
A Test bed for performan
e evaluation of loadbalan
ing strategies for Web Server Systems
A Thesis Submittedin Partial Ful�llment of the Requirementsfor the Degree ofMaster of Te
hnology

byPuneet Agarwal

to theDepartment of Computer S
ien
e & EngineeringIndian Institute of Te
hnology, KanpurMay, 2001

Certi�
ate
This is to
ertify that the work
ontained in the thesis entitled �A Test bedfor performan
e evaluation of load balan
ing strategies for Web Server Systems�, byPuneet Agarwal, has been
arried out under our supervision and that this work hasnot been submitted elsewhere for a degree.May, 2001
(Dr. Dheeraj Sanghi)Department of Computer S
ien
e &Engineering,Indian Institute of Te
hnology,Kanpur.

(Dr. Pankaj Jalote)Department of Computer S
ien
e &Engineering,Indian Institute of Te
hnology,Kanpur.

Abstra
tMany large web sites get more than 100 million hits everyday. They need as
alable web server system that
an provide better performan
e to all the
lientsthat may be in di�erent geographi
al regions. Higher delays and losses are
ommonon WAN links. To provide a better servi
e to all the
lients, it is natural to havefully repli
ated web server
lusters in di�erent geographi
al regions. In su
h anenvironment, one of the most important issue is that of server sele
tion (and loadbalan
ing). The
lient's request should be dire
ted to one of the servers in a waythat the response
an be qui
k. We assume that web servers are fun
tionally homo-geneous, i.e. any one of them
an serve any
lient request. Another important pointis that this system should not require modi�
ation of any
lient side
omponent orexisting standard proto
ol.In this thesis, we have developed a test bed to emulate the world wide webenvironment and
ompare di�erent s
hemes. A large number of systems have beenproposed to do this load balan
ing. We also propose a new s
heme whi
h is basedon estimating the round trip time between the
lient and various server
lusters.The proposed s
heme is shown (through emulation) to perform signi�
antly betterthan many of the existing s
heme.

A
knowledgementI would like to thank my thesis supervisors, Dr. Pankaj Jalote and Dr. DheerajSanghi for their
onstant en
ouragement and innovative ideas. I am very thankfulto them for allowing me to work freely in area of my interest, patiently listeningto all problems, providing me every possible help instantly despite their very busys
hedule. Without their support and guidan
e at every stage of thesis,
ompletingthis work would not have been possible for me. It has been a very enlightening andenjoyable experien
e to work under them.I would also like to express my thanks towards the fa
ulty members of ComputerS
ien
e & Engineering department for imparting me invaluable knowledge and te
h-ni
al skills. I would also like to thank te
hni
al sta� of department for providingsu
h a ni
e working environment in the lab.I also thank all my friends who made my stay here a memorable one. Myall friends spe
ially Saibal, Kingshuk, Sriram, Rajrup, Saugata, Ashish Saxena,Parthajit and Jyotirmoy were always en
ouraging and helpful to me.I have used or modi�ed many third party softwares and I would like to thankpersons involved in developing software and giving suggestions in
ase of problems.I would like thank Andreas Gusta�son for helping me in modi�
ation of BIND, IliaBaldine for divert so
kets, Mark E. Carson for Nistnet software and Mind
raft In
for Webstone.Above all, I am grateful to my parents for rea
hing at this stage in life, it weretheir blessings whi
h always gave me
ourage to fa
e all
hallenges and made mypath easier.
i

Contents
A
knowledgement i1 Introdu
tion 11.1 Motivation . 11.2 Steps in HTTP request servi
e . 21.3 Outline . 32 Related Work 52.1 Relation with load balan
ing in distributed systems 52.2 Me
hanisms for request distribution 72.2.1 Client-based approa
h . 82.2.2 DNS-based approa
h . 102.2.3 Dispat
her-based approa
h . 132.2.4 Server-based approa
h . 162.2.5 Any
ast . 173 Proposed Ar
hite
ture for Web Server System 193.1 Design goals . 193.2 System model . 203.3 Request distribution strategy . 213.4 Overview of ar
hite
ture . 243.5 Algorithms . 263.5.1 Load balan
ing at DNS . 273.5.2 Load balan
ing at front node of ea
h
luster 32ii

3.5.3 Support at ea
h server . 354 Test bed for Measuring Web Server System Performan
e 374.1 Design goals . 384.2 Assumptions . 384.3 Overview of test bed . 394.3.1 Software
omponent at ea
h server 414.3.2 Software
omponents at front node of ea
h
luster 414.3.3 Software
omponents at DNS 424.4 Request distribution me
hanisms . 434.4.1 At DNS . 444.4.2 At Front nodes . 444.5 Experimental setup . 445 Results 485.1 Ar
hite
tures emulated on test bed 495.1.1 Round robin sele
tion . 495.1.2 Random sele
tion . 505.1.3 Weighted
apa
ity sele
tion 505.1.4 Nearest
luster sele
tion . 525.2 Performan
e Comparison . 536 Con
lusion and Future Extensions 586.1 Future Extensions . 59A Softwares Used 60A.1 Divert So
ket Me
hanism . 60A.2 Nistnet . 61A.3 Webstone . 61Bibliography 65
iii

List of Figures3.1 System Model . 213.2 Additional messages ex
hanged among
omponents in DWSS 253.3 One way distributed IP pa
ket rewriting me
hanism 264.1 Blo
k diagram of Test bed . 404.2 Test bed used in Experiments . 475.1 Average response time with Round robin poli
y used at DNS 505.2 Average response time with Random sele
tion poli
y used at DNS . . 515.3 Average response time with dynami
 Weighted poli
y used at DNS . . 525.4 Average response time with Nearest server sele
tion poli
y used at DNS 535.5 Average response time (even load) with di�erent poli
ies used at DNS 545.6 Average response time (uneven load) with di�erent poli
ies used atDNS . 555.7 Maximum response time with di�erent poli
ies used at DNS 565.8 Conne
tion rate with di�erent poli
ies used at DNS 575.9 Total through put with di�erent poli
ies used at DNS 57

iv

Chapter 1Introdu
tion
1.1 MotivationNumber of users a

essing the Internet is in
reasing quite rapidly and it is
ommonto have more than 100 million hits a day for popular web sites. For example,nets
ape.
om website re
eives more than 120 million hits a day. The number ofusers is expe
ted to
ontinue in
reasing at a fast rate and hen
e any website thatis popular, fa
es the
hallenge of serving very large number of
lients with goodperforman
e. Full mirroring of web servers or repli
ation of web sites is one wayto deal with in
reasing number of requests. Many te
hniques exist for sele
tion ofnearest web server from the
lient's point of view. Ideally, sele
tion of best servershould be done transparently without the intervention of the user.Many of the existing s
hemes do only load-balan
ing. These s
hemes assumethat the repli
ated site has all the web servers in one
luster. This is alright formedium sized sites, but beyond a
ertain amount of tra�
, the
onne
tivity to thisone
luster be
omes a bottlene
k. So large web sites have multiple
lusters, and it isbest to have these
lusters geographi
ally distributed. This
hanges the problem to�rst sele
t the nearest
luster and then do load balan
ing within the servers of that
luster. Of
ourse, if all servers in a
luster are heavily loaded then another
lustershould have been
hosen. So the problem is more
omplex in su
h an environment.Designing su
h system involves making de
isions about how best server is sele
ted1

for a request su
h that user re
eives response of request in minimum time and howthis request is dire
ted to that server. In most strategies, a server is sele
ted withouttaking into a

ount any system state information, e.g. random, round robin et
.Some poli
ies use weighted
apa
ity algorithms to dire
t more per
entage of requeststo more
apable servers. But few strategies sele
t a server based on the server stateand very few strategies take
lient state information into a

ount. There is alwaysa tradeo� between the overhead due to
olle
tion of system state information andperforman
e gain by use of available state information. If too mu
h state information(of server or
lients) is
olle
ted, it may result in high overheads for
olle
tion ofinformation and performan
e gain may not be
omparable to overheads. So wemust
arefully
olle
t only that state information that might improve performan
eof system as seen by
lients but do not result in very high overheads.In this thesis, we have proposed a new s
heme based on
olle
ting informationabout the load on ea
h server as well as estimating round-trip time between
lustersand those
lients whi
h make large number of requests.To study the tradeo�s and impa
t of di�erent parameters on a web server system,a framework is required. The framework should enable evaluation and
omparisonof performan
e of distributed web server systems. The framework should allow easyimplementation of any s
heme and analyze the performan
e of web server systemwith new poli
ies.In this thesis, we have designed and implemented a test bed to provide su
h aframework. We have also measured performan
e of few poli
ies implemented in thistest bed through emulation of world wide web s
enario.1.2 Steps in HTTP request servi
eBefore we dis
uss further, it is important to understand how a HTTP request isservi
ed, so it is brie�y dis
ussed here. A
lient's request for desired obje
t isful�lled in following steps:� Domain name to IP address mapping : The domain name present in URLmust �rst be translated to an IP address. The
lient software requests its lo
al2

resolver for it, if this mapping is not in its
a
he. The resolver in turn returnsthe IP address for that domain name, that it may get from Intermediate nameservers (whi
h may have
a
hed this mapping) or from dire
tly from authorizedDNS for that domain name either re
ursively or iteratively. More details aboutDNS me
hanism
an be found in RFC 1034 [26℄ and RFC 1035 [27℄.� Request for obje
t to server with that IP address: Then
lient softwaresends request for obje
t to server having that IP address. The server mayreturn requested obje
t dire
tly or it may redire
t it to other server usingHTTP header options or fet
h the obje
t from other server and deliver to
lient or may transparently forward the request to other server whi
h repliesdire
tly to
lient with address of forwarding server, et
.Thus HTTP request servi
e path allows us to distribute requests at two levels,�rst at DNS at the time of resolution of domain name to server IP address, andthe other at server when request rea
hes at that server. Any system
onsistingof multiple servers and some request distribution me
hanism is termed DistributedWeb Server System (DWSS).Time taken for servi
e of any HTTP request submitted by
lient depends on twomajor fa
tors namely network
onditions and server load. Even if there is a
apableserver system present, but the
onne
tivity of
lient in terms of delay, availablebandwidth or pa
ket loss is not good, it will sees large delays. If server system issaturated with requests, time taken for servi
e is very large. So for keeping responsetime minimum, web server system should take into a

ount both the fa
tors.1.3 OutlineIn
hapter 2, we �rst present a brief survey of existing approa
hes for request dis-tribution me
hanisms. In
hapter 3, design goals for system, system model taken,approa
h used and algorithms for ea
h server side
omponent of proposed ar
hite
-ture are dis
ussed.To evaluate the performan
e of proposed ar
hite
ture and
ompare it with otherexisting proposals, a �exible test bed was designed to emulate real Internet like3

s
enario in whi
h various ar
hite
tures for Distributed Web Server System
an beemulated with minimal e�orts. In
hapter 4, design goals, overview and di�erent
omponents of this test bed are des
ribed. In
hapter 5, di�erent algorithms imple-mented on the test bed and measured performan
e are brie�y dis
ussed and �nallythe performan
e results obtained for various s
hemes are
ompared. In
hapter 6,we �nally present
on
lusion and future extensions. In appendix, we give shortdes
ription of softwares used by us.

4

Chapter 2Related Work
2.1 Relation with load balan
ing in distributed sys-temsLoad balan
ing in distributed systems has been the subje
t of resear
h for last fewde
ades. The traditional load balan
ing problem deals with load unit migration fromone pro
essing element to another when load is light on some pro
essing elementsand heavy on some other pro
essing elements. It involves migration de
ision, i.e.whi
h load unit(s) should be migrated and then migration of load unit to othernodes.Both of these parts
an be
arried out either lo
ally or globally. Load balan
ing
an be
lassi�ed a

ording to the de
ision base and migration spa
e [29℄. If migrationde
ision is
arried out a

ording to lo
al load situation and that of neighbors, it is
alled lo
al de
ision base. If this de
ision is based on load
ondition of subset ofthe whole network, then it is
alled global de
ision base. Similarly if load unit ismigrated to dire
t neighbors, then it is
alled lo
al migration spa
e, otherwise it is
alled global migration spa
e. So a

ording to de
ision base and migration spa
e,four di�erent
ategories of s
hemes emerge:� Lo
al De
ision base Lo
al Migration Spa
e (LDLM)� Lo
al De
ision base Global Migration Spa
e (LDGM)5

� Global De
ision base Lo
al Migration Spa
e (GDLM)� Global De
ision base Global Migration Spa
e (GDGM)A taxonomy for load balan
ing in distributed systems is presented in [10℄.However, these approa
hes for load balan
ing are not suitable for load balan
ingin the web
ontext for several reasons. First, in the web
ontext there are multi-ple points for load balan
ing (e.g. at the DNS or at the server) while traditionalte
hniques assume a single point. Se
ondly, the
ost fa
tors are not homogeneous inweb and
an vary a lot, while in traditional systems most servers are assumed to begenerally of similar
apa
ity and
apability. Thirdly, the jobs were assumed to be
ompute intensive and hen
e the fo
us was to distribute the
ompute load. In theweb, on the other hand, the load is mostly I/O oriented where
a
hing plays a verysigni�
ant role in performan
e and will impa
t the s
hemes. Even
ost of migrationof load unit and granularity of load varies for di�erent points of load balan
ing. Dueto these, and other reasons, it is best to
onsider the load balan
ing problem in theWeb as a new problem, whi
h requires di�erent approa
hes.In web
ontext, whi
h server to sele
t has been mostly studied from
lient pointof view, i.e. either
lient side DNS or
lient proxy or
lients themselves de
ide whi
hserver to
hoose. Usually, these entities send probes to multiple servers and sele
tbest server based on probe results or they take into a

ount previous history ofresponses sent by server. But these probes are usually not su�
ient to a

uratelymeasure server load
onditions, sin
e load on servers
an
hange easily with timeand usually these probes
an not �nd
urrent load on the servers and until all
lientsuse su
h softwares and there is
o-operation with server side entities (it is howeververy di�
ult to rea
h at
ommon method a

eptable to all), they will either in
urtoo mu
h overhead or will not give mu
h better performan
e.Example of
lient themselves sele
ting server is Nets
ape [15℄ or Java Appletrunning at
lient to probe servers is [31℄. In s
heme proposed by Be
k and Moore[7℄ in their I2-DSI system, DNS resolver at
lient side sends probes to server tosele
t server with minimum response time. In s
heme proposed by Baentsh et al [6℄servers send information about other servers in hierar
hy through extra http headersto
lient side proxy and then
lient side proxy sele
ts server.6

There are various proximity metri
s
onsidered for sele
tion for best server by
lients. Crovella et al [14℄
ompare random server sele
tion, hop
ount and round triptime based sele
tion and �nd that RTT has relatively higher
orrelation with laten
yper
eived by
lient. Sayal et al [25℄ also in
lude HTTP laten
y (time measured bysending HTTP HEAD request) and all server polling in their study and �nd HTTPlaten
y has highest
orrelation with a
tual server response time for other requestsand present refresh based algorithms for best server sele
tion at
lient side.Client side approa
hes are not general, sin
e they assume modi�
ation in
lientside
omponents, some approa
hes even modify proto
ols. Thus these types ofapproa
hes
an not improve performan
e for all the
lients.Gwertzman et al [21℄ �rst pointed out the need of
reating
a
he server on otherside of USA when demand from that side in
reases. Guyton et al [20℄ fo
us on hop
ount based metri
 and
ost of
olle
tion of information for server sele
tion.Server sele
tion at server side DNS is done based on geographi
al proximityapproximated using
lient IP address or hop
ount information obtained from routersin Cis
o's Distributed dire
tor [11℄. Given that
lients are distributed geographi
allyfar apart, stati
 and relatively less
ostlier metri
s like hop
ount for proximityinformation are not found good in study by [14℄. Ammar et al [32℄,[17℄ propose lo
alany
ast resolver that is near a large number of
lients, to whi
h servers push theirperforman
e information and probing agent probes servers for path information.This proposal assumes use of any
asting domain name(ADN) and any
ast resolvernear
lients, whi
h on
e again la
ks general appli
ability.In next se
tion we present a brief survey of me
hanisms used for distribution of
lient requests.2.2 Me
hanisms for request distributionCardelini et al [9℄
lassify web server ar
hite
tures based on the entity whi
h dis-tributes the in
oming requests among the servers in four
lasses of methods. Someof the methods in ea
h
ategory use feedba
k based algorithms and some use non-feedba
k algorithms as dis
ussed in [1℄. So we
an
ategorize the request distribution7

me
hanisms based on entity that routes the request as follows:� Client-based approa
h� DNS-based approa
h� Dispat
her-based approa
h� Server-based approa
h� Any
astLast me
hanism, Any
asting does not involve any expli
it routing by web serversystem, but is automati
ally done as part of IPv6 proto
ol by internetworks [8℄.These me
hanisms o�er transparen
y at various levels: manual sele
tion o�ersno transparen
y be
ause URLs are di�erent; Client and DNS-based me
hanisms mayo�er URL level transparen
y, i.e. URL is same but resolved IP addresses may bedi�erent; Dispat
her based approa
hes usually o�er IP address level transparen
y,i.e. even resolved IP address is also same.Some me
hanisms are geographi
ally s
alable, i.e.
luster of servers
an be eitherin LAN or WAN. Some approa
hes are fault tolerant and highly available but othersare not. Some approa
hes require repli
ation of whole web-site, while others allowpartial repli
ation.2.2.1 Client-based approa
hIn this approa
h,
lient side entity is responsible for sele
ting the server so no serverside pro
essing is required for sele
tion of server. The routing to repli
a is done by
lient software (browser) or by
lient-side DNS or proxy servers. So these s
hemes
an be
ategorized as follows:� Web
lients : In this approa
h
lients are aware of existen
e of repli
asof same resour
e on multiple servers and they
hoose the repli
a themselves.Following are two s
hemes that utilize
lient software for server sele
tion.8

1. Nets
ape's Approa
h : This approa
h is taken by Nets
ape Navigatorbrowsers [15℄. On a

ess to Nets
ape home page, browser generates a ran-dom number X between 1 and 32 and a

esses http://homeX.nets
ape.
om.Ea
h server
an have multiple homeX aliases pointing to it so that
lientsoftware need not to be modi�ed in
ase more servers are deployed, just
hanging aliases will su�
e.This approa
h is not generally appli
able as not all
ompanies
an
on-trol
lient software, it requires re-installation or
hange of web
lients ifnumber of aliases in
rease. Also, it does not guarantee server availabilityand load balan
ing of servers be
ause if any server is down or overloaded(and the aliases has not been
hanged), random sele
tion will still try toa

ess resour
e from that server.2. Smart Clients : In s
heme proposed by Yoshilakawa et al [31℄, a JavaApplet is run on the
lient side, whenever user a

esses the DistributedWeb Server System. This Applet knows all the IP addresses of serversin the System. Applet sends messages to probe node load, response timeand network delays, et
., and sele
ts the best node.This approa
h does not require
lient software modi�
ation and providess
alability and availability, but downloading the Java Applet requires aTCP
onne
tion, and extra probe messages
ause delay and in
reasednetwork tra�
. Also all
lients might not be
apable of running the JavaApplet.� Client's DNS resolver : This s
heme is used by Be
k and Moore [7℄ inI2-DSI system. In this s
heme,
lient's lo
al DNS resolver issues probes toservers instead of web
lient and may
hoose the server based on responsetime or previous a

ess performan
e reports from
lient.This s
heme requires
ustomized DNS and
lients must also be modi�ed forgiving reports. If the server address is
a
hed, then all requests in future willgo to the same server. So load balan
ing may not be a
hieved. If
a
hing isrestri
ted by a lower TTL value, then we are putting additional load on DNSinfrastru
ture. 9

� Client Side Proxy : This s
heme was proposed by Baentsh et al [6℄. Serversform a hierar
hi
al stru
ture and
ontent repli
ated on ea
h server is somepart of URL name spa
e. Ea
h parent server in hierar
hy propagates informa-tion about repli
as present on dire
t des
endents in extra HTTP headers inresponse to request for resour
e. Client-side proxy learns about repli
as andnext time request
an go to server
ontaining repli
a of resour
e.This approa
h requires both server software and proxy modi�
ation to giveinformation about repli
a and pro
ess extra HTTP headers respe
tively.All these approa
hes require
hange in
lient side
omponents, whi
h are not
ontrolled by the e-Commer
e
ompany or the hosting ISP, So these approa
hessu�er from the problem of limited appli
ability.2.2.2 DNS-based approa
hIn this approa
h, server side authorized DNS maps domain name to IP address ofone of the nodes of the
luster, based on various s
heduling poli
ies. Sele
tion ofrepli
a o

urs at server side DNS so it does not su�er from appli
ability problem of
lient-side me
hanisms. But DNS has limited
ontrol over requests rea
hing at serverbe
ause of
a
hing of IP address mapping at several levels viz., by
lient softwares,lo
al DNS resolvers, intermediate name servers, et
. Besides the mapping, a validityperiod for this URL to IP address mapping, known as Time-To-Live (TTL) is alsosupplied. After expiration of TTL period this mapping request is again forwardedto authorized DNS. Setting this value to very small or zero does not work be
auseof existen
e of non
ooperative intermediate name servers and
lient level
a
hing.Also, it in
reases network tra�
 and DNS itself
an be
ome bottlene
k.Several DNS based approa
hes are dis
ussed in [9℄and [12℄. DNS based algorithms
an be
lassi�ed on the basis of the s
heduling algorithms used for server sele
tionand TTL values.
10

� Constant TTL algorithms : These are
lassi�ed on the basis of the systemstate information used by DNS for server sele
tion. The system state informa-tion
an in
lude both
lient and server state information, like load, lo
ationet
.1. System stateless algorithms : Most simple and �rst used algorithmof this type is round robin (DNS-RR). It was used by NCSA (NationalCenter for Super
omputing Appli
ations) [24℄ to handle large tra�
 vol-ume using multiple servers. In this approa
h, primary DNS returns IPaddresses of servers in the round robin fashion.It su�ers from uneven load distribution and server overloading, sin
e largenumber of
lient from same domain (using same proxy/gateway) are as-signed same server. Also, whole do
ument tree must be repli
ated onevery server or network �le system should be used.2. Server state based algorithms : A simple feedba
k me
hanism fromservers about their loads is very e�e
tive in avoiding server overloadingand not giving IP address of unavailable servers. The s
heduling poli
ymight be to sele
t the least loaded server any time.This approa
h solves overloading problem to some extent yet
ontrol overrequests is not good be
ause of
a
hing of IP addresses. Some implemen-tations try to solve this problem by redu
ing TTL value to zero but it isnot generally appli
able and puts more load on DNS.3. Client state based algorithms : In this approa
h, two types of in-formation about
lients, the typi
al load arriving to system from ea
h
onne
ted domain (from same proxy/gateway) and the geographi
al prox-imity
an be used by DNS for s
heduling.Requests arriving from domains having higher request rate per TTL value
an be assigned to more
apable server. Proximity information
an beused to sele
t nearest server to minimize network tra�
.One mode of Cis
o Distributed Dire
tor [11℄ takes
lient lo
ation (ap-proximated from
lient's IP address) and
lient-server link laten
y into11

a

ount to sele
t the server by a
ting as primary DNS.This approa
h also su�ers form same problem experien
ed by Server statebased algorithms.4. Server and Client state based algorithms : Cis
o Distributed Di-re
tor takes server availability information along with
lient proximityinformation into a

ount while making server sele
tion de
ision. Thesealgorithms
an also use various other state estimates for server sele
tion.Su
h algorithms give the best results.� Dynami
 TTL algorithms : These algorithms also
hange TTL values whilemapping host name to address. These are of two types [12℄:1. Variable TTL algorithms : As server load in
reases these algorithmstry to in
rease DNS
ontrol over request distribution by de
reasing TTLvalues.2. Adaptive TTL algorithms : These algorithms take into a

ount thedomain request rate (number of requests from a domain in TTL timeperiod) and server
apa
ities, for assigning TTL values. So a large TTLvalue
an be assigned for a more
apable server and less TTL value forthose mappings that have high domain request rate.These are most robust and e�e
tive in load balan
ing even in presen
eof skewed loads and non-
ooperative name servers, but these don't takegeographi
al information into a

ount.DNS based approa
hes are more suitable for stati
 repli
ation s
hemes and areless suitable for dynami
 repli
ation s
hemes be
ause
hanging pla
e of repli
atedobje
t may require
hange in mapping. In general these approa
hes su�er fromlimited
ontrol over request problem due to
a
hing of resolved IP addresses atvarious levels.
12

2.2.3 Dispat
her-based approa
hThis approa
h gives full
ontrol over
lient requests to server side entity. In thisapproa
h, the DNS returns the address of a dispat
her that routes all the
lientrequest to other servers in the
luster. Thus it a
ts as a
entralized s
heduler atthe server side that
ontrols all the
lient request distribution. It presents single IPaddress to outside world, hen
e is mu
h more transparent. These me
hanisms
anbe
ategorized as follows:� Pa
ket single-rewriting by the dispat
her : In this approa
h, all pa
kets�rst rea
h dispat
her be
ause IP address of dispat
her is provided by DNS.All the servers in
luster have di�erent private addresses visible within the
luster. The dispat
her sele
ts server in the
luster using simple algorithmslike round robin et
. and
hanges the in
oming pa
ket's destination addresswith the private address of sele
ted servers in the
luster. It also maintainsa list of sour
e IP addresses for a
tive
onne
tions and sends the re
eivedpa
kets from ea
h TCP
onne
tion to the same server node. Further, nodesin the
luster need to repla
e sour
e address in response pa
kets with the IPaddress of dispat
her.Although this solution maintains user transparen
y, it requires
hanges in thekernel of all the servers sin
e pa
ket rewriting o

urs at TCP/IP level. Thissystem
ombined with DNS-based solution for dispat
her, i.e primary DNSresolving host name to IP address of one of dispat
her for ea
h
luster,
ans
ale from LAN to WAN.� Pa
ket double-rewriting by the dispat
her : This approa
h is similar tothe above s
heme, ex
ept that all address
hanges are done by the
entralizeddispat
her, not by nodes in
luster. The dispat
her �rst
hanges ea
h in
omingIP pa
ket's destination address to that of sele
ted server and sends it to thesele
ted server node in the
luster. It also needs to modify the pa
kets on theway ba
k to the
lient, i.e., now in response IP pa
ket, it repla
es the sour
e IPaddress of sele
ted server with its address. The algorithm for server sele
tion
an be round robin, random, et
. 13

Cis
o lo
al dire
tor sele
ts the server with least a
tive
onne
tions. Magi
router [4℄ uses a appli
ation level pro
ess that inter
epts all pa
kets between
lient and server and modi�es address and
he
ksum �elds.This approa
h has advantage that it does not require modi�
ation of all nodesin
luster.� Pa
ket forwarding by the dispat
her : This approa
h is des
ribed in [18℄.In this approa
h instead of IP pa
ket rewriting dispat
her forwards pa
kets tonodes in
luster using MAC address.IBM Network Dispat
her's LAN solution assumes that server nodes are on thesame LAN and share the same IP address but nodes have disabled ARP me
h-anism, so all pa
kets rea
h to dispat
her. The dispat
her then forwards thesepa
kets to sele
ted servers using their MAC addresses on the LAN withoutmodifying its IP header. The s
heduling poli
y
an be based on server loadand availability.This me
hanism is transparent to both
lient and server. No pa
ket rewritingis required by dispat
her or servers as they share same IP address.IBM Network Dispat
her's WAN solution is based on dispat
her at two levels.Centralized �rst level dispat
her uses single-rewriting me
hanism to forwardthe pa
kets to one of the se
ond level dispat
hers (on WAN) for ea
h
luster,i.e. it repla
es its IP address from pa
kets to that of sele
ted dispat
her(ea
h
luster has its dispat
her). Se
ond level dispat
her (at ea
h
luster)
hangesits IP address in pa
ket ba
k to that of �rst level dispat
her and forwards itto sele
ted server on LAN using MAC addresses. Sele
ted node responds withIP address of primary dispat
her as in the previous approa
h.� ONE-IP address : This approa
h is des
ribed in [16℄, multiple ma
hines inthe web server system have same se
ondary IP address. This se
ondary IPaddress is then publi
ized by DNS. It is of two types:1. routing-based dispat
hing : In this approa
h all pa
kets with ONE-IP address are dire
ted to IP address dispat
her by the subnetwork router.14

The dispat
her sele
ts the server by applying hash fun
tion on the
lientIP address and then reroutes the pa
kets to sele
ted server using its pri-mary IP address. Sin
e hashing fun
tion is applied on
lient IP address,all pa
kets from same
lient rea
h to same server.2. broad
ast-based dispat
hing : In this approa
h subnetwork routerbroad
asts the pa
kets having destination ONE-IP address to all serversin web server
luster, the servers themselves
ompute hash fun
tion on
lient IP address to de
ide whether they are a
tual destination or not. It
auses more server overhead.Using simple hash fun
tion guarantees that same server will be sele
ted fora given IP address but at the same time it is also the weakest fa
tor in dy-nami
 sele
tion of server for load balan
ing. By
hanging hash fun
tion fault-toleran
e
an be a
hieved. Still hash fun
tion on
lient IP address is stati
assignment of server to ea
h
lient.� HTTP redire
tion by Dispat
herIn this approa
h
entralized dispat
her redire
ts the HTTP requests amongthe web server nodes by spe
ifying appropriate status
ode in response andindi
ating the sele
ted web server node address in its header. Dispat
hing
anbe based on load on servers or lo
ation.This approa
h is transparent to user as most browsers support it, but user
an per
eive little bit more delay. No pa
ket rewriting is required in thisapproa
h but state information of the server, i.e. load, number of
onne
tionset
. should be
ommuni
ated to dispat
her in this
ase.The Distributed Dire
tor [11℄ in se
ond mode uses estimate of
lient serverproximity and node availability to sele
t the server and redire
ts the
lient tosele
ted server. Its main disadvantage is dupli
ation of TCP
onne
tions andhen
e in
reased delay in response.
15

2.2.4 Server-based approa
hThis approa
h allows two-level dispat
hing, �rst by
luster DNS and later ea
h servermay reassign a re
eived request to one of the other server in the
luster. This solvesthe problem of non-uniform load distribution of
lient request and limited
ontrolof DNS.� HTTP redire
tion by ServerThe approa
h is used in SWEB [3℄. First request rea
hes to host in
lus-ter using normal DNS resolution but it
an further redire
t request to otherserver. It does se
ond level dispat
hing through the redire
tion me
hanism ofthe HTTP proto
ol. This redire
tion may depend on the load of server or maybe done in a round robin fashion. The servers need to ex
hange status infor-mation periodi
ally for taking redire
tion de
isions but this
ost is negligiblewith respe
t to tra�
 generated by
lient requests. Its main disadvantage isdupli
ation of TCP
onne
tions and hen
e in
reased delay in response.� Pa
ket Forwarding by ServerIn this approa
h, �rst level s
heduling is done using round robin DNS me
ha-nism, the se
ond level dispat
hing is done by pa
ket rewriting me
hanism thatis transparent to users. So �rst request rea
hes to any node in
luster, if thatnode �gures out that other node is better for serving this request, node usesMAC address to reroute the pa
ket to sele
ted sever.It does not require HTTP request redire
tion hen
e it is better in terms oflaten
y time. The server sele
tion
an be stateless i.e. based on hash fun
tionor based on load information on servers. If loading information is used forrerouting, server need to ex
hange load information among themselves. Alsothis s
heme
an work with both LAN and WAN based solution.� Akamai's Approa
hAkamai's approa
h [2℄ is very di�erent. In their approa
h, URLs of obje
tsembedded in HTML page, like images, Java Applets, multimedia
omponentset
., are modi�ed by proprietary software Laun
her running at server, to the16

URLs of the obje
ts available at any Akamai server nearest to
lient. It is
laimed that these embedded obje
ts
omprise nearly 70% of typi
al pagein overall bytes. A map of
urrent Internet tra�

onditions, the loads ofall Akamai servers worldwide, and the lo
ations of Internet users is built forsele
tion of server. This map is updated on
e per se
ond. While makingsele
tion of server, it is made sure that no server is overloaded and number ofservers
ontaining repli
a is proportional to number of requests for the obje
t.This approa
h is very useful when page
ontains large multimedia obje
ts.It requires proto
ol for getting information about other servers distributedgeographi
ally, and
lient lo
ation. It s
ales geographi
ally well but it alsorequires pages to be modi�ed a

ording to the
lient lo
ation.2.2.5 Any
astIn IPv6, an any
ast servi
e [8℄ will be supported. This servi
e assumes that thesame IP address is assigned to a set of hosts, and IP router has path to its
losesthost in routing table. Thus di�erent IP routers have paths to di�erent hosts withthe same IP address.This approa
h automati
ally sele
ts the
losest host, thus load distribution
ausesno overhead. But it also implies almost stati
 repli
ation sin
e
hanges in routingtable take time. Whi
h
an be solved in future through A
tive Networks, in whi
hsimple program inje
ted by appli
ation
an be exe
uted at routers.These me
hanism have their relative pros and
ons. Client side approa
h doesnot require any server side pro
essing but su�ers from limited appli
ability problem.DNS based approa
hes su�ers from problem of limited
ontrol over
lient requestdue to
a
hing and non-
ooperative name servers. They provide
oarse level
ontrolover
lient request but these approa
hes do not su�er from single point of failureproblem whi
h is present in Dispat
her based approa
hes. Dispat
her based ap-proa
hes give �ner level
ontrol over
lient request. Pa
ket forwarding approa
hesare most suitable for LAN based solutions and
an s
ale to WAN solution. Serverbased approa
hes o�er �ne grain
ontrol and do not su�er from single point of failure17

problem but redire
tion
auses in
rease in laten
y period.Our fo
us is on a general s
heme that
an be fully implemented at server sideand
an be very easily deployed with
urrently used infrastru
ture and standardproto
ols. Hen
e we do not
onsider
lient side approa
hes and do not assumeexisten
e of any support or spe
ial
omponent or modi�ed proto
ol running at
lientside. We
onsider whole server ar
hite
ture for
olle
tion of metri
s required forsele
tion of server, role of ea
h entity and method of request distribution.

18

Chapter 3Proposed Ar
hite
ture for WebServer SystemIn this
hapter we dis
uss design goals for system ar
hite
ture, system model usedand algorithms at ea
h server side entity.3.1 Design goalsA Distributed Web Server System (DWSS)
onsists of a large number of servers withsome me
hanism to distribute the in
oming
lient requests among those servers. Wehave the following design goals for the DWSS ar
hite
ture:� Components used should be
ompatible with
urrent proto
ol and networkelements, i.e. they
an be deployed in
urrent infrastru
ture and proto
olsuite very easily.� It should not require
hange of
omponents at
lient side or
omponents onwhi
h website administrator has no
ontrol, i.e.
hange in only server side
omponents is allowed.� System should be geographi
ally s
alable, i.e. more servers in
lusters
an beadded when needed in LAN environment and besides that more
lusters (thatmay be geographi
ally far apart)
an be added in web server system on WAN.19

� System should give better performan
e in terms of laten
y per
eived at
lientside, i.e. time lag between request submission by user and
ontent rea
hing at
lient side software should be minimized.� System should be user transparent, i.e. single virtual interfa
e to a

ess websiteshould be provided at the URL level, request should be dire
ted to appropriateserver automati
ally by web server system.� System should be fault tolerant, i.e. system should
ontinue working (maybe with degraded performan
e) even if some servers or
lusters fail or takeno�-line.� System should avoid overloading of any server, i.e. requests beyond
apa
ityof any server should not rea
h to it, sin
e it may result in
rashing of servers.� System should not in
ur too mu
h additional overhead for its fun
tioning, interms of
omputation required or network tra�
 generated.3.2 System modelOur system model taken by us is shown in Figure 3.1. Di�erent steps in HTTPrequest servi
e are shown in this �gure. Client software �rst asks its lo
al resolverfor IP address of web server, if lo
al resolver or intermediate resolvers do not havethis mapping or TTL has expired, this request rea
hes to server side authorized DNSin step 1 and DNS replies with IP address of front node of one of several
luster(sele
ted a

ording to algorithm, whi
h we dis
uss later) in step 1.1. In step 2,
lient software or some entity on behalf of
lient (
lient proxy or gateway) sendsrequest to front node of that
luster using obtained IP address in step 1. Front nodede
ides whi
h server in the
luster should serve the request (algorithm for sele
tionis des
ribed later) and request is forwarded to that server by front node in step 3.Finally, in step 4, sele
ted server replies with request obje
t on behalf of front node.We have
hosen
luster based model be
ause it
reates additional level for systemstate information
olle
tion and gives full
ontrol over dispat
hing of ea
h HTTP20

Figure 3.1: System Model
onne
tion. Besides, our assumption is that
lients are geographi
ally distributedin distant parts of world and
ompany
an pla
e ea
h
luster at strategi
 lo
ationnear its
ustomers, where they
an serve
ustomers better. This model also allowswebsite administrator to
hange number of servers in any
luster as well as
hangethe number and lo
ation of
lusters easily.This model allows us to
olle
t �ner level information about ea
h server at the
luster level and aggregated information about ea
h
luster
an be passed to en-tity(DNS in our
ase) requiring this state information for making request distribu-tion de
isions at
oarser level.3.3 Request distribution strategyOur aim is to assign ea
h
lient request to the best server su
h that
lient experien
esminimum laten
y between HTTP request and re
eption of requested obje
t.21

First level de
ision
an be taken by DNS itself, DNS
an resolve IP address of
luster whi
h
an give better servi
e to this
lient. Parameters a�e
ting delay inservi
e of HTTP request are load at sele
ted server (and hen
e
luster) and path
hara
teristi
s between
lient and server. So to take this de
ision, DNS shouldhave re
ent
luster state information and proximity of
lient with
lusters. DNShas information about
lient IP address and
luster IP addresses. Sin
e
lustersare under
ontrol of website administrator, they
an provide any state informationrequired by DNS. Sin
e only server side
omponents
an be modi�ed, they willhave to gather the proximity information themselves. There are various metri
s tomeasure proximity between the
lient and
lusters. Some metri
s are:� Geographi
al distan
e between
luster and
lient� Network distan
e in hops between
luster and
lient� Round trip time (RTT) between
luster and
lient� Available bandwidth on path between
luster and
lient� Response time of any prior web do
ument fet
h� Laten
y of any prior web do
ument fet
hGeographi
al distan
e is signi�
ant only when time taken for transmission ofrequested obje
t and propagation delay on wire are
omparable, i.e. propagationdelay is also signi�
ant. Propagation delay is signi�
ant for very large distan
es evenat speed of light (
an be 100s of millise
onds). But transmission media used for longdistan
es (usually opti
al �ber) has very low delays and if satellite
ommuni
ationis used for even lo
al
onne
tions, geographi
al distan
es may not
orrespond toa
tual delays on network. Nevertheless, it results in lesser tra�
 on long distan
elines and usually
orresponds to lower delays in pra
ti
e. Geographi
al distan
e
anbe approximated by IP address of
lient if su
h database is available. A

ording toRFC 1466 [19℄ di�erent IP address ranges were allo
ated to di�erent geographi
alregions to keep routing tables shorter. Using higher 8 bits of IP address only,geographi
al region of
lient
an be approximated.22

Network distan
e in hops is also a good metri
 and
an be obtained from routers.But it does not take into a

ount bandwidth available in path,
urrent tra�
 on thepath between
luster and server. In short, available bandwidth for transfer on pathand delays in ea
h hop are not taken into a

ount. It is usually a stati
 measure ofproximity, sin
e as found by Paxon [28℄ that 68% routes on the Internet are stablefor at least a week and 87% routes on Internet are stable for at least six hours. Also,studies by Crovella et al [14℄ have found that the hop
ount has very low
orrelation(0.16) with response time (measured at
lient side). So it does not seem very goodmetri
 to use.Round trip time is another metri
 that
an give better and relatively a

uratedelay experien
ed in path and to some extent, a lower RTT indi
ates higher availablebandwidth. However, it is very dynami
 in nature, it
hanges qui
kly over relativelyshort period of time. It has mu
h more variation for di�erent
lusters
omparedto hop
ount, it gives better path information between
lient and
luster. On thedownside, it is relatively
ostlier to measure and requires more frequent refreshes.Measuring bandwidth, by using tools like path
har [22℄ or even using other moree�
ient
urrent te
hniques [23℄, generates lots of additional network tra�
 and takeslong time, so use of this metri
 is not pra
ti
al.Last two metri
s
an be used only after a number of
lusters are tried (whi
hresult in degraded performan
e for
lient) and a huge database is maintained. Still,load on
lusters
an
hange over time and older information may not predi
t good
luster. These metri
s are really useful for
lient side server sele
tion only.After
omparing these metri
s for
lient-
luster proximity, we
on
lude that RTTis the best metri
 to use for getting path information. It requires periodi
 refresh andis relatively
ostlier to measure (
ompared to hop
ount or geographi
al information)but it provides
urrent and better network
hara
teristi
s information. So we shouldtry to limit overheads in measuring it. Crovella et al [14℄ found in their study thatwhen used at
lient side it resulted in less than 1% additional network tra�
 and gavevery good results when three ping messages were used to measure RTT information.To further minimize overhead, instead of all
lusters measuring RTT for ea
h
lient, we propose to do the measurement only for a small subset of
lients with23

very high request rate. Arlitt et al [5℄ �nd out that 75% of total HTTP requests toany server
ome from 10% of networks. So if we
olle
t information about only veryhigh request rate generating
lients, we
an use that information for all
lients onthe same network. We
an further limit number of
lusters whi
h should measureRTT based on geographi
al information (approximated by use of
lient IP address)and having less load to
ertain maximum number(say at most 3).In our approa
h, ea
h server gives state information to front node in the
lusterand this aggregated state information is used for assigning requests within the
lusterand is propagated to DNS in aggregated form to make
oarse grain (per
lient IPbased) request assignment to
luster. More details
an be found in se
tion 3.6. Wegather this proximity information on
e high request rate is reported by
luster toDNS, so it does not delay reply from DNS, however �rst reply for even those
lientsis based on geographi
al proximity information approximated using IP addresses (itis used for all
lients, who either do not generate large number of requests or queryDNS �rst time after long interval).3.4 Overview of ar
hite
tureWeb server system
onsists of many
lusters distributed geographi
ally all over theworld pla
ed at strategi
 lo
ations, similarly
lients are also in di�erent geographi
alregions. Thus it enables us to take into a

ount variation of request rate from ea
hgeographi
 region.Our approa
h is to dynami
ally distribute requests based on
urrent systemstate information. All servers in
luster report state information to front nodeand front node uses this information to distribute individual
lient requests (ea
hTCP
onne
tion)
oming to
luster among servers in
luster intelligently. Frontnode reports aggregated
luster load information to DNS like a single node of high
apa
ity. Whi
h on
e again uses this information to resolve IP address of a
lusterfor queries from
lient to provide them better servi
e in terms of per
eived delay.Colle
ting only server state information is not su�
ient, servers also
olle
t numberof requests
oming from ea
h IP address and send to front node whi
h aggregates24

Figure 3.2: Additional messages ex
hanged among
omponents in DWSSthis information and reports IP addresses of
lients having very high request rateto DNS. It has been found that more than 75% requests
an
ome from 10% ofnetworks. Using request rate information, DNS asks few
lusters to
olle
t
lusterto
lient proximity information only for those
lients. Cluster to
lient proximity isfound by sending ICMP E
ho request messages to
lients. Additional messages sentamong entities are shown in Figure 3.2.For
lient request distribution inside ea
h
luster, IP pa
ket forwarding by
hang-ing destination IP address of request pa
kets only
an be used as shown in Figure 3.3.Every IP pa
ket that rea
hes at front node for HTTP
onne
tion is diverted at IPlayer before delivery to TCP layer. A program running at the front node sele
tsserver for this
lient based on
lient IP address and server load information, addressof sele
ted server is �lled in destination address �eld of IP pa
ket and pa
ket isre-inje
ted ba
k on network, so it rea
hes the sele
ted server. At server this pa
ketis on
e again diverted and destination address is set ba
k to IP address of front node25

Dest: Server IP

IP Packet

(Private local
 IP address)

 using divert socket at application layer
One way IP packet forwarding by Front node

Front Node Server

IP Packet

(Change dest (Rewrite dest

 Reply to client
 directly with
 aliased cluster
 IP address

Dest: Cluster IP

From Client

to server IP) to Cluster IP)

Figure 3.3: One way distributed IP pa
ket rewriting me
hanismand is re-inje
ted in TCP/IP sta
k of server node. Ea
h server has se
ondary IPaddress (ARP disabled) same as IP address of front node, so HTTP server a

eptsthis pa
ket and response pa
kets dire
tly go to
lient from sele
ted server withoutdoing any additional modi�
ation or delay. This results in additional delay of aboutone millise
ond for ea
h in
oming pa
ket, if servers and front node are on same LAN.Sin
e this pa
ket forwarding
an be done at appli
ation layer, it was
hosen for emu-lation, however in a
tual system, pa
ket forwarding inside kernel using MAC address
an be done or dedi
ated hardware
an be used for more e�
ient dispat
hing.3.5 AlgorithmsLoad balan
ing is done at two pla
es in path of HTTP request servi
e, �rst atthe DNS level and se
ondly at the front node of
luster. DNS tries to balan
eload on
lusters by providing IP address of appropriate
luster's front node. Whenrequest rea
hes the front node, it balan
es load amongst the servers in that
luster.In ex
eptional
ases when
luster is overloaded (due to uneven request rate from
lients and
a
hing of DNS entries), HTTP requests
an be redire
ted to other26

lightly loaded
luster(s).Within ea
h
luster, every server periodi
ally sends its load information to frontnode, whi
h sends aggregated load information about
luster to DNS. This loadinformation transfer
an take pla
e aperiodi
ally too if load
ondition
hanges sud-denly at any
omponent, say any server be
omes overloaded.A number of system state information parameters are
olle
ted by ea
h server,for example, system load averages, system and user
pu utilization, free RAM, Bu�erRAM, number of disk a

esses, free swap, number of pro
esses, number of requestsserved in last 64 se
onds and number of bytes transferred in last 64 se
onds. Usingaverage number of
onne
tions sent (dispat
hed and
urrently a
tive) to parti
ularserver in past prede�ned time interval and its load
ondition in that time interval (auser de�ned fun
tion depending on bottlene
ks present)
apa
ity of ea
h server, i.e.average number of
onne
tions it
an serve without signi�
ant in
rease in responsetime is dynami
ally estimated and updated with every load update from server byfront node. Similarly every front node aggregates load information of every serverand informs available free
apa
ity of whole
luster to DNS periodi
ally.We des
ribe algorithm below at ea
h
omponent (DNS, front node and serversin ea
h
luster).3.5.1 Load balan
ing at DNSIn response to query from
lient for resolving domain name, DNS returns IP addressof server. All requests are sent to server having that IP address for time period
alled Time to live (TTL). After expiration of TTL, query is on
e again sent toDNS. Sin
e within TTL period all requests from that
lient (or its gateway) are sentto the same server, if number of request generated by that
lient are higher thanothers it
an
reate load skew. Aim should be to assign
lients having high requestrates to servers having higher
apa
ity. Again TTL value should be small be
auseload skew is
reated by these
lients.For getting request rate (number of requests in unit period), servers (or frontnodes of
lusters) should send this information periodi
ally to DNS. We distinguishbetween
lients based on their request rates. Servers send information of request27

rate only when
lient request rate is higher than a threshold. DNS instru
ts fewpossibly nearest
lusters (having remaining
apa
ity higher than request rate) to getround trip delay to
lient.For
lients having high request rate, we maintain information about their requestrate, list of few
andidate servers(say 3) having enough remaining
apa
ity at timeof RTT probe with RTT, time stamp of last RTT probe.Pro
edure re
vmsgs is pro
edure responsible for re
eiving messages of di�erenttypes and dispat
hing these messages to appropriate handler fun
tions dependingon type of message, pseudo
ode below shows main messages re
eived :pro
edure re
vmsgs{Input: So
ket for re
eiving messagesOutput: Noneread message from so
ket and determine type of messageswit
h(message type){
ase load_info:/* Message from front nodes about load information on ea
h
luster */
all update_loadbreak;
ase request_rate:/* Message from front nodes about request rate of
lients */
all update_requestratebreak;
ase ip_request:/* Message from DNS for preferred IP address of
lient */
all resolve_ipbreak;
ase rtt_reply:/* Message from front nodes about RTTs between
luster and
lients */28

all update_rttsbreak;} Pro
edure update_request_rate is
alled when front node sends this request rateinformation to DNS.pro
edure update_request_rate{Input: Client IP addresses, request rateOutput: Nonefor ea
h IP address of
lient (or its gateway) {if(no request rate available for this IP)add request rate re
ord for this
lient with
urrent time stampelseupdate request re
ord for this
lient with
urrent time stampif(no
andidate server in list or time stamp of probe is too old)send_probes_for_rtt(Client IP)}update average request rate information.} If no request rate information about a
lient IP is re
eived for few periods ofrequest update then that entry is deleted.Pro
edure send_probes_for_rtt adds IP address of
lient for sending probe formeasuring rtt to list of new nearest and not overloaded
lusters.pro
edure send_probes_for_rtt{Input : IP address of
lient to probe29

Output: Nonesele
t few
lusters nearest (approximated using IP address) to
lient havingremaining
apa
ity > request rate of
lientfor ea
h
luster in above listadd
lient IP for sending request for rtt probes for this
lusterupdate probe timestamp for
lient with
urrent time} A
tual message
ontaining Client IP addresses is sent to ea
h
luster periodi
allyafter every �xed interval or su�
ient number of
lients are already queued.Pro
edure update_rtts is exe
uted when message from
luster front node aboutinformation of round trip time between them and
lient is re
eived.pro
edure update_rtts{Input: Cluster IP, Client IP, rtt, number of su

essful rtt probesOutput: Noneif(number of
andidate servers is less for Client IP)add_
andidate(Client IP,Cluster IP,rtt,num probes)else if(any
andidate server has higher rtt in
andidate server listor had less number of su

essful probes)update_
andidate(Client IP,Cluster IP, rtt, num probes)} add_
andidate and update_
andidate keep a list of rtt re
ords in as
endingorder of round trip time and number of su

essful rtt probes for given
lient IP.Pro
edure update_load is exe
uted when message from front node of any
lusterabout load information is re
eived. 30

pro
edure update_load{Input: IP address of
luster's front node,
apa
ity, loadOutput: Nonefind re
ord for nodeupdate load information of
lusterupdate available free
apa
ity of
luster and whole system} Finally
lients request for host name to IP address resolution.pro
edure resolve_ip{Input: IP address of
lient (or its gateway, i.e. firewall et
.) and domain nameOutput: IP address of front node of
lusterif (information about
lient request rate is available){if(probe time stamp is too old)send_probes_for_rtt(
lient IP)find list of
lusters sorted on previously probed rtt to
lientfor ea
h
luster in list in as
ending order of rttif(available
apa
ity of
luster > request rate of
lient){redu
e available
apa
ity of
luster by
lient request ratereturn(Cluster IP address);}/* If all servers probed are overloaded */send_probes_for_rtt(
lient IP)}else{ set request_rate to average request rate of all
lients.find list of nearest
lusters sorted on nearness approximated by IP address31

for ea
h
luster in list in as
ending order of proximityif(available
apa
ity of
luster > request rate of
lient){redu
e available
apa
ity of
luster by
lient request ratereturn(Cluster IP address);}}/* If no
luster is yet sele
ted, all servers are overloaded */sele
t
luster in proportion to free
apa
ityreturn(Cluster IP address)}3.5.2 Load balan
ing at front node of ea
h
lusterFirst front node
olle
ts information about request rates from ea
h
lient IP, thenperiodi
ally it sends request rate information of only those
lients whi
h have highrequest rate to DNS.Similar to DNS, front node also re
eives di�erent types of messages and invokesappropriate message handler based on type of message, main messages are serverload information and
lient request rate from ea
h servers in
luster, request formeasuring RTT to
lient from DNS and it also sele
ts server in
luster for ea
h newTCP
onne
tion from
lient and rewrites destination address of IP pa
kets
omingfrom
lients with sele
ted address.Ea
h server periodi
ally (at large intervals of order of minute) sends request rateinformation of
lients in terms of number of requests by that
lient. On re
eipt ofrequest rate update message, re
eive_request_rate pro
edure is invoked.pro
edure re
eive_request_rate{Input: Client IP addresses, requestsOutput: Nonefor ea
h Client IP addressupdate_request_rate(Client IP,number of requests)32

update global request rate information} update_request_rate
reates new re
ord or �nds re
ord for given
lient IP andaggregates request rate information about ea
h
lient.Periodi
ally
luster sends aggregated request rate information of
lients whi
hgenerate high number of requests than average
lient.pro
edure send_request_rate{Input: Client IP and their request ratesOutput: None (sends this info to DNS)
al
ulate Threshold based on average request ratefor ea
h Client IP having request rate > Threshold{add Client IP and request rate in queueif(queue is full)send queued request rate information of
lients to DNS}send queued request rate information of
lients to DNS} Front node re
eives detailed load information from ea
h server periodi
ally. Usingaverage number of
onne
tions sent to it in that prede�ned interval and obtainedload information from server, front node estimates number of
onne
tions server
anserve, i.e.
apa
ity of server. This estimate is updated with every load update fromserver.pro
edure re
eive_server_load{Input: Server IP address, load 33

Output: Nonefind re
ord for server using IP address and update server loadestimate and update number of
onne
tion server
an serveupdate
luster's load information and available
apa
ity} Cluster sends aggregated load information periodi
ally to server or when load
ondition
hanges signi�
antly.When DNS requests for measuring RTT between
lient and Cluster, followingpro
edure is exe
uted.pro
edure re
eive_probe_for_rtt{Input: Client IP addressesOutput: Nonefor ea
h Client IP address in listsend predefined number of e
ho requests to
lient periodi
ally} Clients reply with E
ho reply for ea
h e
ho request, RTT is measured and av-eraged. Average RTT along with number of su

essful probes are sent to DNSperiodi
ally.Finally it forwards requests to servers in
luster in proportion to remaining
a-pa
ity of ea
h server,pro
edure forward_request{Input: IP pa
kets from
lients for HTTP requestOutput: IP pa
kets with destination address of sele
ted serverif(
onne
tion already exists for this
lient IP and port){34

if(pa
ket is fin)move this
onne
tion re
ord to a list where it will be re
y
led after fewminutesupdate time stamp for this
onne
tionwrite IP address of server in destination field and re inje
t on network}else if(pa
ket is syn){sele
t servers in proportion to their remaining
apa
ity
reate new
onne
tion re
ord with
urrent time stampwrite IP address of server in destination field and re-inje
t on network} else drop this pa
ketif(load on ea
h server >
apa
ity and least loaded
luster list not empty)redire
t request to other
lusters in proportion to their free
apa
ity} All the
onne
tion re
ords for
onne
tion on whi
h there was no pa
ket trans-mitted from sour
e for a long time are also freed periodi
ally.3.5.3 Support at ea
h serverEa
h server sends its load information to front node periodi
ally or when its load
ondition
hanges signi�
antly.pro
edure send_server_load{Input: Current loadOutput: Sends load information to front nodeget
urrent load information from system35

send_load_to_front_node(load)} Ea
h server also sends
lient request rates to front node periodi
ally however atlonger interval (order of minute).pro
edure send_request_rate{Input: Client IP and their request ratesOutput: None (sends this info to front node)read html a

ess log file and aggregate number of requests from ea
h
lientsend_request_rate_to_frontnode(Client IP, request rate)} Also ea
h server has se
ondary aliased IP address same as front node's IP addressso when pa
ket is re
eived using other IP address, this pa
ket should be re-inje
tedba
k in proto
ol sta
k with
hanged destination IP address of front node.pro
edure
hange_destination_address{Input: In
oming IP pa
kets for HTTP
onne
tionOutput: IP pa
kets with
hanged destination addressfor ea
h in
oming IP pa
ket for HTTP
onne
tionrewrite destination address to IP address of front node(and se
ondary IP)and re-inje
t it ba
k in TCP/IP sta
k} Thus IP pa
kets re
eived by front node are forwarded to server using lo
al privateIP address of server and then server rewrites dest address ba
k to
luster IP addressand to t
p layer it seems that this pa
ket
ame with destination address of aliasedse
ondary IP address dire
tly. 36

Chapter 4Test bed for Measuring Web ServerSystem Performan
eWe needed a framework for studying tradeo�s and impa
t of di�erent parameterson a web server system, this framework was required to test performan
e of Dis-tributed Web Server System proposed by us and
ompare its performan
e with otherar
hite
tures proposed earlier e.g., round robin, random, weighted et
.To
ompare various poli
ies for request distribution at server side, we designedand implemented a test bed whi
h tries to emulate real network s
enarios and followsall steps in HTTP request servi
e. In fa
t, all standard
omponents used in theInternet are used in this test bed, for example, BIND (Berkeley Internet DomainName Server) is used for DNS and Apa
he web servers. We have used Webstone [30℄for generating HTTP requests. We have modeled WAN delays and bursty pa
ketlosses whi
h are
ommon on Internet links. All ma
hines used are Pentium PCsrunning Linux operating System.In this
hapter, we �rst des
ribe design goals, and then dis
uss our assumptions.After a brief overview of the test bed, we des
ribe request distribution me
hanismsused at the front node and DNS. Lastly we des
ribe various
omponents of the testbed.
37

4.1 Design goalsThe test bed was designed to fa
ilitate easy measurement of various parameters ofweb server performan
e like average response time for requests and the throughputof Web Server system. While setting up the test bed following goals were kept inmind:1. The test bed should emulate real Internet s
enario in the lab environment. Itshould use standard
omponents and follow standard proto
ols used in Inter-net.2. Test bed should be general enough so that di�erent poli
ies for request dis-tribution at front node and DNS
an be easily in
orporated in this test bed.Thus it should make
omparison of di�erent s
hemes very easy.3. The test bed should be �exible enough to modify only sele
ted
omponentswithout needing many
hanges in other
omponents.4. Servers should pass their state information to front node and front nodesshould pass
luster state information to DNS so that various dynami
 poli
iesbased on system state information for request distribution
an be implementedand
ompared easily.5. Design of test bed should be su
h that it does not
onstrain or �x the numberof servers,
lusters and
lients to be used in the test bed.6. It should only fo
us on distributed web sever system implementation and weshould be free to use standard ben
hmarking software like "Webstone" fortesting the performan
e of system.4.2 AssumptionsSin
e test bed was
reated for emulation of Internet environment in lab, we madethe following assumptions: 38

1. In IP pa
ket forwarding me
hanism, it was assumed that ea
h IP pa
ket will
ontain TCP header, i.e., IP pa
kets are not fragmented. In Linux, higherlayers indeed use maximum transfer unit information so that pa
kets do notneed fragmentation and reassembly in LAN environment.2. To avoid any
entral entity like router from be
oming bottlene
k, pa
ket lossesand delays in one dire
tion are introdu
ed by front node when pa
kets rea
hto web servers and by
lients themselves when pa
kets arrive from servers forthem.3. We have implemented one way distributed pa
ket rewriting for request dis-tribution at front nodes and all servers have to rewrite in
oming IP pa
ketsfor HTTP
onne
tions. We assume that overhead of rewriting in
oming IPpa
kets for re-inje
tion in TCP/IP sta
k with aliased se
ondary IP address isnegligible.4.3 Overview of test bedDi�erent steps for measuring performan
e of distributed web server system areshown in Figure 4.1. Load generator (any third party ben
hmark program) runson nodes at
lient side and generates HTTP requests to distributed web server sys-tem. Distributed web server system is part of test bed and its
omponents aremodi�ed
orresponding to load balan
ing strategy used in web server system. Ad-ditional software
omponents running at these nodes
olle
t statisti
al information,whi
h is
olle
ted and pro
essed. After pro
essing this statisti
al data, performan
eis analyzed and results are presented.Web server system in test bed uses the same general hierar
hi
al stru
ture shownin Figure 3.1. This model allows one to emulate behavior of multiple networksin di�erent geographi
al regions. Single server
an be used instead of one
luster
ontaining front node and multiple servers, so this test bed allows us to emulate
luster based as well as independent server based ar
hite
tures or web server systems
ontaining mixture of both. 39

Figure 4.1: Blo
k diagram of Test bedWeb server system
onsists of many
lusters distributed geographi
ally all overthe world pla
ed at strategi
 lo
ations in possibly di�erent time zones. Similarly
lient domains modeled by multiple
lient pro
esses on one or more
lients also aredivided in di�erent geographi
al regions. Thus it enables us to take into a

ountvariation of di�erent parameters like delay, loss, request rate et
. from ea
h geo-graphi
al region.Sin
e we have tried to emulate real Internet like system and used standard
om-ponents and proto
ols, we expe
t to use same test bed for measuring performan
eof almost every load balan
ing web server system with minimal modi�
ation insome
omponents
orresponding to me
hanism used in the system. Below we brie�ydes
ribe software
omponents that run on di�erent
omponents of test bed
40

4.3.1 Software
omponent at ea
h serverSoftware running at ea
h server in
luster
olle
ts system state information likeload average (i.e. average number of pro
ess ready to run in last 1, 5 and 15minutes), CPU and memory utilization, number of a
tive
onne
tions, number ofserver pro
esses running to handle
lient requests (with Apa
he server, the number ofpro
esses running to handle requests is automati
ally determined based on numberof requests).This software periodi
ally obtains system load at short intervals (every 500 mse
)and if load has
hanged sin
e last update
onsiderably,
hange in load is propagatedto front node. Otherwise, if load does not
hange appre
iably, still load updateis sent every four se
ond (8
lo
k ti
ks of 500 mse
) to front node as heart beatmessage to inform that it is still alive and update its load information. To maintain
onsistent view of load information of all servers in
luster, all servers send thisperiodi
 load update at approximately the same time to front node.Using web server a

ess log (whi
h is assumed to be in the standard Common-Log Format [13℄), number of requests from ea
h
lient domain (IP address of
lient)is determined and this information is propagated to front node. This information is
olle
ted and sent periodi
ally at larger intervals (128 ti
ks of 500 mse
, i.e. every64 se
onds).At every server, every in
oming pa
ket for HTTP
onne
tion is diverted fromTCP/IP sta
k and after
hanging destination address ba
k to that of IP address offront node, it is re-inje
ted ba
k in TCP/IP sta
k. Now this pa
ket is re
eived byHTTP server, running at that server, as normal pa
ket
oming to it from interfa
ehaving IP address of front node.4.3.2 Software
omponents at front node of ea
h
lusterFront node is responsible for distributing requests
oming to
luster, it takes intoa

ount load on ea
h server and previous request rate of
lient (if available), beforedispat
hing request to any server. We are using only in
oming IP pa
ket destinationIP address rewriting to dispat
h
lient requests among servers in
luster. So sele
tedserver depends on
lient IP address (hen
e its previous request rate) and server41

load. We use IP �rewalling me
hanism that in turn uses Berkeley pa
ket �lterfa
ility inside the kernel at low level to �lter pa
kets
oming for HTTP port andusing divert so
ket (that stops pa
ket from going up in TCP/IP sta
k) pa
kets arere
eived by appli
ation program, whi
h sele
ts server and writes sele
ted server's IPaddress in destination address �eld and re-inje
ts that pa
ket ba
k in the network.Front node also re
eives load updates (heart beat messages) and asyn
hronousalarm messages about overload and underload situations of server. It also re
eives
lient request rate in the last 64 se
onds from ea
h server and aggregates this infor-mation. Ea
h front node is in syn
 with DNS for alarm ti
ks. So all front nodes inthe system, re
eive load updates at almost the same time, aggregate and send theaggregated load information to DNS. Thus DNS re
eives latest and
onsistent infor-mation about all
lusters. Front nodes also send request rate information of
lientshaving very high request rate (above the average request rate of
lient domains) toDNS but this information
an put more load on DNS so this information is sent indistributed manner by di�erent front nodes every 64 se
onds.Separate optional appli
ation on front node also re
eives requests from DNS tosend ICMP e
ho requests to sele
t
lients. It sends ICMP e
ho request messages tothose
lients and reports RTTs between
lients and that
luster. Sin
e only smallper
entage of
lients are sent ping messages, and
lients whose re
ent RTT infor-mation is available are
onta
ted only after a refresh time interval in our proposedar
hite
ture, load on the front node due to it is not expe
ted to be high. Thisresponsibility
an be handed over to the least loaded server in
luster easily.4.3.3 Software
omponents at DNSDNS may use load information of ea
h
luster,
lient request rate and proximityinformation to resolve IP of any
luster (i.e. IP of front node or shared se
ondary IPaddress of ea
h server in
luster). Current implementation of domain name server(BIND-9.1) do not have any support for weighted
apa
ity of IP resolution or anyother dynami
 poli
y based on
urrent load, et
. It only supports random sele
tionof IP address for Address query when multiple IP addresses are present for singleserver as spe
i�ed in RFC 1034 [26℄ and RFC 1035 [27℄. We have extended BIND42

for this purpose.For sele
tion of desired IP address depending on
lient IP address, we have
reated a separate appli
ation that
an run on the same DNS ma
hine or any otherma
hine. BIND has been modi�ed to send
lient IP address to this appli
ation,whi
h sele
ts
luster IP address for that
lient as per poli
ies implemented andBIND returns that IP address to
lient. That appli
ation may sele
t IP addressof
luster based on loads of server and proximity approximated by IP addresses of
lusters and
lients, if no real proximity information(e.g. RTT) is already availablefor any
lient, e.g. if
lient is sending request for the �rst time or after a long timewhen its information is deleted or the
lient does not generate enough requests.Optionally, this appli
ation
an send queries to front nodes for di�erent
lients, itthen re
eives and automati
ally updates RTT between
lusters and
lient.DNS re
eives load updates periodi
ally from ea
h
luster. If load on
luster isvery high or load information is not re
eived, DNS may not resolve IP address ofthat
luster further till load
onditions return to moderate level on
luster dependingon poli
y used. DNS also re
eives IP addresses of high request rate
lients from ea
h
luster at larger interval (ea
h
luster sends this information every 64 se
onds). Thisinformation
an be used in di�erent poli
ies if desired, for example, in ar
hite
tureproposed by us, DNS sele
ts a subset of
lusters (3
lusters at most) whi
h arenearer to
lient (approximated using IP addresses) and are not overloaded. ThusDNS
olle
ts
lient IP addresses whom di�erent sele
ted
lusters should ping tomeasure RTT. Requests to measure RTT to
lients are sent by DNS to
lusters.These
lusters measure RTT to ea
h
lient and return measured RTTs to DNS,DNS updates proximity information for ea
h
lient in hash table and for next addressresolution reply to
lient, this proximity information
an be used.4.4 Request distribution me
hanismsWe have implemented me
hanisms for request distribution at two pla
es, at DNSand at the front nodes.
43

4.4.1 At DNSAt DNS, using a separate appli
ation, whi
h runs along with modi�ed BIND server,desired
luster IP address for di�erent
lients
an be sele
ted a

ording to desiredpoli
y. We have already implemented four poli
ies : random, round robin, weightedand nearest server sele
tion (proposed by us). In our appli
ation, there is a methodsele
t_
luster whi
h takes input
lient IP address and sele
ts
luster as per poli
yspe
i�ed. New poli
ies
an be implemented very easily by modifying this method.All available information about
lusters and
lients having high request rate (ifpresent) is a

essible easily using their IP addresses. Information about all
lusters
an also be obtained sequentially.4.4.2 At Front nodesAt front node, using our appli
ation ea
h new TCP
onne
tion from
lients forHTTP request
an be s
heduled on desired server. Similar to DNS, we have im-plemented three poli
ies for server sele
tion at front node : random, round robin,weighted round robin (based on
urrent load of servers). By modifying a method
alled sele
t_server whi
h takes
lient IP address as input and returns server IPaddress to whi
h this new
onne
tion should be forwarded, s
heduling poli
ies
anbe easily
hanged. Currently, distributed IP pa
ket rewriting me
hanism is used, soonly
lient IP address and TCP port number of
lient side
an be used to determinewhi
h server to sele
t.All available information about servers and
lient request rate information (forprede�ned time interval in past and average) is a

essible easily using their IP ad-dresses. Information about all servers
an also be obtained sequentially.4.5 Experimental setupWe have setup a test bed having 3
lusters on di�erent logi
al networks modelingthree di�erent geographi
al regions. Ea
h
luster has one front node and two servers
onne
ted to front node for that
luster. Servers are
on�gured to have aliased44

se
ondary IP address same as
luster IP and have lo
al private IP address that isused for IP pa
ket forwarding by the front node.We have used ten
lients to generate requests to web server system. Clients werealso assigned IP addresses in su
h a way that
lients in same geographi
al regionhad higher order seven bits as mentioned in RFC 1466 [19℄ des
ribing guidelines formanagement of IP address spa
e. Using this RFC, we modeled three geographi
alregions for
lusters - region1 as Europe (ma
hines had IP addresses in 194.*), re-gion2 as North Ameri
a (ma
hines had IP addresses in 198.*) and region3 as Pa
i�
Rim (address with 202.*). Similarly three
lients ea
h were present in region1 andregion2 and two
lients in region3. We also had three more
lients in other regionswhi
h represent mix of
lient not falling in either of three regions. A DNS was alsosetup to resolve IP addresses of
lusters. A
tual test bed setup used for performingexperiments is shown in Figure 4.2.To model WAN e�e
ts, arti�
ial delays and pa
ket losses were introdu
ed usingNistnet software. Half of delay (in spe
i�ed range) and losses o

urred in one di-re
tion and half in the reverse dire
tion. Front nodes introdu
ed delays and pa
ketlosses for pa
kets transmitted by
lients and
lients introdu
ed similar delays andlosses after re
eiving pa
kets from servers but before giving it to the higher proto
ollayers.We have
on�gured lower delays for IP pa
kets sent and re
eived between
lientsand servers in the same geographi
al region and relatively higher delays for pa
ketsbetween
lients and servers in di�erent geographi
al regions. These delays weregenerated randomly within spe
i�ed range (say, 10-50 ms round trip delay in thesame region and 50-250 ms delay a
ross the regions).Similarly we
on�gured lower pa
ket losses with higher
orrelation between dropof pa
kets to model bursty lower pa
ket losses in small distan
e links for links insame geographi
al region and higher pa
ket losses with high
orrelation betweensu

essive pa
ket drops for links a
ross di�erent geographi
al regions (e.g. 5% losswith .9
orrelation on links in same region and 10% loss with .85
orrelation on links
onne
ting di�erent regions).
45

More details about experiment are dis
ussed in the next
hapter
ontaining re-sults.

46

Region2 (198.*.*.*) Region1 (194.*.*.*)

Region3 (202.*.*.*)

S S SS11 12 21 22

S S32

F

31

1 F

F

11C

2

3

C C C C

C C

C C C

12 13 21 22 23

31 32

654

Other Regions(192.*,196.*,206.*)

194.22.11.21 194.11.22.23 194.83.46.95

194.31.104.10

198.83.104.31 198.23.46.91 198.11.146.37

202.11.33.24 202.9.73.22

192.12.23.45 196.91.75.81 206.111.25.43

 Internet

198.91.84.32

202.47.93.23

C

DNS

Figure 4.2: Test bed used in Experiments
47

Chapter 5ResultsWe des
ribed the setup of test bed used for performing experiment in the last
hap-ter. To generate load and measure performan
e we have used Webstone originallydeveloped by Sili
on Graphi
s and is now maintained by mind
raft.
om. This isstandard software used to ben
hmark
ommer
ial web servers. Di�erent s
hemeswere tested with everything kept identi
al ex
ept poli
y for
luster sele
tion at DNS.Webstone software's master pro
ess
ontrolling
lients was run on one of
lient PCs.Experiments were
ondu
ted by varying number of
lient pro
esses from 20 to120 in steps of 10. Webstone tries to exe
ute roughly equal number of pro
essesat ea
h
lient. To generate uneven distribution of requests, we wrote the ID ofsame
lient ma
hines multiple times in its
on�guration �le. These ma
hines thengenerated more load than others. When number of
lient pro
esses were 20,40,..,120,
lients in all geographi
al regions generated almost equal load (per
lient load i.e.number of pro
esses running were still di�erent). When number of
lient pro
esseswere 30,50,..,110
lients in region1 and region2 were running twi
e as many
lientpro
esses as they were running with 10 less
lient pro
esses (i.e. at 20,40...), whileother
lients were still running same number of pro
esses, so load was highly uneven.We have run at least ten iterations of one minute duration ea
h for ea
h datapoint and taken average of them for plotting. Ea
h Webstone
lient pro
esses madejust single query to DNS before sending requests to servers (
lusters) and usedresolved mapping for whole testing period of one minute. So due to appli
ation48

level
a
hing by webstone
lients, requests from same
lient pro
ess rea
hed to same
luster for one minute duration regardless of TTL value provided by DNS.5.1 Ar
hite
tures emulated on test bedIn our experiments, we were unable to stress web server with heavy load due tolimited available RAM (32 MB) and
lient ma
hines were not able to handle heavydata rate or run large number of webstone pro
esses. Due to pa
ket delay software(whi
h was run as kernel module), when data rate was high, bu�ering large amountof data for delay period
onsumed more RAM and generated very high interrupt rateand Linux kernel did not handle the situation gra
efully. Even kernel
ompiled withoption "CPU is too slow to handle full bandwidth" did not make systems stablewhen the data rate was high. Due to these limitations, we
ould not
reate thesituations when queuing or pro
essing delays at server dominate network delays.We have emulated four poli
ies for
luster sele
tion at DNS in our test bed andwe dis
uss the results obtained for those poli
ies below:5.1.1 Round robin sele
tionIn round robin s
heme, DNS resolves address of �rst
luster for �rst DNS query, ofse
ond
luster for se
ond query and so on. After giving addresses of all servers, itstarts resolving address of �rst server again.Round robin sele
tion poli
y is very popular DNS s
heme. It is used to equallydistribute load on multiple servers of same
apa
ity if it is assumed that all the
lients generate same number of requests. But in pra
ti
e, many
lients generatevery high or very low load thus resulting in load skew.Average response times as reported by webstone is plotted in Figure 5.1. It isquite
lear that there is not mu
h variation in average response time as servers werenever bottlene
k in servi
e of requests and their servi
e time did not
hange mu
h.
49

0

0.5

1

1.5

2

20 30 40 50 60 70 80 90 100 110 120

R
es

po
ns

e
T

im
e

Number of client processes

Response Times for Round robin schemes at DNS

Round Robin(even Load)

0

0.5

1

1.5

2

20 30 40 50 60 70 80 90 100 110 120

R
es

po
ns

e
T

im
e

Number of client processes

Response Times for Round robin schemes at DNS

Round Robin(even Load)

0

0.5

1

1.5

2

20 30 40 50 60 70 80 90 100 110 120

R
es

po
ns

e
T

im
e

Number of client processes

Response Times for Round robin schemes at DNS

Round Robin(even Load)
Round Robin(uneven load)

0

0.5

1

1.5

2

20 30 40 50 60 70 80 90 100 110 120

R
es

po
ns

e
T

im
e

Number of client processes

Response Times for Round robin schemes at DNS

Round Robin(even Load)
Round Robin(uneven load)

Figure 5.1: Average response time with Round robin poli
y used at DNS
5.1.2 Random sele
tionAs the name indi
ates, random poli
y sele
ts any
luster randomly for ea
h querythus this poli
y should also resolve IP address of ea
h
luster equal number of timein the long duration. But as opposed to round robin, for very small duration IPaddress of one
luster may be resolved many times more than that of others. This isthe poli
y (however
oupled with shu�ing of IP addresses) implemented in BIND.Average response times reported by webstone is plotted in Figure 5.2. Sin
esele
tion of server was random, average response time measures also seems to haveno �xed pattern.5.1.3 Weighted
apa
ity sele
tionIn weighted
apa
ity sele
tion, ea
h
luster is assigned either a stati
 weight mea-sured o�-line (for example server 2 is twi
e as powerful as server 1 and 3) or maydynami
ally report about free
apa
ity of
lusters to DNS. DNS returns IP address50

0

0.5

1

1.5

2

20 30 40 50 60 70 80 90 100 110 120

R
es

po
ns

e
T

im
e

Number of client processes

Response Times for random selection schemes at DNS

Random (even load)

0

0.5

1

1.5

2

20 30 40 50 60 70 80 90 100 110 120

R
es

po
ns

e
T

im
e

Number of client processes

Response Times for random selection schemes at DNS

Random (even load)

0

0.5

1

1.5

2

20 30 40 50 60 70 80 90 100 110 120

R
es

po
ns

e
T

im
e

Number of client processes

Response Times for random selection schemes at DNS

Random (even load)
Random (uneven load)

0

0.5

1

1.5

2

20 30 40 50 60 70 80 90 100 110 120

R
es

po
ns

e
T

im
e

Number of client processes

Response Times for random selection schemes at DNS

Random (even load)
Random (uneven load)

Figure 5.2: Average response time with Random sele
tion poli
y used at DNSof parti
ular server in proportion to its weight or free
apa
ity as reported by
luster.We implemented dynami
 status reporting based weighted sele
tion. To return IPaddresses in proportion to their weight following algorithm is used:1. Generate running sum of weights asso
iated with ea
h
luster2. Generate random number between one and sum of weights3. Return
luster having least running sum of weights and having running sumof weights greater than or equal to the generated random number.This algorithm is used for servers having di�erent
apa
ity and if used withdynami

apa
ity reporting, it
an deal with load skew due to uneven request rateeasily.Average response times reported by webstone is plotted in Figure 5.3.
51

0

0.5

1

1.5

2

20 30 40 50 60 70 80 90 100 110 120

R
es

po
ns

e
T

im
e

Number of client processes

Response Time for dynamic weighted selection schemes at DNS

Weighted (even load)

0

0.5

1

1.5

2

20 30 40 50 60 70 80 90 100 110 120

R
es

po
ns

e
T

im
e

Number of client processes

Response Time for dynamic weighted selection schemes at DNS

Weighted (even load)

0

0.5

1

1.5

2

20 30 40 50 60 70 80 90 100 110 120

R
es

po
ns

e
T

im
e

Number of client processes

Response Time for dynamic weighted selection schemes at DNS

Weighted (even load)
Weighted (uneven load)

0

0.5

1

1.5

2

20 30 40 50 60 70 80 90 100 110 120

R
es

po
ns

e
T

im
e

Number of client processes

Response Time for dynamic weighted selection schemes at DNS

Weighted (even load)
Weighted (uneven load)

Figure 5.3: Average response time with dynami
 Weighted poli
y used at DNS5.1.4 Nearest
luster sele
tionThis is the s
heme proposed by us. Here, DNS tries to send address of geographi
allynearest
luster to
lient if that server is not overloaded. In our s
heme, re
ord of
lients generating heavy requests (mu
h more than average) is kept, so that these
lients do not get IP address of server that is already loaded heavily. So if the requestfrom
lient
omes for the �rst time or it is not high request rate generating
lient,DNS gives address of geographi
ally nearest server with enough free
apa
ity to serverequests. This geographi
al proximity is estimated using IP addresses of
luster and
lient, for better estimates, lo
al snapshot of whois database may be also queried.In our emulation, we have used high order IP address bits to
ompare nearness of
lients and servers. For giving better performan
e, we have made poli
y adaptive.If
lient generates heavy request rate, its request rate is reported by
lusters andwe pro-a
tively request few possibly nearest
lusters, having free enough
apa
ity toserve the requests generated from
lients, to measure round trip time between themand
lient. RTT is de�nitely better but
ostlier metri
 to get but this overhead is52

0

0.5

1

1.5

2

20 30 40 50 60 70 80 90 100 110 120

R
es

po
ns

e
T

im
e

Number of client processes

Response Times for Nearesr selection schemes at DNS

Nearest (even load)

0

0.5

1

1.5

2

20 30 40 50 60 70 80 90 100 110 120

R
es

po
ns

e
T

im
e

Number of client processes

Response Times for Nearesr selection schemes at DNS

Nearest (even load)

0

0.5

1

1.5

2

20 30 40 50 60 70 80 90 100 110 120

R
es

po
ns

e
T

im
e

Number of client processes

Response Times for Nearesr selection schemes at DNS

Nearest (even load)
Nearest (uneven load)

0

0.5

1

1.5

2

20 30 40 50 60 70 80 90 100 110 120

R
es

po
ns

e
T

im
e

Number of client processes

Response Times for Nearesr selection schemes at DNS

Nearest (even load)
Nearest (uneven load)

Figure 5.4: Average response time with Nearest server sele
tion poli
y used at DNSvery small (less than 1% of tra�
 in
rease if ping is done to all
lients, as reportedby Crovella et al [14℄ in their study). Thus DNS gets better and mu
h more a

urateproximity information between
lusters and
lient. Sin
e DNS gives IP address of
lusters having enough free
apa
ity, if there is no sudden variation in request patternof
lients, no server should be overloaded in spite of load skew. RTT informationis refreshed after refresh time interval. Pseudo
ode for the algorithm is given inse
tion 3.6.1.Average response times reported by Webstone is plotted in Figure 5.4. As seenin plot, on
e again variation is very small but average response time is mu
h betterthan the other three poli
ies.5.2 Performan
e ComparisonWe have plotted average response time with di�erent load distribution for di�erentpoli
ies in Figure 5.5 and Figure 5.6. As the plots show that under the network53

0

0.5

1

1.5

2

20 30 40 50 60 70 80 90 100 110 120

R
es

po
ns

e
T

im
e

Number of client processes

Response Times with even load for different schemes at DNS

Round Robin

0

0.5

1

1.5

2

20 30 40 50 60 70 80 90 100 110 120

R
es

po
ns

e
T

im
e

Number of client processes

Response Times with even load for different schemes at DNS

Round Robin
Random

0

0.5

1

1.5

2

20 30 40 50 60 70 80 90 100 110 120

R
es

po
ns

e
T

im
e

Number of client processes

Response Times with even load for different schemes at DNS

Round Robin
Random

Weighted

0

0.5

1

1.5

2

20 30 40 50 60 70 80 90 100 110 120

R
es

po
ns

e
T

im
e

Number of client processes

Response Times with even load for different schemes at DNS

Round Robin
Random

Weighted
Nearest

Figure 5.5: Average response time (even load) with di�erent poli
ies used at DNS
onditions assumed by us, our RTT based nearest
luster sele
tion approa
h out-performed other approa
hes by a good margin. While other approa
hes have averageresponse times in range of 1.5 se
onds to 1.8 se
onds, our approa
h gave averageresponse time in range of 0.92 se
ond to 0.96 se
onds. Thus our results verify thatif the links
onne
ting di�erent geographi
al regions have mu
h higher delay andhigher pa
ket losses as
ompared to links within same geographi
al region (whi
his usually the
ase), we
an provide better response time to
lients by taking intoa

ount the network
onditions by using round trip time.We have also plotted maximum response time for any
onne
tion under di�erentpoli
ies, we on
e again see that our poli
y performs better. These results wouldbe mu
h better if
lients in other geographi
al regions had lesser delays and pa
ketlosses with any of nearby
luster (we had set up higher delays and high pa
ket losseswith every
luster). The results are plotted in Figure 5.7.Other two plots, average
onne
tion rate (number of
onne
tions/se
) and serverthroughput are shown in Figure 5.8 and Figure 5.9 respe
tively. The large di�eren
ein
onne
tion rate and hen
e higher throughput is attributed to aggressive sequential54

0

0.5

1

1.5

2

20 30 40 50 60 70 80 90 100 110 120

R
es

po
ns

e
T

im
e

Number of client processes

Response Times with uneven load for different schemes at DNS

Round Robin

0

0.5

1

1.5

2

20 30 40 50 60 70 80 90 100 110 120

R
es

po
ns

e
T

im
e

Number of client processes

Response Times with uneven load for different schemes at DNS

Round Robin
Random

0

0.5

1

1.5

2

20 30 40 50 60 70 80 90 100 110 120

R
es

po
ns

e
T

im
e

Number of client processes

Response Times with uneven load for different schemes at DNS

Round Robin
Random

Weighted

0

0.5

1

1.5

2

20 30 40 50 60 70 80 90 100 110 120

R
es

po
ns

e
T

im
e

Number of client processes

Response Times with uneven load for different schemes at DNS

Round Robin
Random

Weighted
Nearest

Figure 5.6: Average response time (uneven load) with di�erent poli
ies used at DNS
onne
tion poli
y used byWebstone software, whi
h tries to send
onne
tion requestsas fast as possible if earlier requests are servi
ed qui
kly. Almost similar responsetime for varying number of
lient requests also shows that in our test bed requestswere distributed properly by all poli
ies in most
ases and servers were not loadedenough.In our proposed system, more servers and
lusters
an be added easily withoutbringing down the system. Our system is also fault tolerant sin
e if any server inthe
luster goes down, front node does not re
eive system state information anddoes not send any new requests to that server. However, all
onne
tions alreadyestablished with that server are not gra
efully handled. Similarly, DNS did notresolve IP address of
luster that went down,
lients who were unable to
onne
t toresolved
luster, try other
luster IP addresses and
onne
t to other
lusters. Thistime too,
lients having already established
onne
tion with that
luster get errorsbut no new
onne
tion afterwards is s
heduled to
luster until it
omes up again.In short, we
an
on
lude that our ar
hite
ture s
aled well and our proposednearest
luster sele
tion approa
h should give better results if network
onditions55

0

10

20

30

40

50

60

20 30 40 50 60 70 80 90 100 110 120

M
ax

im
um

 R
es

po
ns

e
T

im
e

Number of client processes

Max. Response Times for different schemes at DNS

Round Robin

0

10

20

30

40

50

60

20 30 40 50 60 70 80 90 100 110 120

M
ax

im
um

 R
es

po
ns

e
T

im
e

Number of client processes

Max. Response Times for different schemes at DNS

Round Robin
Random

0

10

20

30

40

50

60

20 30 40 50 60 70 80 90 100 110 120

M
ax

im
um

 R
es

po
ns

e
T

im
e

Number of client processes

Max. Response Times for different schemes at DNS

Round Robin
Random

Weighted

0

10

20

30

40

50

60

20 30 40 50 60 70 80 90 100 110 120

M
ax

im
um

 R
es

po
ns

e
T

im
e

Number of client processes

Max. Response Times for different schemes at DNS

Round Robin
Random

Weighted
Nearest

0

10

20

30

40

50

60

20 30 40 50 60 70 80 90 100 110 120

M
ax

im
um

 R
es

po
ns

e
T

im
e

Number of client processes

Max. Response Times for different schemes at DNS

Round Robin
Random

Weighted
Nearest

0

10

20

30

40

50

60

20 30 40 50 60 70 80 90 100 110 120

M
ax

im
um

 R
es

po
ns

e
T

im
e

Number of client processes

Max. Response Times for different schemes at DNS

Round Robin
Random

Weighted
Nearest

0

10

20

30

40

50

60

20 30 40 50 60 70 80 90 100 110 120

M
ax

im
um

 R
es

po
ns

e
T

im
e

Number of client processes

Max. Response Times for different schemes at DNS

Round Robin
Random

Weighted
Nearest

0

10

20

30

40

50

60

20 30 40 50 60 70 80 90 100 110 120

M
ax

im
um

 R
es

po
ns

e
T

im
e

Number of client processes

Max. Response Times for different schemes at DNS

Round Robin
Random

Weighted
Nearest

Figure 5.7: Maximum response time with di�erent poli
ies used at DNSfor a

ess within same geographi
al region are mu
h better than network
onditionswhile a

essing
lusters in other geographi
al regions.

56

0

20

40

60

80

100

120

140

160

20 30 40 50 60 70 80 90 100 110 120

co
nn

ec
tio

ns
/s

ec

Number of client processes

Connection rates for different schemes at DNS

Round Robin
Random

Weighted
Nearest

0

20

40

60

80

100

120

140

160

20 30 40 50 60 70 80 90 100 110 120

co
nn

ec
tio

ns
/s

ec

Number of client processes

Connection rates for different schemes at DNS

Round Robin
Random

Weighted
Nearest

Figure 5.8: Conne
tion rate with di�erent poli
ies used at DNS

0

2

4

6

8

10

12

14

16

18

20 30 40 50 60 70 80 90 100 110 120

T
ot

al
 T

hr
ou

gh
 p

ut

Number of client processes

Through puts for different schemes at DNS

Round Robin
Random

Weighted
Nearest

0

2

4

6

8

10

12

14

16

18

20 30 40 50 60 70 80 90 100 110 120

T
ot

al
 T

hr
ou

gh
 p

ut

Number of client processes

Through puts for different schemes at DNS

Round Robin
Random

Weighted
Nearest

Figure 5.9: Total through put with di�erent poli
ies used at DNS57

Chapter 6Con
lusion and Future ExtensionsWe designed and implemented a test bed for evaluation of load balan
ing strategiesfor distributed web server systems. This test bed is quite �exible and new poli
ies
an be
ompared with already existing poli
ies very easily. This test bed will helpin understanding trade o�s and impa
t of di�erent parameters on a distributed webserver system.In our thesis, we proposed an adaptive and dynami
 poli
y for server sele
tionand request distribution for a very large website. This DWSS
an be deployed with
urrent infrastru
ture and proto
ols in use. This ar
hite
ture is s
alable and faulttolerant too. In short, it meets all goals mentioned in design se
tion.We modi�ed IP pa
ket forwarding method to rewrite only in
oming IP pa
ketsusing shared
ommon IP pa
kets. This
an be implemented totally at appli
ationlayer with divert so
ket and IP �rewalling support, sin
e pa
kets from
lients aremu
h shorter, even at appli
ation layer there is less overhead as
ompared to rewrit-ing reply pa
kets whi
h was used in earlier proposed request distribution me
ha-nisms.From results obtained, we
an
on
lude that our ar
hite
ture will give betterresults when
lients a

essing a parti
ular site are spread in di�erent geographi
alregions and they are far away from ea
h other. Our ar
hite
ture is geographi-
ally s
alable as well as fault tolerant for new in
oming requests. Our ar
hite
turea
hieved its main goal of minimizing response time per
eived to
lient.58

6.1 Future ExtensionsWe did not look at the other poli
ies for request distribution within ea
h
luster.Besides it, we assumed that all the servers are
apable of serving all the requests.Next step would be
onsider partial repli
ation on di�erent servers within ea
h
luster and
ome up with a poli
y at
luster level to distribute di�erent requeststo di�erent servers to get advantage of
a
hing at ea
h server. Next step will beto support di�erent quality of servi
e to di�erent
ustomers or to provide betterresponse time to
lients requesting a subset of URL spa
e, for e.g. when they visitpages related to shopping at site.Our test bed
an be further generalized to have swit
hing at di�erent layerof network, we have sour
e
ode for symmetri
 and asymmetri
 spli
ing too. Ifsupport of swit
hing at higher layers is provided, poli
ies that make use of URL orappli
ation layer
ontent to sele
t server
an also be emulated on our test bed and
an be evaluated easily.After integration of swit
hing at appli
ation level, support for partial and dy-nami
 repli
ation
an also be added to make it more
omprehensive test bed. On
erequest distribution poli
ies and repli
ation strategies are in same test bed, dynami
repli
ation poli
ies
an be explored further whi
h are still not properly understoodand explored in distributed web server systems.

59

Appendix ASoftwares UsedIn our test bed we used many third party softwares. In next se
tions, we brie�ydes
ribe few me
hanisms, software and their use.A.1 Divert So
ket Me
hanismFor request distribution at front nodes, we needed some me
hanism to
apture in-
oming IP pa
kets for HTTP
onne
tions before rea
hing to TCP layer and rewritedestination address of IP pa
kets and re-inje
t them ba
k in the network withoutTCP layer knowing about them. Similarly, we needed me
hanism to
hange desti-nation IP address of in
oming IP pa
kets for HTTP
onne
tion with lo
al privateaddress, rewrite their destination address and inje
t ba
k in proto
ol sta
k to makeTCP layer believe that these pa
kets
ame for aliased se
ondary IP address.We wanted to sele
t destination server address and rewrite all IP pa
kets at ap-pli
ation layer at front node. Divert so
ket provides us exa
tly same set of features.We used standard �rewalling me
hanism (that uses high performan
e pa
ket �lter-ing within Kernel after a setso
ketopt
all) to divert all IP pa
ket with destinationTCP port 80 to divert so
ket port, where our appli
ation read them and modi�edthem. After modi�
ation divert so
kets provides options to re-inje
t pa
kets in lo
alTCP/IP sta
k or on network. At front node, pa
kets are re-inje
ted on network,while at servers pa
kets are allowed to pass up to higher proto
ol layer in same60

ma
hine.Thus divert so
ket provided an easy me
hanism for request distribution at frontnode within
luster. However, divert so
ket requires pat
hing of kernel for divertso
ket support.More details about divert so
kets
an be found at http://www.anr.m
n
.org/�divert/index.shtmlA.2 NistnetFor emulation of WAN
hara
teristi
s in lab environment, we needed some softwareto introdu
e
on�gurable delay and pa
ket losses et
 in path of IP pa
ket transfer.Nistnet software allows us to do the same. Nistnet software is now totally modu-lar (with release of version 2.0.10) whi
h does not require pat
hing of kernel, it isinstalled as loadable kernel module and using its
ommand line interfa
e or GUIbased interfa
e, di�erent parameters like delay, pa
ket loss, bandwidth et
.
an beset for all in
oming IP pa
kets.More information about nistnet
an be found at http://www.antd.nist.gov/nistnet/,it is free software from National Institute Of Standards and Te
hnology.A.3 WebstoneFor ben
hmarking performan
e of web server system, we used Webstone. It is one ofmost popular and industry a

epted free ben
hmark program. This software has twoparts, a master pro
ess and multiple
lient pro
esses whi
h may be rexe
ed on remotema
hines. After establishing trust relationship between
lients and master ma
hine,webstone rexe
s
lient pro
ess (as spe
i�ed in test bed
on�guration �le) and
lientpro
esses generate requests and report ba
k statisti
s to webstone. Webstone printsperforman
e results like number of
onne
tion/se
.,
onne
t time, response time,thruput of
lient and servers, error level, Little's load fa
tor et
.More information aboutWebstone
an be found at http://www.mind
raft.
om/webstone/.
61

Bibliography[1℄ Aggarwal, A., and Rabinovi
h, M. �Performan
e of Dynami
 Repli
ationS
hemes for the Internet hosting servi
e�. Te
h. rep., AT&T Labs., O
tober1998. http://www.resear
h.att.
om/�misha/radar/tm-perf.ps.gz.[2℄ Akamai In
. �How FreeFlow Works�.http://www.akamai.
om/servi
e/howitworks.html.[3℄ Andersen, D., Yang, T., Holmedahl, V., and Ibarra, O. H. �SWEB:Towards a s
alable World Wide Web-server on multi
omputers�. Pro
. of 10thIEEE Int'l Symp. on Parallel Pro
essing, Honolulu (April 1996), 850�856.[4℄ Anderson, E., Patterson, D., and Brewer, E. �TheMagi
router: an appli
ation of fast pa
ket interposing�.http://
s.berkeley.edu/�eanders/proje
ts/magi
router/osdi96-mr-submission.ps.[5℄ Arlitt, M. F., and Williamson, C. L. �Internet Web Servers: WorkloadChara
terization and Performan
e Impli
ations�. IEEE/ACM Transa
tions onNetworking, Vol. 5, No. 5 (O
tober 1997), 631�644.[6℄ Baentsh, M., Baum, L., and Molter, G. �Enhan
ing the Web's Infras-tru
ture: From Ca
hing to Repli
ation�. Internet Computing Vol. 1. No. 2(Mar
h-April 1997), 18�27.
62

[7℄ Be
k, M., and Moore, T. �The Internet-2 Distributed Stor-age Infrastru
ture proje
t: An ar
hite
ture for Internet
ontent
han-nels�. 3rd Int'l WWW Ca
hing Workshop, Man
hester, UK (June 1998).http://www
a
he.ja.net/events/workshop/18/mbe
k2.html.[8℄ C. Partidge, T. M. . W. M. �RFC 1546: Host any
asting servi
e�.[9℄ Cardelini, V., Colajanni, M., and Yu, P. S. �Dynami
 load balan
ing onweb server systems�. IEEE Internet Computing, vol 3, no 3 (May-June 1999),28�39.[10℄ CASAVANT, T. L., and KUHL, J. G. �A Taxonomy of S
heduling ingeneral-purpose Distributed Computing System�. IEEE Transa
tions on Soft-ware Engineering, Vol. 14, No. 2 (February 1988), 141�153.[11℄ Cis
o Systems In
. �Distributed Dire
tor White Paper�.http://www.
is
o.
om/warp/publi
/

/
is
o/mkt/s
ale/distr/te
h/d_wp.htm.[12℄ Colajanni, M., Yu, P. S., and Cardelini, V. �Dynami
 load balan
-ing on geographi
ally distributed heterogenous web servers�. IEEE 18th Int'lConferen
e on Distributed
omputing systems (May 1998), 295�302.[13℄ The World Wide Web Consortium �The Common Log�leFormat�. http://www.w3.org/Daemon/User/Con�g/Logging.html#
ommon-log�le-format.[14℄ Crovella, M. E., and Carter, R. L. �Dynami
 server sele
tion in the In-ternet�. Pro
eedings of the 3rd. IEEE Workshop on the Ar
hite
ture and Imple-mentation of High Performan
e Communi
ation Subsystems (HPCS'95) (June1995). http://www.
s.bu.edu/fa
ulty/
rovella/paper-ar
hive/hp
s95/paper-�nal.ps.[15℄ D. Mosedale, W. F., and M
Cool, R. �Lessons learned administeringNets
ape's site�. Internet Computing Vol. 1 No. 2 (Mar
h-April 1997), 28�35.
63

[16℄ Damani, O., Chung, P., and Kintala, C. �ONE-IP: Te
hniques for hostinga servi
e on a
luster of ma
hines�. Pro
eedings of 41st IEEE Computing So
ietyInt'l Conferen
e (February 1996), 85�92.[17℄ Ellen W. Zegura, Mostafa H. Ammar, Z. F., and Bhatta
harjee,S. �Appli
ation-Layer Any
asting: A Server Sele
tion Ar
hite
ture and use ina Repli
ated Servi
e�. IEEE/ACM Transa
tions on Networking, Vol. 8, No. 4(August 2000), 455�466.[18℄ G.D.H. Hunt, G.S. Goldzsmit, R. K., and Mukherjee, R. �NetworkDispat
her: A
onne
tion router for s
alable internet servi
es�. Pro
eedings of7th Int'l World Wide Web Conferen
e (April 1998).[19℄ Geri
h, E. �RFC 1466 - Guidelines for Management of IP address spa
e�.[20℄ Guyton, J., and S
hwartz, M. �Lo
ating nearby
opies of repli
ated In-ternet servers�. Pro
eedings of SIGCOMM'95, Vol. 25, No. 4 (O
tober 1995),288�298.[21℄ Gwertzman, J., and Seltzer, M. �The
ase for geographi
al push-
a
hing�.Pro
eedings of 1995 Workshop on Hot Topi
s in Operating System (1995).[22℄ Ja
obson, V. �A Tool to infer
hara
teristi
s of Internet paths.�, April 1997.ftp://ftp.ee.lbl.gov/path
har/.[23℄ Kelvin Lai, M. B. �Measuring Bandwidth'. Pro
eedings of IEEE INFO-COMM'99, NY (Mar
h 1999).[24℄ Kwan, T. T., M
Grath, R. E., and Reed, D. A. �NCSA's World WideWeb server: Design and performan
e�. IEEE Computer, no. 11 (November1995), 68�74.[25℄ Mehmet Sayal, Yuri Breitbart, P. S., and Vingralek, R. �Sele
tionAlgorithms for Repli
ated Web Servers�. Pro
eedings of the Workshop on Inter-net Server Performan
e (1998). http://www.
s.wis
.edu/~
ao/WISP98/�nal-versions/mehmet.ps. 64

[26℄ Mo
kapetris, P. � RFC 1034 : Domain Names - Con
epts and Fa
ilities�,November 1987.[27℄ Mo
kapetris, P. �RFC 1035 : Domain Names - Implementation and Spe
i-�
ation�, November 1987.[28℄ Paxon, V. �End-to-End Routing Behaviour in the Internet�. IEEE/ACMTransa
tions on Networking, Vol. 5, No. 5 (O
tober 1997), 601�615.[29℄ R. Luling, B. M., and Ramme, F. �A study on dynami
 load balan
ingalgorithms�. Te
h. rep., Paderborn Center for Parallel Computing, Universityof Paderborn, Germany, June 1992.[30℄ Trent, G., and Sake, M. �WebSTONE: The FirstGeneration in HTTP Server Ben
hmarking�, February 1995.http://www.mind
raft.
om/webstone/paper.html.[31℄ Yoshilakawa, C., Chun, B., and Eastham, P. �Using smart
lients tobuild s
alable servi
es�. Pro
eedings of Usenix 1997 (January 1997).[32℄ Zongming Fei, Samrat Bhatta
harjee, E. W. Z., and Ammar,M. �A Novel Server Sele
tion Te
hnique for improving the ResponseTime of a Repli
ated Servi
e�. IEEE INFOCOMM '98 Conferen
e (1998).http://www.

.gate
h.edu/fa
/Ellen.Zegura/papers/alas-inf98.ps.gz.

65

