.5.1.3 Weighted 
apa
ity sele
tionIn weighted 
apa
ity sele
tion, ea
h 
luster is assigned either a stati
 weight mea-sured o�-line (for example server 2 is twi
e as powerful as server 1 and 3) or maydynami
ally report about free 
apa
ity of 
lusters to DNS. DNS returns IP address50
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Figure 5.2: Average response time with Random sele
tion poli
y used at DNSof parti
ular server in proportion to its weight or free 
apa
ity as reported by 
luster.We implemented dynami
 status reporting based weighted sele
tion. To return IPaddresses in proportion to their weight following algorithm is used:1. Generate running sum of weights asso
iated with ea
h 
luster2. Generate random number between one and sum of weights3. Return 
luster having least running sum of weights and having running sumof weights greater than or equal to the generated random number.This algorithm is used for servers having di�erent 
apa
ity and if used withdynami
 
apa
ity reporting, it 
an deal with load skew due to uneven request rateeasily.Average response times reported by webstone is plotted in Figure 5.3.
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Figure 5.3: Average response time with dynami
 Weighted poli
y used at DNS5.1.4 Nearest 
luster sele
tionThis is the s
heme proposed by us. Here, DNS tries to send address of geographi
allynearest 
luster to 
lient if that server is not overloaded. In our s
heme, re
ord of
lients generating heavy requests (mu
h more than average) is kept, so that these
lients do not get IP address of server that is already loaded heavily. So if the requestfrom 
lient 
omes for the �rst time or it is not high request rate generating 
lient,DNS gives address of geographi
ally nearest server with enough free 
apa
ity to serverequests. This geographi
al proximity is estimated using IP addresses of 
luster and
lient, for better estimates, lo
al snapshot of whois database may be also queried.In our emulation, we have used high order IP address bits to 
ompare nearness of
lients and servers. For giving better performan
e, we have made poli
y adaptive.If 
lient generates heavy request rate, its request rate is reported by 
lusters andwe pro-a
tively request few possibly nearest 
lusters, having free enough 
apa
ity toserve the requests generated from 
lients, to measure round trip time between themand 
lient. RTT is de�nitely better but 
ostlier metri
 to get but this overhead is52
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Figure 5.4: Average response time with Nearest server sele
tion poli
y used at DNSvery small (less than 1% of tra�
 in
rease if ping is done to all 
lients, as reportedby Crovella et al [14℄ in their study). Thus DNS gets better and mu
h more a

urateproximity information between 
lusters and 
lient. Sin
e DNS gives IP address of
lusters having enough free 
apa
ity, if there is no sudden variation in request patternof 
lients, no server should be overloaded in spite of load skew. RTT informationis refreshed after refresh time interval. Pseudo 
ode for the algorithm is given inse
tion 3.6.1.Average response times reported by Webstone is plotted in Figure 5.4. As seenin plot, on
e again variation is very small but average response time is mu
h betterthan the other three poli
ies.5.2 Performan
e ComparisonWe have plotted average response time with di�erent load distribution for di�erentpoli
ies in Figure 5.5 and Figure 5.6. As the plots show that under the network53
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Figure 5.5: Average response time (even load) with di�erent poli
ies used at DNS
onditions assumed by us, our RTT based nearest 
luster sele
tion approa
h out-performed other approa
hes by a good margin. While other approa
hes have averageresponse times in range of 1.5 se
onds to 1.8 se
onds, our approa
h gave averageresponse time in range of 0.92 se
ond to 0.96 se
onds. Thus our results verify thatif the links 
onne
ting di�erent geographi
al regions have mu
h higher delay andhigher pa
ket losses as 
ompared to links within same geographi
al region (whi
his usually the 
ase), we 
an provide better response time to 
lients by taking intoa

ount the network 
onditions by using round trip time.We have also plotted maximum response time for any 
onne
tion under di�erentpoli
ies, we on
e again see that our poli
y performs better. These results wouldbe mu
h better if 
lients in other geographi
al regions had lesser delays and pa
ketlosses with any of nearby 
luster (we had set up higher delays and high pa
ket losseswith every 
luster). The results are plotted in Figure 5.7.Other two plots, average 
onne
tion rate (number of 
onne
tions/se
) and serverthroughput are shown in Figure 5.8 and Figure 5.9 respe
tively. The large di�eren
ein 
onne
tion rate and hen
e higher throughput is attributed to aggressive sequential54



0

0.5

1

1.5

2

20 30 40 50 60 70 80 90 100 110 120

R
es

po
ns

e 
T

im
e

Number of client processes

Response Times with uneven load for different schemes at DNS

Round Robin

0

0.5

1

1.5

2

20 30 40 50 60 70 80 90 100 110 120

R
es

po
ns

e 
T

im
e

Number of client processes

Response Times with uneven load for different schemes at DNS

Round Robin
Random

0

0.5

1

1.5

2

20 30 40 50 60 70 80 90 100 110 120

R
es

po
ns

e 
T

im
e

Number of client processes

Response Times with uneven load for different schemes at DNS

Round Robin
Random

Weighted

0

0.5

1

1.5

2

20 30 40 50 60 70 80 90 100 110 120

R
es

po
ns

e 
T

im
e

Number of client processes

Response Times with uneven load for different schemes at DNS

Round Robin
Random

Weighted
Nearest

Figure 5.6: Average response time (uneven load) with di�erent poli
ies used at DNS
onne
tion poli
y used byWebstone software, whi
h tries to send 
onne
tion requestsas fast as possible if earlier requests are servi
ed qui
kly. Almost similar responsetime for varying number of 
lient requests also shows that in our test bed requestswere distributed properly by all poli
ies in most 
ases and servers were not loadedenough.In our proposed system, more servers and 
lusters 
an be added easily withoutbringing down the system. Our system is also fault tolerant sin
e if any server inthe 
luster goes down, front node does not re
eive system state information anddoes not send any new requests to that server. However, all 
onne
tions alreadyestablished with that server are not gra
efully handled. Similarly, DNS did notresolve IP address of 
luster that went down, 
lients who were unable to 
onne
t toresolved 
luster, try other 
luster IP addresses and 
onne
t to other 
lusters. Thistime too, 
lients having already established 
onne
tion with that 
luster get errorsbut no new 
onne
tion afterwards is s
heduled to 
luster until it 
omes up again.In short, we 
an 
on
lude that our ar
hite
ture s
aled well and our proposednearest 
luster sele
tion approa
h should give better results if network 
onditions55
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Figure 5.7: Maximum response time with di�erent poli
ies used at DNSfor a

ess within same geographi
al region are mu
h better than network 
onditionswhile a

essing 
lusters in other geographi
al regions.
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Figure 5.8: Conne
tion rate with di�erent poli
ies used at DNS
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Figure 5.9: Total through put with di�erent poli
ies used at DNS57



Chapter 6Con
lusion and Future ExtensionsWe designed and implemented a test bed for evaluation of load balan
ing strategiesfor distributed web server systems. This test bed is quite �exible and new poli
ies
an be 
ompared with already existing poli
ies very easily. This test bed will helpin understanding trade o�s and impa
t of di�erent parameters on a distributed webserver system.In our thesis, we proposed an adaptive and dynami
 poli
y for server sele
tionand request distribution for a very large website. This DWSS 
an be deployed with
urrent infrastru
ture and proto
ols in use. This ar
hite
ture is s
alable and faulttolerant too. In short, it meets all goals mentioned in design se
tion.We modi�ed IP pa
ket forwarding method to rewrite only in
oming IP pa
ketsusing shared 
ommon IP pa
kets. This 
an be implemented totally at appli
ationlayer with divert so
ket and IP �rewalling support, sin
e pa
kets from 
lients aremu
h shorter, even at appli
ation layer there is less overhead as 
ompared to rewrit-ing reply pa
kets whi
h was used in earlier proposed request distribution me
ha-nisms.From results obtained, we 
an 
on
lude that our ar
hite
ture will give betterresults when 
lients a

essing a parti
ular site are spread in di�erent geographi
alregions and they are far away from ea
h other. Our ar
hite
ture is geographi-
ally s
alable as well as fault tolerant for new in
oming requests. Our ar
hite
turea
hieved its main goal of minimizing response time per
eived to 
lient.58



6.1 Future ExtensionsWe did not look at the other poli
ies for request distribution within ea
h 
luster.Besides it, we assumed that all the servers are 
apable of serving all the requests.Next step would be 
onsider partial repli
ation on di�erent servers within ea
h
luster and 
ome up with a poli
y at 
luster level to distribute di�erent requeststo di�erent servers to get advantage of 
a
hing at ea
h server. Next step will beto support di�erent quality of servi
e to di�erent 
ustomers or to provide betterresponse time to 
lients requesting a subset of URL spa
e, for e.g. when they visitpages related to shopping at site.Our test bed 
an be further generalized to have swit
hing at di�erent layerof network, we have sour
e 
ode for symmetri
 and asymmetri
 spli
ing too. Ifsupport of swit
hing at higher layers is provided, poli
ies that make use of URL orappli
ation layer 
ontent to sele
t server 
an also be emulated on our test bed and
an be evaluated easily.After integration of swit
hing at appli
ation level, support for partial and dy-nami
 repli
ation 
an also be added to make it more 
omprehensive test bed. On
erequest distribution poli
ies and repli
ation strategies are in same test bed, dynami
repli
ation poli
ies 
an be explored further whi
h are still not properly understoodand explored in distributed web server systems.
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Appendix ASoftwares UsedIn our test bed we used many third party softwares. In next se
tions, we brie�ydes
ribe few me
hanisms, software and their use.A.1 Divert So
ket Me
hanismFor request distribution at front nodes, we needed some me
hanism to 
apture in-
oming IP pa
kets for HTTP 
onne
tions before rea
hing to TCP layer and rewritedestination address of IP pa
kets and re-inje
t them ba
k in the network withoutTCP layer knowing about them. Similarly, we needed me
hanism to 
hange desti-nation IP address of in
oming IP pa
kets for HTTP 
onne
tion with lo
al privateaddress, rewrite their destination address and inje
t ba
k in proto
ol sta
k to makeTCP layer believe that these pa
kets 
ame for aliased se
ondary IP address.We wanted to sele
t destination server address and rewrite all IP pa
kets at ap-pli
ation layer at front node. Divert so
ket provides us exa
tly same set of features.We used standard �rewalling me
hanism (that uses high performan
e pa
ket �lter-ing within Kernel after a setso
ketopt 
all) to divert all IP pa
ket with destinationTCP port 80 to divert so
ket port, where our appli
ation read them and modi�edthem. After modi�
ation divert so
kets provides options to re-inje
t pa
kets in lo
alTCP/IP sta
k or on network. At front node, pa
kets are re-inje
ted on network,while at servers pa
kets are allowed to pass up to higher proto
ol layer in same60



ma
hine.Thus divert so
ket provided an easy me
hanism for request distribution at frontnode within 
luster. However, divert so
ket requires pat
hing of kernel for divertso
ket support.More details about divert so
kets 
an be found at http://www.anr.m
n
.org/�divert/index.shtmlA.2 NistnetFor emulation of WAN 
hara
teristi
s in lab environment, we needed some softwareto introdu
e 
on�gurable delay and pa
ket losses et
 in path of IP pa
ket transfer.Nistnet software allows us to do the same. Nistnet software is now totally modu-lar (with release of version 2.0.10) whi
h does not require pat
hing of kernel, it isinstalled as loadable kernel module and using its 
ommand line interfa
e or GUIbased interfa
e, di�erent parameters like delay, pa
ket loss, bandwidth et
. 
an beset for all in
oming IP pa
kets.More information about nistnet 
an be found at http://www.antd.nist.gov/nistnet/,it is free software from National Institute Of Standards and Te
hnology.A.3 WebstoneFor ben
hmarking performan
e of web server system, we used Webstone. It is one ofmost popular and industry a

epted free ben
hmark program. This software has twoparts, a master pro
ess and multiple 
lient pro
esses whi
h may be rexe
ed on remotema
hines. After establishing trust relationship between 
lients and master ma
hine,webstone rexe
s 
lient pro
ess (as spe
i�ed in test bed 
on�guration �le) and 
lientpro
esses generate requests and report ba
k statisti
s to webstone. Webstone printsperforman
e results like number of 
onne
tion/se
., 
onne
t time, response time,thruput of 
lient and servers, error level, Little's load fa
tor et
.More information aboutWebstone 
an be found at http://www.mind
raft.
om/webstone/.
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