Supporting Chat Protocols in PickPacket

A Thesis Submitted
in Partial Fulfillment of the Requirements
for the Degree of

Master of Technology

by
K Anantha Kiran

to the

Department of Computer Science & Engineering
Indian Institute of Technology, Kanpur

June, 2005

Certificate

This is to certify thal the work contained in the thesis entitled “Supporting
Chat protocols in PickPacket”, by K Apantha Kiran, has been carvied out under our

supervigion and that this work has not been submilied elsewhere for a degree.

June, 2005

Eﬂv\j‘ ’iw\{i

(Dr. Deep

. Grupta) (Dr. Dheeraj Sanghi)
Departmenl of Computer Science & Department of Compuler Scienee &
Engineering, Engineering,
Indian Institute of Technology, Indian Institute of Technology.

Kanpur, Kanpur.

Abstract

Internet media is quite popular for the electronic transfer of both business and
personal information. But, the same media can be and has been used for unlaw-
ful activities. This demands the need for highly customizable network monitoring
tools to capture suspected communications over the network and to analyze them.
However, electronic surveillance may violate the rights of privacy, free speech and
association. PickPacket - a network monitoring tool, can handle the conflicting is-
sues of network monitoring and privacy through its judicious use. PickPacket has
four components - Configuration File Generator for assisting the users in setting up
the filtering parameters, Filter for capturing the packets in the network, PostPro-
cessor for analysing the output files and Data Viewer for interactive displaying of
the captured sessions.

Earlier version of PickPacket had support for four application protocols - SMTP,
HTTP, FTP and Telnet. Chat protocols, by which a group of users form a network to
communicate information among themselves, have gained popularity in the last few
years. Active use of these protocols on the Internet motivated the need for support
of chatting protocols in PickPacket. This thesis discusses extension of PickPacket
for two chatting protocols (IRC and Yahoo Messenger). All components of the
PickPacket have been upgraded for the support of new protocols. PickPacket has

been tested for correctness and performance measurement.

Acknowledgments

I take this opportunity to express to place on record my gratitude towards my
thesis supervisors Dr. Dheeraj Sanghi and Dr. Deepak Gupta for their invaluable
guidance throughout my thesis work. It would have never been possible for me to
take this project to completion without their innovative ideas and encouragement.
The thesis is for a project that is financially supported by Ministry of Commu-
nications and Information Technology, Government of India. The support of the
Ministry of Communications and Information Technology is duly acknowledged.

I also thank the other team members involved with the development of Pick-
Packet for their cooperation especially Satya Srikanth. [never forget Srikanth’s
help in testing of splitter that was built in my second semester. He also introduced
us architecture of PickPacket software. I also thank my project partner, Sudheer,
not only for cooperating me during thesis but also for being my best friend. It is
such a great learning experience working with him. I would like to thank Mr. Guru
Preet Singh for making my visits to New Delhi comfortable and secure. Bharat and
Puneet, my collegues in Security Lab, are always there to share fun and problems
in security lab. T will never forget those sleep less nights that we spent working
and preparing things for the meetings. Devendar and Vinaya helped in changing
the output structure of the post processor and developping a new web based GUI. I
would like to thank Murthy for his valuable suggestions that he gave at the starting
stages of my thesis.

I also wish to thank whole heartily all the faculty members of the Department
of Computer Science and Engineering, II'T Kanpur for enhancing my knowledge. 1
am always indebted to the help extended by vipin and others while i was suffering
from stomatch pain. I would like to thank all of my classmates for making my stay
in kanpur homely. I never forget those moments i shared with them. I would also
like to thank everyone in the Prabhu Goel Research Center for providing a nice and
challenging work environment.

Finally, I would like to thank my parents and sisters encouraging me all the times

and taking me to this stage in life.

Contents

1

Introduction

1.1 Smiffers
1.2 PickPacket
1.3 Need for Chat protocols support in PickPacket
1.4 Organisation of the report

PickPacket: Architecture and Design

2.1 Architecture of PickPacket L.

2.2 PickPacket Design
2.2.1 Configuration File Generator
2.2.2 PickPacket Filter oL
2.2.3 PostProcessor
2.24 Data Viewer

Adding Support for IRC: Design and Implementation

3.1 Internet Relay Chat (IRC) Protocol
3.1.1 Protocol overview
3.1.2 Command Sequences

3.2 TRCFilter e
321 Goals
3.2.2 Design and Implementation

3.3 IRC Metahandler and Viewer

i

4 Adding Support for Yahoo Messenger:
tion

4.1 Yahoo Messenger Protocol

4.1.1 Protocol Overview

4.1.2 Command sequences

4.2 Yahoo Filter

4.2.1 Objectives

4.2.2 Design and Implementation . .

4.3 Yahoo Metahandler and Viewer

5 Tests and Results
5.1 Correctness Verification
5.1.1 IRC Filter
5.1.2 Yahoo Filter

5.2 Performance evaluation

6 Conclusion
6.1 Further work

Bibliography

A Sample Configuration Files
A.1 Configuration File with Filtering Criteria
A.2 Configuration File with Buffer Sizes(.bcfg)

il

Design and Implementa-

36
................ 36
................ 37
................ 37
................ 38

40
................ 41

43

(pefg)o 44

List of Tables

iv

List of Figures

2.1
2.2
2.3
24

3.1
3.2
3.3

4.1
4.2
4.3

Architecture of PickPacket L. 7
Filterdesign 10
The Basic Design of the PickPacket Filter 11
PostProcessor Design 0. 13
An example of small IRC network 16
Working of IRC filtero 22
ircinfo file formato oL oo 23
Yahoo Command format 27
Working of yahoo filtero 32
format of yahooinfo file o000 35

Chapter 1
Introduction

Usage of Internet for electronic transfer of both business and personal information
is quite popular. As a result, Internet has become a key resource of information.
But the same Internet can be and has been used by terrorists, criminals and others
to communicate information about unlawful activities. This necessiates highly cus-
tomizable network monitoring tools to capture suspected communications over the
network and to analyze them later.

Companies too have to protect their intellectual property from falling into the
hands of their competitors. Therefore, they resort to intelligence gathering over the
network to check if any employee is sending such information illegally. Hence, there
is a pressing need for development of tools that can monitor and detect undesirable
communications over the network.

Monitoring tools perform their task by sniffing packets from the network and
filtering them on the basis of user specified rules. The tools that provide the fa-
cility of specifying simple rules for filtering packets are called Packet filters. They
use fixed offset packet information like IP addresses and port numbers for filtering.
Tools that filter packets based on the complex rules and perform post-capture anal-
ysis of collected traffic are termed as Network monitoring tools. They understand
applications, and can search through packet application data. The following section
describes working of network monitoring tools in general and also mentions vari-

ous commercial and non-commercial tools available publicly. However, electronic

surveillance conflicts with the rights of privacy, free speech and association. Sec-
tion 1.2 explains how PickPacket, a network monitoring tool, works and how it
addresses the conflicting requirements of privacy preservation and intelligence gath-
ering. Section 1.3 gives the motivation for providing support for Chat protocols in

PickPacket. Last section deals with the organisational flow of this report.

1.1 Sniffers

Network monitoring tools are also called Sniffers. Network sniffers are named after
a product called Sniffer Network Analyzer, introduced in 1988 by Network General
Corporation (now Network Associates incorporated). Network sniffers are software
applications often bundled with hardware devices and are used for eavesdropping
on the network. Akin to a telephone wire-tap that allows a person to listen in on
to other person’s communication, a sniffing program lets someone listen in on other
computer conversations.

Generally sniffers work by putting the ethernet hardware (the standard network
adapter) into promiscous mode. The chip in the ethernet card, that is meant to
ignore all the traffic not intended to this hardware, gets disabled in the promiscous
mode. This enables ethernet, and the sniffer consequently, to listen to all packets
on that section of the network.

A simple sniffer just writes all the packets in the network onto disk. These sniffers
will immediately fill up the entire disk space, if placed on the traffic bound segment
of the network. Analysis of such a large database consumes considerable amount
of resources. Also, such sniffers dump data belonging to the untargeted users who
happened to access and transfer data through the network during the sniffing time.
This may violate the privacy of users. Considering the above two issuses, currently
available sniffers are coming with three levels of filtering mechanisms. The first level
of filtering is based upon network parameters like IP addresses, protocols and port
numbers present in the packet. This level of filtering is generally supported at the
kernel level also. The second level of filtering is based on application specific criteria
like email id for SM'TP, hostname for HT'TP etc. The third level of filtering is based

on the content present in the application payload. Sniffers also come bundled with
their own post-capture analysis and processing tools which extract meta information
from the dump and present it in a user interactive manner.

Sniffers come in different flavors and capabilities for different Operating systems.
WinDump [1] is a version of tcpdump [6] for Windows that uses WinCap, a library
compatible to libpcap. This tool can filter packets based on the rules formed using
network parameters. Also, it allows to make some statistical analysis out of the
captured packets. Ethereal [2] is a UNIX-based sniffer program that also runs on
Windows. This tool has equal filtering capability as that of tcpdump. It provides
graphical interface for viewing captured data. EtherPeek NX [3] gives ability to
troubleshoot and monitor network traffic quickly and effectively. Network Associates
Incorporated [9] have a range of sniffers including VOIP sniffers. Carnivore [13]
is a network monitoring tool developed by FBI with the sole purpose of directed
surveillance. This tool can capture packets based on wide range of application-layer
based criteria along with text strings match criteria. Carnivore is also capable of
monitoring dynamic-IP address based networks. A more detailed survey on the

currently available sniffer products can be found in [10].

1.2 PickPacket

PickPacket is a network monitoring tool, developed at IIT Kanpur [10, 7]. Its
functionality is similar to that of Carnivore. PickPacket is a passive tool in the
sense that it neither injects any packet into the network nor delays any packet to its
destination. It supports various levels of packet filtering mechanisms while sniffing
the packets. It can capture packets based on the network level parameters like
[P-addresses, port numbers and protocols. It also supports filtering rules that are
specific to certain application-layer protocols like SMTP, FTP, HT'TP and Telnet.
For example, a user can configure the filter to capture mails from or to certain users
in SMTP sessions. Once the packets have been found based on the filtering criteria
they are written on to the disk storage.

PickPacket addresses the conflicting issues of privacy preservation and network

monitoring in two ways. One, it has a rich set of configuration paramters which
makes it easier to target very specific communication. Two, it provides two modes of
packet capturing, “PEN” mode and “FULL” mode. In the "PEN" mode of operation,
it only establishes occurrence of events based on the filtering criteria given, while
in the "FULL" mode of operation it captures all the packets matching the criteria.
Judiciously using these features can help in protecting the privacy of untargeted
users.

PickPacket comprises of four components. Configuration-File-Generator is a
JAVA based user interface for specifying the values of filtering paramters. Filter is
an online component which selects the connections based on the criteria specified in
configuration file. PostProcessoris an offline post-capture analysis tool that extracts
per application protocol metadata information from the outputfile generated by
Filter component. DataViewer is a webbased application to render the metadata

generated by PostProcessor in a user interactive manner.

1.3 Need for Chat protocols support in PickPacket

The aim of PickPacket is to concentrate on those application layer protocols which
form significant portion of the Internet traffic and are used to communicate informa-
tion among users. In this view, earlier implementation of PickPacket had support
for four application protocols named FTP, HTTP, SMTP and Telnet.

Chat protocols, by which a group of users form a network to communicate infor-
mation among themselves, have gained popularity in the last few years. Chat proto-
cols are generally used to establish collaboration among geographically distributed
development teams. Active use of these protocols on the Internet motivated the
need for support of chatting protocols in PickPacket.

As a step towards giving support for chatting protcols in PickPacket, we have
considered two most popular protocols named IRC and Yahoo messenger. Internet
Relay Chat (IRC) was one of the first chat protocols, and quickly gained the status
of being the most popular one on the net. Yahoo messenger is another popular chat

protocol which is proprietary.

My contribution includes extension of PickPacket for two chatting protocols (IRC
and Yahoo Messenger). All components of the PickPacket have been upgraded
for the support of new protocols. PickPacket has been tested for correctness and

performance measurement.

1.4 Organisation of the report

This thesis describes desgin and implementation of support for two chat protocols,
Internet relay chat [12] and Yahoo messenger [14], in PickPacket. Chapter 2 briefly
describes the design of PickPacket tool. Chapter 3 and 4 discuss the design and im-
plementation of two chat protocols, IRC and Yahoo messenger respectively. Chapter
5 explains the testing procedures employed for correctness, performance verification
and results. Chapter 6 gives concluding remarks on the thesis with suggestions for

future work.

Chapter 2

PickPacket: Architecture and Design

In this chapter, we first discuss the PickPacket architecture. This is followed by
a brief explanation of the design of each component in the architecture. Detailed

documentation about the design and implementation of PickPacket can be found in

7.

2.1 Architecture of PickPacket

PickPacket can be logically viewed as a composition of four independent components
working in a pipeline. These components are - PickPacket Configuration File Gener-
ator deployed on a Windows/Linux machine, PickPacket Filter deployed on a Linux
machine, PickPacket PostProcessor deployed on a Linux machine and PickPacket
DataViewer deployed on a Windows/Linux machine. Ideally, it is possible to run all
the four components on a single machine. Pictorial view of PickPacket architecture
can be seen in Figure 2.1. Configuration File Generator, the first component, is a
JAVA based user interface that can take filtering criteria at different levels. It gener-
ates configuration files which are input to Filter. Filter, an online component, reads
all the packets and stores those packets which match the criteria in the configura-
tion file. PostProcessor is an off-line capture analysis tool that accepts outputfiles
of Filter and extracts meta information in a fixed directory structure. DataViewer

is a web based user interface to render the Postprocessor outputted metadata in an

interactive fashion.

PickPacket Configuration
File Generator GUI

PickPacket
Post—-Processor

PickPacket Filter

- - -
.
‘
|
|
|
|
|
|
|
:
=
‘
|
|
|
|
|
|
|
|
|
|

-

PickPacket DataViewer

Conf files iles> 1
> T ; Dump Files : : ! ——

= (=5 i

e —\ I :

- ! |

A

Browser

PickPacket
Data Viewer

by

Web Server

<~ NETWORK

Figure 2.1: Architecture of PickPacket

2.2 PickPacket Design

In this section we discuss the design of four components of PickPacket separately in

subsections.

2.2.1 Configuration File Generator

PickPacket Configuration File Generator generates two configuration files contain-
ing values of several parameters needed by Filter. One file stores filtering criteria

given by the user. These criteria could be at different levels of protocol hierarchy.

7

The other file contains values for different buffering parameters. These parameters
should be changed only by an advanced user, like a system administrator. The val-
ues of these parameters depend on hardware capability of the host machine. Earlier
implementation of Configuration file generator had both the filtering and system
parameters generated in a single file. It has been modified to generate two files so
that a normal user is only concerned with filtering criteria. These files are written

in HTML like syntax. An example configuration file set is given in Appendiz A.

The configuration file containing filtering criteria has three sections.

e The first section contains specification of the outputfiles that would be created
by Filter. This section gives information about how often, with what size, and
by what name Filter should generate these files containing packets that it has

captured.

e The second section contains criteria for filtering packets based on source and
destination IP addresses, transport layer protocol, and source and destination
port numbers. It also mentions the application layer protocol filter to be
used for the packets belonging each such criteria. This information is used to

demultiplex packets to the correct application layer protocol filter.

e The third section contains multiple subsections, each of which specifies a cri-
teria corresponding to an application layer protocol. Application layer content
of the packet is investigated for match against the corresponding protocol cri-

teria.
The configuration file storing system parameters values has two sections.

e The first section comprises of entries giving a value to the maximum number
of connections the filter should monitor simultaneously for each application

protocol.

e The second section has one entry per application layer protocol specifying the
number of history packets the filter should be able to keep while monitoring a

connection of that protocol for criteria match.

The values in these sections are used to pre-allocate memory buffers in Filter.

2.2.2 PickPacket Filter

Filtering criteria in the configuration file, contains rules which conceptually fall into
different levels. So, an ideal Filter design should accommodate various levels of

packet filtering. Following are the various levels at which packets can be filtered.
1. Filtering based on network parameters (IP addresses, port numbers, etc.)

2. Filtering based on the application layer protocol criteria (user names, email-
ids, etc.)

3. Filtering based on the content present in the application payload.

An efficient first level of filtering can be provided by using in-kernel filters [8].
Since the content of application layer can be best deciphered by the application
itself, the second and third levels of filtering can be combined into a single application
layer filter. For each application layer protocol, there is a separate filter module that
understands that protocol. In this model of filtering, a demultiplezer is required that
directs packets from the in-kernel filter to the appropriate application layer filter.

Finally, application specific filtering reduces to text search in the application layer
data content of the packets. In case of communications over connection oriented
protocol, the text search should handle situations where the desired text string is
split across two or more packets before being transmitted on the network. As there
may be losses or reordering of packets in the network, filter should also check for
packets that are recieved out of sequence while performing the search for split text.
Thus a module that does these checks is needed. This module is called the TCP
Connection Manager. There is one such module for each application level filter that
does the text string match in the application payload. All these modules and their
relationships are presented in Figure 2.2.

All modules in the design are represented by ovals in the figure. Basic Filter
module works at the first level of filtering, while the Application Layer Filters work

at the second and third levels of filtering. Demultiplexer module directs the packets

Criteria based on Network

Parameters

Application Specific
Criteria and text strings

DemultiplexingCriteria

Figure 2.2: Filter design

to one of the application layer filters. There is a TCP Connection Manager for each
application layer protocol. There are several issues that go into the design of con-
nection manger. First the connection manager need not determine the sequecing of
packets for all connections. Rather it should determine sequencing for only those
connections that an application filter is interested in. For example, if an applica-
tion layer filter has decided that a particular connection matched the criteria and
to be stored, determining sequence of packets in this connection is not required.
Communiction between the application layer filter and the connection manager to
indicate such interest is provided by means of Alerts. A second issue is the module
which should store history data for an application protocol. Connection manager
is anyway maintaining state for each connection till a criteria match for determin-
ing sequencing of packets. There is no advantage in duplicating this effort. Hence
history packets can be stored at the conncetion manager. Alerts would also involve
asking connection manager to either delete these packets or store them to disk.
The discussions above lay the foundation for a more detailed design of Pick-
Packet Filter, which is shown in Figure 2.3. A module Initialize has been added
for initialization of all filtering modules based on the configuration file. Another
module, Output File Manager, is added for storing selected packets to the disk. A
Filter Generator module is added for generating the in-kernel BPF [8] code. Hooks
are provided for changing the BPF code generated. Demultiplezer is provided the
facility of calling Output File Manager directly so that the basic filter can directly

10

Configuration File

Output File
Options

Output File
Options Application Layer Protocol
IP addresse$ __ Specific Criteria :
Transport | T :
Layer Protocdl @ :
Options | & :
Application | @ >(" Filter Generator :
Layer Protocol () :
Specific @ it i :
Pty : dditional Filter Parameters :
2 Socket :
3 . :
o 3 /4 V
% Basic Filter
o Connection Application
3 Manager Layer Filter
3
(@]
=X
@)
=t
=
>
w
> Output File
Manager
Paclet
Alerts
Application
Connection '\ Packet + Layer Filter
Manager Connection @
Information
Legend: Packet

= Data Flow
—» Control Flow
> Components

Figure 2.3: The Basic Design of the PickPacket Filter

11

store packets without resorting to application layer protocol based filtering, if nec-
essary. Connection Manager can also directly store packets to the disk. This is
required when a criteria has matched for a specific connection and the connection

is still open. More details of these modules can be found in Reference [7].

2.2.3 PostProcessor

The PostProcessor is an offline analysis tool to extract the metadata corresponding
to all the connections captured by the filter. Ideally PostProcessor should meet

following objectvies.

e Session breaking: A connection is identified by 4-tuple. There can be more
than one connection existed at different time intervals but with same 4-tuple
identifiers. Each of these connections is regarded as a session of corresponding
4-tuple. The filter output file contains packets belonging to several sessions.
Before attempting to extract any data from these files, sessions need to be

separated.

e Metadata extraction: Metadata includes important fields and entities present
in the data content belonging to an application layer protocol. For example,
it is email addresses and emails incase of SMTP, usernames and files incase
of FTP. Metadata extraction from each session should be handled separately

and should be stored in a fixed structure.

Figure 2.4 shows the design of PickPacket PostProcessor which captures above
two objectvies. The first module, Connection breaker, accepts the filter outputfile
as input and produces set of files. Each file contains all the packets belongs to a
4-tuple. It works by reading each packet from the input dumpfile and writing it to
a specific file that is named with the 4-tuple of the packet. This module writes all
the packets sent by either entity of the 4-tuple into a single file.

The second module Session breaker reads each file generated by Connection
breaker and splits that file into as many number of files as the sessions involved
in the connection corresponding to that file. If the file belongs to a UDP connec-

tion, Session breaker direcly produces same file as output. If the file belongs to a

12

JF/ =y
o A2/ S g = Connection
oumpte | (commineni 7y A Sesmoee) 7o) S
» - ;
Y Fn / y cn/
Intermediate files
% Meta Information ey i
@ - Meta Information Legend
> DataFlow
@ L O Module
/7 DataFiles

Figure 2.4: PostProcessor Design

TCP connection, it uses a TCP like engine to identify the sessions involved in that
connection. Then, it produces one file for each session where packets are sorted by
their time. Packets with same time are sorted by their sequence numbers.

The third module, Metainformation gatherer, employs one metadata extractor
for each application layer protocol. It reads one session file at a time and directs it to
appropriate metadata extractor depending on the application protocol of the session.
These metaextractors store information in a fixed format. This format accommo-
dates one directory per session which contains all the details regarding that session
stored into separate files. File named “tcpipinfo” contains summary information of
the session that includes network parameter details, application layer protocol and
list of matched keywords given as criteria. File named “appinfo” contains the meta
data of the session that is specific to its application protocol. All the files are stored

in standard INI format.

2.2.4 Data Viewer

PickPacket DataViewer is a web based application that is aimed to render the post-

processed information in user interactive manner. It is written in PHP [11] script.

13

It is deployed along with a web server. Web server access the data through PHP
scripts and serve the user requests. Data viewer can be deployed either on the same
machine where the post-processing is done or on a different machine.

PostProcessor output directory is placed in a fixed path that is known to DataViewer.
At first, DataViewer lists all the directories present in that path. For any dumpfile
directory selected by user, it lists summary of all the connections present in the di-
rectory. This summmary includes the network parameters, application protocol and
list of mathced keywords. Connections can be sorted based on any one of summary
fields. The DataViewer allows examining the details of a connection and can show
the data for that connection through appropriate user agents.

The Data Viewer provides user with facilities like downloading the captured
e-mails, viewing browsed web pages etc. The communication between connection
entities can be seen in a separate dialogue window. The configuration file used
for the filtering can be viewed. The connection-specific output file for each of the
connection can also be downloaded separately.

User can search among the captured connections. The search criteria includes
network parameters, application parameters and keywords. User can search on all
the fields that he specified in the configuration file. When a user sets a connection
filter for displaying the connection, only those connections that match the criteria

will be displayed.

14

Chapter 3

Adding Support for IRC: Design and

Implementation

The Internet Relay Chat (IRC) [12] was one of the first chat protocols on the Inter-
net. This chapter discusses the design and implementation issues in adding support
for IRC in PickPacket. PickPacket requires one new module in each of its compo-
nents inorder to support IRC. Section 3.1 gives brief overview of the IRC protocol.
Section 3.2 explains the design and implementation of IRC Filter, an application
protocol filter module in PickPacket Filter. Section 3.3 describes the design of IRC
Metahandler, an application protocol metadata extractor in PostProcessor. It also
describes IRC' Viewer that has been added to DataViewer.

3.1 Internet Relay Chat (IRC) Protocol

The IRC has been designed over a number of years for use with text based conferenc-
ing. Following section explains the protocol in brief. This is followed by description

of command sequences involved in the execution of the protocol.

3.1.1 Protocol overview

A typical IRC setup consists of group of servers and clients. Servers form the

backbone of IRC, providing points to which clients may connect to talk to each

15

other. A server also forms a point for other servers to connect to, forming an IRC
network. The only network topology allowed for IRC servers is that of a spanning
tree, where each server acts as a central node for the rest of the net it sees. Figure 3.1

shows a sample configuration of IRC network.

>
5 \ /D4
N

Servers: A,B,C,D,E Clents: 1,2, 3,4

Figure 3.1: An example of small IRC network

An IRC server is a host that listens on TCP port 6667 for connections to other
clients or servers. It is uniquely identified by a servername. It performs the re-
quired message delivery/multiplexing and other functions. An IRC client is any
user connected to the server. So, an IRC client and IRC user are interchangable.
Each client is distinguished from the other client by a unique nickname. In addition
to the nickname, all servers must have the real name of the host that the client is
running on, the username of the client on that host and the server to which the
client is connected.

A channel is a named group of one or more IRC clients which will recieve the
messages addressed to that channel. An IRC client sends a message to its server
to join any channel specifying its name. If the channel doesn’t exist, the server
creates a channel with the name specified by the IRC client. This client becomes
channel opearator. A channel’s characterstics depends on its mode controlled by
the operator. For example, if the channel is invite-only, an IRC client may join only
if invited. Channel operators are endowed with certain powers which enables them
to keep control and some sort of sanity in their channel. While a channel exists,

any client can reference the channel using the name of the channel. Any member in

16

the channel can send a text message. The IRC servers will deliver one copy of this
message to each member of the channel spread across the IRC net. The channel
ceases to exist when all the members client leave it.

The IRC network can become disjoint when a connection between two servers
breaks. In such a situation, the channel in each partition only consists of those
clients which are connected to servers in that partition. It is possible that in one of
the partition there is no client belonging to a particular channel. In this case, the
channel will cease to exist in that partition. When the connection is re-established,
the connecting servers exchange membership and modes of all channels. If a channel
exists on both partitions, the join messages and modes are interpreted in an inclusive

manner.

3.1.2 Command Sequences

In an IRC network, each server maintains a map of all of the servers on the net.
A new server can connect to any server on the IRC net by sending a “SERVER”
command. New server’s servername is the argument of command. If a “SERVER”
message attempts to introduce a server which is already known to the receiving
server, the message is ignored and the connection is closed. Accepting this request
would have created an alternate path to that server, thereby breaking the acyclic
nature of the IRC net. Whenever a new server is connected to the net, information
about it is broadcasted to all the existing servers on the IRC network.

An IRC client can connect to any server by sending a “NICK” message that
contains the nickname of user’s choice. The receiving server broadcasts the arrival
of new nickname to all other servers. If a “NICK” message arrives at a server which
already knows about an identical nickname for another client, a nickname collision
occurs. As a result of nickname collision, all instances of nickname are removed
from the server’s database and “KILL” command is issued to remove the nickname
from database of all other servers. If the server recieves an existing nickname from
a client which is directly connected, it may issue a collision error to the client,
and not generate any “KILL” commands. After “NICK” command, client sends

“USER” command that is used to specify the username, hostname, and servername.

17

A client’s nickname is a dynamic identity which can be changed at any time by
resending “NICK” command.

A client can connect to any channel by sending a “JOIN” command that takes
channel name as an argument. Whether a client is allowed to join a channel is
checked only by the server to which the client is connected; all other servers auto-
matically add the user to the channel when such a request is received from other
servers. This allows each server to know where to find the users who are members
of the channel. If “JOIN” is successful, the user is sent the channel’s topic and the
list of users on the channel. A channel operator is the user who joined the channel
first. The operator of a channel can set the characterstics of a channel by using
the “MIODE” command. Any user on an invite-only mode channel can invite new
members using “INVITE” command. A client can send a private message using the
command “PRIVMSG”. This command takes the receiver’s name and the text to be
sent as arguments. The receiver argument can be nickname of the receiver of the
message. This can also be a list of names or channels separated with commas. The
“PART” command causes the client sending the message to be removed from the list
of active users for all given channels listed in the argument string.

A client session ends with a “QUIT” command. The server must close the con-
nection to a client which sends the “QUIT” command. If a server wishes to break
the connection to another server, it must send “SQUIT” command specifying the

name of the other server as the parameter.

3.2 IRC Filter

The IRC Filteris an application protocol filter module in the component PickPacket
Filter. This is meant for capturing selective data transferred in IRC protocol ses-
sions. Section 3.2.1 gives the objectives of filter module. Section 3.2.2 discusses the

design and implementation details of IRC Filter.

18

3.2.1 Goals

IRC channels are the entities of interest in an IRC session. Therefore, the filtering
criteria for the IRC Filter should be able to specify details about a channel. A
channel has a name, has members who are communicatiing with each other, and
there is information that is being communicated. We should be able to filter based
the values of channel names, nicknames, and keywords. Using channelnames and
nicknames, targeted monitoring can be done for the channels having certain name
and members. The ‘keyword’ field can be used to specify the strings for which IRC
Filter should try to match in the text messages of channels.

The Configuration File Generator component has been updated to provide in-
terface for accepting the values of IRC criteria. Objective of the IRC Filter is to
capture only those conversations which match channel name, member nicknames

and message strings.

3.2.2 Design and Implementation

In IRC protocol, communication on all channels is muliplexed onto same TCP con-
nection. We want to monitor communication on selected channels and not store all
the packets on that TCP connection. For each channel, we will maintain several
flags. These flags will help us determine whether a packet needs to be stored or not.
Since we do not know how many channels are present in an IRC connection, we
will have a large array of data structure, each item corresponding to a channel. Ev-
erytime a new channel is noticed, another item in the array is initiailized with that
channelname. Other fields in that data structure include four flags. First flag, ‘chan-
nel match flag’, is set to “M ATCHED” when the channel’s name matches with
one of channelnames present in the criteria. Otherwise it is set to “NOMATCH?”.
If no channelname is given in the filtering rules, this flag is set to “MATCHED”
for all channels. This flag is set only at the time of initializing the data struc-
ture. The other three flags are initialized to “NONE”. If the ‘channel match flag’
is being set to “‘NOMATCH” then ‘match flag’ is set to “IGNORE”. Second flag,
‘nick_match flag’, is set to “MATCHED” when nickname of one of the members

of the channel matches with one of the nicknames present in the criteria. Third

19

flag, ‘string _match flag’, is set to “MATCHED” when there is a channel message
that has a keyword which matches with one of the keywords present in the criteria.
Fourth flag, ‘match flag’, is set to “M ATCHED” when the channel has above three
flags set to “MATCHED?”. If atleast one of the first three flags is set to “NOMATCH?”,
the ‘match flag’ is set to “IGNORE”. The IRC Filter writes all the packets belong-
ing to a channel which has ‘match flag’ set to “MATCHED”. If the ‘match flag’
has neither of “MATCHED” or “IGNORE” values, the filter remembers packets in
the history list of the channel matchstate.

The IRC Filter recieves packets from the TCP Channel Manager module which
also gives packet’s connection information. So, the IRC Filter uses data structures
belonging to the packet’s connection while processing it. The IRC Filter first parses
every packet to determine its command type and the command parameter values.
The filter follows one of the following steps based on the command type.

If the command type is “NICK”, the filter stores the nickname present in the
packet. The filter tries to match this nickname with the list of nicknames present in
the IRC criteria. If it matches, ‘nick match flag’ of every channel data structure
is set to “MATCHED”.

If the command type is “PRIVMSG”, the filter extracts channelname, sender’s
nickname and message present in the packet. The filter considers data structure
corresponding to the channelname. If the ‘match flag’ is set to “IGNORE”, this
packet isignored. If the ‘match flag’ is set to “MATCHED?”, this packet is written to
the disk. If this is the first packet of this channel then processing as discussed earlier.
If the ‘match flag’ is “NONE”, the ‘nick _match flag’ is considered. If it is set to
“NONE”, the filter tries to match the sender nickname with the list of nicknames
present in the criteria and sets the flag to “MATCHED” if sender nickname matches.
Then the filter considers ‘string__match _flag’. If it is set to “NONE?”, the filter checks
whether the message contains any of the keywords present in the criteria and sets the
flag to “MATCHED?” if keyword matches. If all three flags (‘channel match flag’,
‘nick_match flag’ and ‘string match flag’) are set to “MATCHED?”, the filter sets
the ‘match flag’ to “MATCHED” and writes packets present in the history list

including the current packet. Otherwise, the filter remembers current packet in the

20

history list of this channel.

If the command type is “JOIN”, the filter extracts channelname and new mem-
ber’s nickname present in the packet. The filter considers data structure correspond-
ing to the channelname. If the matchstate has ‘match flag’ set to “IGNORE”, this
packet is ignored. If the ‘match flag’ is set to “MATCHED?”, the filter writes this
packet to outputfile. If this is the first packet of this channel then processing is as
discussed above. If the ‘match flag’ is set to “NONE”, the ‘nick match flag’ is con-
sidered. The filter tries to match the new member nickname with list of nicknames
present in the criteria and sets ‘nick match flag’ to “MATCHED” if nickname
matches. If the flag is set to “MATCHED” and the value of ‘string match flag’ is
“MATCHED?”, the filter sets the ‘match flag’ to “MATCHED” and outputs packets
present, in the history list including the current packet. Otherwise, the filter adds
current packet in the history list.

In the implementation of IRC Filter, we have a configurable limit on the maxi-
mum number of channels for which state information can be maintained at a time.
The filter would clear the state information of the least recent channel to acccom-
modate any new channel seen after the maximum limit is reached. It searches for
substring match of keywords in the messages transferred.

In the “PEN” mode of packet capturing, the filter writes only the first packet of
any channel that has matched the criteria. Before writing this packet, the filter fills
the message part of the packet with ascii ‘X’ byte, and the ‘match flag’ is set to
“IGNORE” so that all future packets on this channel are not stored on disk.

3.3 IRC Metahandler and Viewer

The IRC Metahandler is a module in the component PickPacket PostProcessor. It
extracts meta data from the session files belonging to IRC protocol. This module
writes messages belonging to each channel in a separate file. These files are written
in INT format. The Metahandler generates one “ircinfo” file for each session. This
file contains a brief summary of every channel along with the list of nicknames and

keywords that matched. An example file is shown in Figure 3.3.

21

NICK

try to match nickname
in the packet with
nicknames in criteria

get corresponding
channel matchstatg

PRIVMSG

get corresponding
channel matchstat

set nick_match_flag
of every channel
matchstate to MATCHED

|

save this
packet

channel_match_flag
NONE value

‘ update channe_match_flag ‘

thannel_match_fla

MATCHED

‘ update channe_match_flag ‘

value MATCHED

set match_flag
to IGNORE

nick_match_flag
value
NE

update nick_match_flag

IATCHED

!

update string_match_flag

yes

iek match_flag==MATC
) and
ng.match_flag==MATCHED

no

set match flag to
MATCHED

write all history packets
and current packet

set match_flag

to IGNORE update nick_match_flag

v
annel_match_flag
OMATCH—value MATCHED
nick_match_flag
fONE valug MATCHED

IGNORE
: NONE
outptdt $h|s i o
packe ignore packe
MATCHED IGNORE ' and retom
ignore packet
output this and return annel_match_fla
packet \E value ~ :

JATCHED

ick_match_flag==MATCHED
. and
Tatch_flag==MATCHE

add this packet

to the history list

set match_flag to

MATCHED
write all history packets
and current packet

Figure 3.2: Working of IRC filter

22

no

add this packet
to the history list

nickname = "testnick"

username = “tempuser"

[channell]

name = "testchannell”
conversationfile = "channell"

time = "Mon Apr 11 11:18:16 2005"
matchednicknames = "nickl nick2"
keywords = "bomb terror"

Figure 3.3: ircinfo file format

The Metahandler maintains a table where each entry contains the name of the
file corresponding to a channel along with list of matched nicknames and keywords
in the IRC criteria. It parses each packet read from the session file to figure out
the packet’s command type, just like the way filter did. If the packet belongs to
“USER” or “NICK” command, it stores the command argument. If it belongs to
“PRIVMSG” or “JOIN” type, then it looks up the table to find the name of its file.
If no entry is found in the table, then the handler would enter new entry into the
table with a new file name. Therefore all the messages corresponding to a channel
would be written into a separate file in a INI format. These messages are checked
for updating the list of matched nicknames and keywords in IRC criteria.

The IRC Viewer is a module in PickPacket DataViewer. 1t is used to display
the connections belonging to IRC protocol. This module uses the “ircinfo” file to
display the channels present in a connection. It shows the channel conversations in a
separate dialog box. User can search among the existing IRC sessions with different

parameters.

23

Chapter 4

Adding Support for Yahoo
Messenger: Design and

Implementation

This chapter discusses Yahoo Messenger, a popular proprietary chat protocol, and
the design and implementation issues in giving support to monitor Yahoo Messenger
traffic in PickPacket tool. Provision of this protocol support in PickPacket requires
implementation of one new module for each component of the tool. Section 4.1 gives
a brief overview about the protocol and command transfers involved in protocol ex-
ecution. Section 4.2 discusses the issues involved in the design and implementation
of Yahoo Filter, an application protocol filter module in PickPacket Filter for ya-
hoo messenger. Section 4.3 explains the design details of Yahoo Metahandler, an
application protocol metadata extractor module in PostProcessor. It also describes
Yahoo Viewer that has been added to the DataViewer.

4.1 Yahoo Messenger Protocol

Yahoo Messenger is a proprietary protocol used to provide instant messaging and
chatting services among yahoo registered users only. As there is no official docu-

mentation available about this protocol on the net, we have taken the help of an

24

unofficial documentation [14]. We have also looked at the source code of Gaim [4],
an open source multi-protocol instant messaging client supports Yahoo messenger
protocol, to draw more information about the protocol. We have also conducted
lab experiments to monitor protocol conversations and to verify its accordance with
the protocol specifications that we have determined. Following subsection explains
the specification of protocol inferred from above efforts. Section 4.1.2 explains com-

mands involved in the protocol execution.

4.1.1 Protocol Overview

In Yahoo Messenger chat protocol, the server host listens on a standard TCP port
5050. The client host initiates the conversation by establishing a TCP connection
with the server. Initial phase of the conversation tries to authenticate the client
by exchanging appropriate information. In this state, the server sends a challenge
based on which client computes hash response of its password. The server host
authenticates client’s hash response by sending a reply message. Once the authen-
tication succeeds, server sends the user’s preferences and friends list details to the
client. Now, the user can communicate with the other users connected to the server
through Instant Messages(IM) or Chatrooms.

Instant Messaging allows the user to exchange messages with any other user in
real time. If a user writes an instant message to the other, it is first delivered to
the server. If the destination user is already connected to the server, the server will
immediately dispatch that message to him. Otherwise, server defers dispatching till
the user gets connected to it.

Yahoo Chatrooms are similar to the IRC channels in concept except the fact
that this service is limited to Yahoo registered users only. Yahoo Chatrooms are
sessions in which a group of users can have real time message communication among
themselves. Any user can start initiating a Yahoo Chatroom with a name of his
choice by sending a request message to the server. The server checks uniqueness
of the user’s chatroom name and sends its acceptance reply to the client. Then
the client can start inviting other users to join this room. All these invitation

requests will first reach the server. The server sends a copy of the invitation message

25

containing the chatroom name and the list of current chatroom members to all
the invitees separately. The server sends a “JOIN” message to each member of
chatroom for every acceptance response it gets from the invitee. Once the chatroom
is established, messages sent by any member will first reach the server. The server
sends one copy of this message to each member of the room along with the sending
user’s identity. Therefore, each member in the chatroom sees the messages given by
any other member in the chatroom. The server will notify all the members if any of

the users in the chatroom leaves the session.

4.1.2 Command sequences

Yahoo Messenger protocol classifies the commands involved in the protocol into sev-
eral service types where each service type represents particular state of the protocol
execution. All the commands follow a particular format shown in Figure 4.1. This
format consists of two fields: a fixed-length header and a variable length data. The
header field is a group of six fixed-length subfields. First subfield is always a string
“YMSG”. The second subfield is the version of the protocol it is using. Third subfield
gives the length of the data field. Fourth subfield specifies the service type of this
command. Fifth and sixth subfields are specfic to the user. They give the status
of user and his id respectively. The data field is a collection of attribute-value pairs
separated by a fixed two-byte separator.

The server uses challenge-response mechanism to authenticate its users. During
the authentication phase of the protocol, both the server and client communicate
with commands of service type “AUTH”. The client uses this service type to send its
Yahoo username after it has established a TCP connection with the server. Then
the server challenges with a random number. The client responds with an MD5
hash of the Yahoo user’s password using the random number sent by the server.
The server authenticates client’s response after checking whether the user is already
logged in or not.

For transfering Instant Messages (IMs), commands of service type “MESSAGE”

are used. Fields in these commands include the reciever’s username and the message

26

Header Data

Command Format

Uy
5-.

YMSG | Version| Length Serviceg Statu

4 4 2 2 4 4
Header Format

attribute value attribute value

2 2 2 2 2
Data Format

Figure 4.1: Yahoo Command format

to be sent. While initiating new chat sessions, commands of service type “CHAT-
LOGON?” are used. These commands allow the user to give his choice of chatroom
name. The client uses commands of service type “CHATMSG” for sending mes-
sages to chatrooms. If a new user joins the chatroom, a command of service type
“CHATJOIN” with the identity of the new user would be sent by the server to
all the existing members of the chatroom. Similarly, a command of service type
“CHATLEAVE” would be sent if any user leaves the chatroom.

4.2 Yahoo Filter

The Yahoo Filter is an application protocol filter module in PickPacket Filter. It
is meant for capturing selective data transfered in Yahoo protocol sessions. In Sec-
tion 4.2.1, we explain the objectives of Yahoo Filter. In section 4.2.2, the design and

implementation details of Yahoo Filter are given.

27

4.2.1 Objectives

Entities of interest in a Yahoo session are IMs and chatrooms. Therefore, the fil-
tering criteria for Yahoo Filter should be able to specify details about any IM or
Chatroom. We have decided that filtering should be possible on the basis of user-
names, chatroom names, yahoo-ids and keywords. Usernames are the identities with
which a user tries to authenticate himself to the server. Using chatroom names and
yahoo-ids, targetted monitoring can be done for chatroom sessions having certain
name and members. Keywords are the strings for which the filter should try to find
a match in both chatrooms and IM messages.

The Configuration File Generator has been updated to provide an interface for
accepting the values of Yahoo criteria. The objective of Yahoo Filter is to capture
only those conversations of chatrooms and IMs which have the name, members and

message strings matching the criteria.

4.2.2 Design and Implementation

The Yahoo Filter design maintains matchstate of every chatroom /IM present in a Ya-
hoo connection. A matchstate includes four flags. First flag, ‘chatroom match flag’,
is set to “MATCHED” when the chatroom’s name matches with one of chatroom
names present in the criteria. Second flag, ‘yahoo-id match flag’, is set to “MATCHED?”
when yahoo-id of one of the members of the chatroom/IM matches with one of
the yahoo-ids present in the criteria. Third flag, ‘string match flag’, is set to
“MATCHED” when there is a chatroom/IM message that has a keyword which
matches with one of the keywords present in the criteria. Fourth flag, ‘match state’,
is set to “MATCHED” when the channel has above three flags set to “MATCHED”.
If any of the four criteria, username, chatroom, yahoo-id, or keyword, is left blank in
the configuration file, the corresponding flag in all matchstates is set to “MATCHED”.
If atleast one of the first three flags is set to “‘NOMATCH?”, the ‘match flag’ is set
to “IGNORE”. The Yahoo Filter writes all the packets belonging to a chatroom /TM
which has ‘match flag’ set to “MATCHED?”. It ignores all the packets belonging
to a chatroom/IM if the match-flag is “IGNORE”. If the ‘match flag’ has neither
“MATCHED” nor “IGNORE” values, the filter remembers packets in the history

28

list of the matchstate. The filter keeps ‘username match flag’ for each connec-
tion. This flag is set to “MATCHED” when the username matches with one of the
usernames present in the criteria.

Initially, matchstate of every chatroom/IM in a connection has all the four flags
set to “NONE”. The ‘username_match flag’ of the connection is also initialized to
“NONE”. The Yahoo Filter recieves packets from the TCP Channel Manager module
which also gives packet’s connection information. So, the Yahoo Filter uses data
structures belonging to the packet’s connection while processing it. The Yahoo Filter
first parses every packet to determine its service type and the command parameter
values. The filter follows one of the following steps based on the service type.

The filter first checks whether service type of packet is “AUTH”. If the service
type is “AUTH?”, the filter stores the username present in the packet. The filter tries
to match the username with the list of usernames present in the Yahoo criteria.
If it matches, ‘username match flag’ of the connection is set to “MATCHED?”.
Otherwise, the filter alerts the T'CP Channel Manager to stop keeping information
about this connection. If the service type is not “AUTH”, the filter processes the
packet further only if the ‘username match flag’ is set to “MATCHED?”.

If the service type is “CHATMSG”, the filter extracts chatroom name, sender’s
yahoo-id and the message present in the packet. The filter considers matchstate
corresponding to the chatroom name. If the matchstate has ‘match flag’ set to
“IGNORE”, this packet is ignored. If the ‘match flag’ is set to “MATCHED?”, this
packet is written to the disk. Otherwise, if the ‘chatroom match flag’ is set to
“NONE?”, the filter tries to match the chatroom name with list of chatroom names
present in the criteria. If the chatroom name doesn’t match, the filter sets the
‘chatroom match flag’ to “NOMATCH”, and the ‘match flag’ to “IGNORE”. If
it matches, the ‘yahoo-id match flag’ is considered. If it is set to “NONE”, the
filter tries to match the sender yahoo-id with the list of yahoo-ids present in the
criteria and sets the flag to “MATCHED” if sender yahoo-id matches. Then the
filter considers ‘string_match flag’. If it is set to “NONE?”| the filter checks whether
the message contains any of the keywords present in the criteria and sets the flag to
“MATCHED” if keyword matches. If the matchstate has ‘chatroom match flag’,

29

‘vahoo-id _match flag’ and ‘string _match flag’ set to “MATCHED?”, the filter sets
the ‘match flag’ to “MATCHED” and writes packets present in the history list
including the current packet. Otherwise, the filter remembers current packet in the
history list of matchstate.

If the service type is “MESSAGE”, the filter extracts yahoo-ids of sender and
reciever and the message present in the packet. The filter considers matchstate cor-
responding to the IM. If the matchstate has ‘match flag’ set to “IGNORE”, this
packet is ignored. If the ‘match flag’ is set to “MATCHED?”, this packet is written
to the disk. Otherwise, if the ‘yahoo-id _match flag’ is set to “NONE”, the filter
tries to match the yahoo-ids of sender and reciver with list of yahoo-ids present in
the criteria. If the yahoo-ids do not match, the filter sets the ‘yahoo-id match flag’
to “‘NOMATCH?”, and the ‘match flag’ to “IGNORE”. If they match, the filter con-
siders ‘string _match flag’. If it is set to “NONE”, the filter checks whether the
message contains any of the keywords present in the criteria and sets the flag to
“MATCHED” if keyword matches. If the matchstate has ‘yahoo-id match flag’
and ‘string_match flag’ set to “MATCHED?”, the filter sets the ‘match flag’ to
“MATCHED” and writes packets present in the history list including the current
packet. Otherwise, the filter remembers current packet in the history list of match-
state.

If the command type is “CHATJOIN”, the filter extracts chatroom name and
new member’s yahoo-id present in the packet. The filter considers matchstate cor-
responding to the chatroom. If the matchstate has ‘match flag’ set to “IGNORE?”,
this packet is ignored. If the ‘match flag’ is set to “MATCHED?”, the filter writes
this packet to outputfile. Otherwise, the filter considers ‘chatroom match flag’.
If it is set to “NONE”, the filter tries to match the chatroom name with one of
the chatroom names present in the criteria. If it doesn’t match, the filter sets
‘chatroom _match flag’ to “NOMATCH”, and ‘match flag’ to “IGNORE”. Other-
wise, the filter considers ‘yahoo-id match flag’. The filter tries to match the new
member’s yahoo-id with list of yahoo-ids present in the criteria and sets ‘yahoo-
id match flag’ to “MATCHED?”, if yahoo-id matches. If the flag is set to “MATCHED”
and the value of ‘string__match flag’is “MATCHED?”, the filter sets the ‘match _flag’

30

to “MATCHED” and outputs packets present in the history list including the current
packet. Otherwise, the filter adds current packet in the history list.

In the implementation of Yahoo Filter, we have given a configurable limit on the
maximum number of Chat/IMs for which the state information can be maintained
at a time. The filter would clear the state information of least recent chat session
to acccommodate any new chat session seen after the maximum limit is reached.

In the “PEN” mode of packet capturing, the filter writes only the first packet of
any Chat/IM that has matched the criteria. Before writing this packet, the filter fills
the message part of the packet with ascii ‘X’ byte. The filter sets the ‘match flag’
to IGNORE to ignore future packets.

4.3 Yahoo Metahandler and Viewer

The Yahoo Metahandleris a module in PostProcessor. 1t extracts meta data from the
session files belonging to Yahoo Messenger protocol. This module writes messages
belonging to each chatroom or IM in a separate file. The Metahandler generates one
“yahooinfo” file for each session. This file contains a brief summary of every chatroom
or IM along with the list of yahoo-ids and keywords matched. An example file is
shown in figure 4.3.

The Metahandler maintains a table where each entry contains the name of the
file corresponding to a chatroom or IM along with the list of matched keywords in
the Yahoo criteria. It parses each packet read from the session file to figure out the
packet’s service type, just like the way filter did. If the packet belongs to “AUTH”
service, it stores the username. If it belongs to “CONFMSG” or “MESSAGE” or
“JOIN” type, it looks up the table to find the name of its file. If no entry is found
in the table, the Handler would enter new entry into the table with a new file name.
Therefore all the messages corresponding to a chatroom or IM would be written into
a separate file. These messages are checked for matching with the yahoo-ids and
keywords in yahoo criteria, then the list of matched keywords are updated.

The Yahoo Vieweris a module in PickPacket DataViewer to display the connec-

tions belonging to Yahoo Messenger protocol. This module uses the “yahooinfo” file

31

no

store username

username r|r|1atch_ﬂag ==
‘ update username_match_flag ‘

MATCHED
num_username ==

ignore this packet
and return

username_match_flag==

- service type
MESSAGE CHATJOIN
CHATMSG
Alert tcp channel manager get corresponding get corresponding
to ignore this connection IM matchstate get corresponding chatroom matchstate
¥ chatroom matchstate

IGNORE

ignore packet
and return

y
® g e
value
a MATCHED
- NONE
output this

atroom_match_flag
value

NONE MATCHED

‘ update chatroom_match_fl‘ag

)]

chatroom_match

value
MATCHED

set match_flag
to IGNORE yahooid_match_flag——--
NONE value MATCHED

update yahooid_match_ﬂad

NOMATCH

ahooid_match_flag==MATCHE
an
tring_match_flag==MATCHED

yes no

set match_flag to add this packet

to the history list

MATCHED
write all history Eackets
and current packet

Figure 4.2: Working of yahoo filter

32

®)

match_flaj
alue
MATCHED IGNORE
NONE :
ignore packet
output this and return
packet
yahooid_match_flag
MATCHED

NONE

‘ update yahooid_match_flag ‘

yahooid_qnatch_flag

value MATCHED

yahooid_match_flag
NE value MATCHED

update string_match_flag

set match_flag
to IGNORE

yahooid_match_ﬂgg::MATCH ED
a

] n no
ng_match_flag==MATCHED

yes

set match_flag to add this packet

MATCHED : :
write all history packets to the history list

and current packet

33

MATCHED

output this
packet

NONE

chatroom_match_flag

match_fla
alue
IGNORE

NONE

ignore packet
and return

MATCHED

‘ update chatroom_match_flag

c atrooml_m atch_fla

NOMATCH value

set match_flag

yahooidTmatch_ﬂa
value

MATCHED

ATCHED

‘ update yahooid_match_flag

|

‘ update string_match_flag ‘

yahooid_match_(fjlag::MATCHE D

an
yes tring_match_flag==MATCHED

set match_flag to

MATCHED

write all history packets
and current packet

34

no

add this packet
to the history list

username = “tempuser"
[yahoorecordl]

type ="im"

entryname = "imuserl”
filename = "imQ"
keywords = "terror india"
[yahoorecord?2]

type = "chat"

entryname = "chatroom1"
filename = "chat0"
yahooids = "yahoo-id1 yahoo-id2"
keywords = "bomb terror"

Figure 4.3: format of yahooinfo file

to display chat sessions and IMs present in a connection. It shows the chat sessions
and instant message conversations in a separate dialog box. Users can search among

the existing Yahoo sessions with different parameters.

35

Chapter 5

Tests and Results

In this chapter, we explain the experiments conducted to test the PickPacket with
the new extensions in an actual network. The experiments are aimed to test the cor-
rectness and performance of the newly added modules for IRC and Yahoo Messenger.
Section 5.1 deals with the correctness testing. The behaviour of the protocol filter
has been tested in both “PEN” and “FULL” modes of capturing. Section 5.2 deals
with the performance evaluation. The experiments for determining performance of

the application layer filters are similar to experiments described in [10].

5.1 Correctness Verification

Goal of this experimentation is to test whether the filter and other components are
working correctly. That is, the packets stored on the disk must correspond to a
session which has matched a criteria mentioned in the configuration file, and one
should be able to post-process and view such connection. An application protocol
criteria contains values for several fields. An user can choose to store values for
some of the these fields. A typical criteria may contain values for no fields which

will cause the filter to write all the packets belonging to the corresponding protocol.

36

5.1.1 IRC Filter

An IRC criteria contains values for three fields - channelname, nickname and key-
word. There are seven possible ways of preparing a criteria that contains values
for atleast one field. We have created a test configuration file that contains seven
possible IRC criterion. In our experimental setup we have used five machines with
identical configuration. All these machines were connected to a HUB. The Pick-
Packet Filter was run on one of the machines with above configuration file. IRC
servers were started on two of the four machines. IRC clients were started on the
remaining two machines. IRC traffic was created by creating a number of chan-
nels between these clients. Selective messages were transferred in these channels
manually.

Above experiment was conducted for both “PEN” and “FULL” modes of packet
capturing. The output files collected from the IRC Filter were post-processed to
reconstuct the sessions. For each session, criteria match information generated by
the PostProcessor was cross checked with the input configuration file. It is observed
that IRC Filter stored those sessions which strictly matched the criteria. In case
of “PEN” mode of packet captruing, the filter stored only the first packet of the

channels matching the criteria.

5.1.2 Yahoo Filter

An Yahoo criteria contains values for four fields - username, charoomname, yahoo-id
and keyword. There are fifteen possible ways of preparing a criteria that contains
values for atleast one field. Yahoo serverin Yahoo Messenger protocol communicates
over HTTP protocol with the clients standing behind proxy servers. As HTTP
protocol uses separate TCP connection for every message that is transfered between
server and client, Yahoo server communication with these clients involves numerous
HTTP connections. It is very difficult to correlate all these connections for YAHOO
filtering. Therefore, we have used a host which connects Yahoo server over a direct
link bypassing the proxy server. In our experimental setup we have used two identical
machines connected to a HUB. The PickPacket Filter was run on one of the machines

with the configuration file having fifteen possible criterion. The Yahoo client was

37

run on the other machine that is able to contact Yahoo server over the direct link.
Yahoo protocol traffic was created by creating chatrooms and IM conversations with
the people connected to the server.

Experiments were conducted for both “PEN” and “FULL” modes of packet cap-
turing. The output files collected from the Yahoo Filter were post-processed to
reconstuct the sessions. For each session, criteria match information generated by
the PostProcessor was cross checked with the input configuration file. It is observed
that Yahoo Filter stored only those sessions which strictly match the criteria. In
case of “PEN” mode of packet captruing, the filter stored only the first packet of the
chatrooms or IMs matching the criteria.

We have repeated above tests with configuration file containing criteria for every
protocol supported by PickPacket. Traffic composing sessions belonging to various
protocols was used for test. It is observed that the software is working properly even

after addition of support for chat protocols.

5.2 Performance evaluation

Each packet received by the PickPacket Filter, is processed by the application pro-
tocol filter for criteria match. If the protocol filter is slow in filtering packets, the
kernel may start dropping packets when its internal buffers gets filled up. This may
result in not capturing of some packets even though they may be meeting user speci-
fied criteria. But, the Linux kernel does not provide statistics of packet loss happend
due to application level filtering. Therefore, we use an instance of PickPacket Filter
without application filtering to find the number of packets read. This count can
be used to find the amount of packet loss. The earlier version of PickPacket Filter
works at line speed in case of 100Mbps Ethernet segment. We have done experi-
ments to ensure that the addition of chat protocol filters to PickPacket doesn’t slow
it down, and it still works at line speed.

Two identical machines with Intel Pentium 3.6GHz CPU, 2GB RAM and running
linux kernel version 2.4.20-8 were used on a 100Mbps Ethernet segment. Both these

machines were connected to a Hub. One instance of PickPacket Filter with no

38

application level filtering was run on a machine. The output file for this filter was
specified as /dev/null. Thus, this instance of the packet filter reads all packets and
writes them to the NULL device. The other instance of PickPacket Filter with
application layer protocol specific criteria was run on second machine. The output
file for this filter was a normal file. For simplicity the former packet filter is referred
to as counting sniffer while the other as filtering sniffer. Filtering was stopped by
setting a timer.

The filtering sniffer was run with configuration file containing criteria for all
protocols supported by PickPacket. The criteria for IRC protocol includes 50 channel
names, 50 nicknames and 50 keywords. The criteria for Yahoo protocol includes 50
usernames, 50 chatroom names, 50 yahooids and 50 keywords. Traffic containing
SMTP, FTP, HTTP, POP, IMAP, IRC and Yahoo protocol sessions was generated
to Hub. Significant portion of the traffic included data beloning to HTTP, SMTP,
FTP protocols. Both the sniffers were started manually and ran for same time (6
minutes). In our experiment, counting sniffer processed 3533100 packets and filtering
sniffer processed 3527900 packets. The small difference in number of packets is due
to delay while starting the sniffers manually.

Thus the PickPacket Filter can work at line speed with out loss of infomation.
We have measured the usage of processor and memory while running the filter and
found that they were less than 50% used. Therefore, the filter can run at higher
traffic speeds.

39

Chapter 6
Conclusion

This thesis discussed the filtering of packets flowing across the network by PickPacket
with a special focus on filtering packets based on the IRC and Yahoo Messenger
application level protocols criteria. PickPacket allows the filtering of packets on the
basis of criteria specified by the user both at the network and the application level
of the protocol stack.

PickPacket is a useful tool for gathering and rendering information flowing across
the network. The design of PickPacket is modular, flexible, extensible, robust and
efficient. Judicious use of the system can also help protect the privacy of individ-
uals and can dump only necessary data to the disk. Tools for Post-processing and
subsequent rendering make the tool easy to use. The universality of the capture file
formats offer the user a choice of using “rendering and post-processing tools” other
than those provided by PickPacket.

PickPacket is architecturally divided into four components the PickPacket Con-
figuration File Generator, the PickPacket Filter, the PickPacket Post Processor, and
the PickPacket Data Viewer. Design of each of these components were briefly dis-
cussed. PickPacket uses in-kernel filtering to capture packets at the network level.
The packets filtered by the in-kernel filter are passed to the application level filter
for further processing.

Modules for filtering IRC and Yahoo Messenger protocol packets have been fur-

ther discussed in this thesis. Users of PickPacket can specify names of channels,

40

nicknames and text search strings for filtering packets belonging to IRC sessions.
Usernames, chatroom names, yahoo-ids and keywords can be specified for filtering
packets belonging to Yahoo Messenger sessions.

Experiments were conducted to check the performance of the IRC and Yahoo
filters of PickPacket. These experiments show that these filters can successfully
capture and filter packets on the basis of several criteria at reasonably high network

loads.

6.1 Further work

PickPacket currently supports SMTP, POP, IMAP, Telnet, FTP, HT'TP, IRC, and
Yahoo Messenger application level protocols. There is always scope for extending
PickPacket to support other application level protocols. PickPacket doesn’t have
support for decompressing the compressed data to do string matching. This would
be required as electronic transfer of data in compressed format is popular.

Due to recent concerns over the impending depletion of the current pool of
Internet addresses and the desire to provide additional functionality for modern
devices, a new version of Internet Protocol(IP) called IPv6 [5] is in the process
of standardization. This version resolves unanticipated IPv4 design issues and is
poised to take the Internet into the 21st Century. Therefore, PickPacket would
need changes for compatibility with IPv6.

41

References

[1] Loris Degioanni, Fulvio Risso, and Piero Viano. “Windump”. http://netgroup-

serv.polito.it/windump.
[2] Gerald Combs et al. “Ethereal”. Available at http://www.ethereal.com.
[3] “Etherpeek nx”. http://www.wildpackets.com.

[4] “Gaim: A multi-protocol instant messaging (im) client”.

“http://gaim.sourceforge.net /”.
[5] “Ipv6: The Next Generation Internet!”. “http://www.ipv6.org”.

[6] Van Jacobson, Craig Leres, and Steven McCanne. “tcpdump : A Network
Monitoring and Packet Capturing Tool”. Available via anonymous FTP from

ftp://ftp.ee.lbl.gov and www.tcpdump.org,.

[7] Neeraj Kapoor. “Design and Implementation of a Network Monitoring Tool”.
Technical report, Department of Computer Science and Engineering, II'T Kan-
pur, Apr 2001. http://www.cse.iitk.ac.in/research /mtech2000/Y011111.html.

[8] Steve McCanne and Van Jacobson. “The BSD Packet Filter: A New Architec-
ture for User-level Packet Capture”. In Proceedings of USENIX Winter Con-
ference, pages 259-269, San Diego, California, Jan 1993.

[9] “Network Associates Incorporated”. http://www.sniffer.com.

[10] Brajesh Pande. “The Nework Monitoring Tool - Pickpacket
Filtering ftp and http packets”. Technical report, Department

42

of Computer Science and FEngineering, IIT Kanpur, Sep 2002.
http://www.cse.iitk.ac.in/research /mtech2000/Y011104.ps.gz.

[11] “Php Site”. http://www.php.net.

[12]

[13]

[14]

J. Oikarinen D. Reed. “Internet Relay Chat Protocol”. Technical report, 1993.
http:/ /www.fags.org/rfcs/rfc1459.html.

Stephen P. Smith, Henry Perrit Jr., Harold Krent, Stephen Mencik, J. Allen
Crider, Mengfen Shyong, and Larry L. Reynolds. “Independent Technical Re-
view of the Carnivore System”. Technical report, IIT Research Institute, Nov

2000. http://www.usdoj.gov/jmd/publications/carniv_entry.htm.

Venkat. “Yahoo Messenger Protocol(unofficial ~documnetation)”.

“http:/ /www.venkydude.com /articles/yahoo.htm”.

43

Appendix A

Sample Configuration Files

A.1 Configuration File with Filtering Criteria (.pcfg)

This is a sample configuration file with filtering criteria

A hash(#) is used for comments

This file has several sections

Sections start and end with tags similar to HTML.

Tags within sections can start and end subsections or can be tag-value pairs.

A1l the tags that are recognized appear in this file.

First Section spcifies the sizes and names of the dump files

The Second Section specifies the source and destination IP ranges
the source and destination ports, the protocol and the application
that should handle these IPs and ports

The next sections describe the application specific

H OH HF OH O O HF OH OH OH O H OH OH

input criteria.
FhkokskokskokskokskokkokkkF ISt St 1 Ok sk ok skok skok sk sk sk sk ok sk ok sk ok sk ok ok sk ok sk ok ok ok Kok
<Output_File_Manager_Settings>

<Default_Output_File_manager_Settings>
File_Prefix is the name used to generate the dump filename suffixed with
the time stamp at which the file is created

File_Prefix=generaltest

44

+*

E=

E=3

If the dump file has to be changed based on size then this field is having value yes

Size_Based=yes
This field exists when the Size_Based is yes this tell the size of dump
file in Mega Bytes
File_Size=100
Time_Based attribute tells if the change of dump file is based on time also
Time_Based=yes
This field exists when the Time_Based is yes this tell the time period in
minutes
Time_Period=60

</Default_Output_File_manager_Settings>

</Output_File_Manager_Settings>

HkokkokokokkokkkkkkkSECONA SeCt 1 Omkskkkkkakskokskk sk k ok kok ok ok sk kK k Kk ok

#H= O H H O #H HF H OH OH OH OH O H OHF OH OH O H OH OH

The basic criteria here are for the Device and
SrcIP1:SrcIP2:DestIP1:DestIP2:SrcP1:SrcP2:DestP1:DestP2:ProtoA:App
Should be read as For the range of sorce IP from SrcIPl1 to SrcIP2
For associated ports from SrcPl to SrcP2
and For the range of desitnation IP from DestIP1 to DestIP2
For associated ports from DestPl to DestP2
and FOR Protocol ProtoA
monitor connections according to Application App
Protocols can be UDP or TCP
Applications for TCP are
SMTP, FTP, HTTP, TELNET, POP, IMAP, IRC, YAHOO,
RADIUS, TEXT, DUMP_FULL, DUMP_PEN
Applications for UDP are
DUMP_FULL, DUMP_PEN
No further specs are required for DUMP kind of applicatioms.
Do not mix too many applications for clarity

Take care that IPs Ports and applications do not conflict

<Basic_Criteria>

45

DEVICE=ethO
Num_0f_Criteria=10

Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:25-25:TCP:SMTP
Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:20-20:TCP:FTP
Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:21-21:TCP:FTP
Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:110-110:TCP:POP
Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:143-143:TCP: IMAP
Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:23-23:TCP: TELNET
Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:80-80:TCP:HTTP
Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:143-143:TCP: TEXT
Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:1024-65535:TCP:DUMP_FULL

</Basic_Criteria>

#rxxkkkkokkkEnd of Second Sectiomkskskskskskskokkkkskkoksksk ok k k kk sk kok ok ok ok k>

#rorrokkkokokkkkkApplication Specific Specificationskkkkxx
Here the criteria corresponding to different application level

protocols are specified

ok xkrkrkkkkkkxk IRC Specificationskkkkkx
<IRC_Configuration>
<IRC_Criteria>
NUM_of_Criteria=1
<Search_NickName>
Num_of_nicknames=3
Case-Sensitive=yes
NickName=AVE
NickName=ananth
NickName=ramu
</Search_NickName>
<Search_Channel>

Num_of_channelnames=1

46

Case-Sensitive=yes
ChannelName=VENHQ
ChannelName=codevi
</Search_Channel>
<Search_Text_Strings>
Num_of_Strings=4
Case-Sensitive=no
String=enti
String=Exploiting
String=gathulu
String=unnava
</Search_Text_Strings>
</IRC_Criteria>
<Port_List>
Num_of_Ports=1
IRC_Server_Port=6667
</Port_List>
Mode_0f _Operation=full
</IRC_Configuration>

#rorookkokokkkkkEND of TRC Specificationskkkokk

HrorkkxckkkokokkkxkYahoo Specifications*kkkkk
<YAHOO_Configuration>
<YAHOO_Criteria>
NUM_of_Criteria=1
<Usernames>
Num_of_Usernames=5
Case-Sensitive=yes
Username=feel
Username=india

Username=delhi

47

Username=fire
Username=ricky
</Usernames>
<Chatrooms>
Num_of _Chatrooms=5
Case-Sensitive=yes
Chatroom=Delhi
Chatroom=Admirer
Chatroom=Calcutta
Chatroom=India
Chatroom=Pakistan
</Chatrooms>
<Search_Email_ID>
Num_of_email_id=50
Case-Sensitive=yes
E-mail_ID=fire
E-mail_ID=balu_balu
E-mail_TID=mumbai
E-mail_ID=india
E-mail_ID=private
</Search_Email_ID>
<Search_Text_Strings>
Num_of_Strings=50
Case-Sensitive=no
String=invisible
String=private
String=defence
String=india
String=chat
</Search_Text_Strings>

</YAHOO_Criteria>

48

Mode_0f _Operation=full
</YAHOO_Configuration>

#rorokkkokokkkxkEND of YAHOO Specifications*kkkxx

ok okrokkokkkkkkkk IMAP Specifications*kkkkk
<IMAP_Criteria>
NUM_of _Criteria=2
<Usernames>
Num_of _Usernames=1
Case-Sensitive=no
Username=sudheerv
</Usernames>
<Search_Email_ID>
Num_of_email_id=2
Case-Sensitive=yes
E-mail_ID=ananth
E-mail_ID=deshaw
</Search_Email_ID>
<Search_Text_Strings>
Num_of _Strings=0
</Search_Text_Strings>
<Usernames>
Num_of_Usernames=1
Case-Sensitive=no
Username=sudheer
</Usernames>
<Search_Email_ID>
Num_of_email_id=1
Case-Sensitive=yes
E-mail_ID=deepak

49

</Search_Email_ID>

<Search_Text_Strings>
Num_of_Strings=2
Case-Sensitive=no
String=pickpacket
String=IMAP

</Search_Text_Strings>

</IMAP_Criteria>

#kkkorkkrorkkorokkkEND of IMAP Specificationskksskxx

#rrkkrkkkkkkkkPOP Specificationsskxkkx
<POP_Criteria>
NUM_of_Criteria=2
<Usernames>
Num_of_Usernames=1
Case-Sensitive=no
Username=ananth
</Usernames>
<Search_Email_ID>
Num_of_email_id=2
Case-Sensitive=yes
E-mail_ID=sudheer
E-mail_ID=sybase
</Search_Email_ID>
<Search_Text_Strings>
Num_of_Strings=0
</Search_Text_Strings>
<Usernames>
Num_of _Usernames=1
Case-Sensitive=no

Username=jainbk

20

</Usernames>
<Search_Email_ID>
Num_of_email_id=1
Case-Sensitive=yes
E-mail_ID=dheeraj
</Search_Email_ID>
<Search_Text_Strings>
Num_of_Strings=2
Case-Sensitive=no
String=sachet
String=POP
</Search_Text_Strings>
</POP_Criteria>

#HrokkkxckkkokokkkxkEND of POP Specificationskkkkk

#rrkrxrkkkkokkkxSMTP Specificationskkkxk
<SMTP_Configuration>
<SMTP_Criteria>
NUM_of_Criteria=2
<Search_Email_ID>
Num_of _email_id=1
Case-Sensitive=yes
E-mail_ID=sudheerv@cse.iitk.ac.in
</Search_Email_ID>
<Search_Text_Strings>
Num_of_Strings=1
Case-Sensitive=yes
String=PickPacket
</Search_Text_Strings>
<Search_Email_ID>

Num_of_email_id=2

ol

Case-Sensitive=yes
E-mail_ID=ananth@iitk.ac.in
E-mail_ID=jainbk@hotmail.com
</Search_Email_ID>
<Search_Text_Strings>
Num_of_Strings=0
</Search_Text_Strings>
</SMTP_Criteria>
Mode_0f _Operation=full
</SMTP_Configuration>

#rrrxxkkkkkEND of SMTP Specifications*kkkxx

#rkrkkkooo0okFTP Specificationskokskokskk
<FTP_Configuration>
<FTP_Criteria>
NUM_of_Criteria=1
<Usernames>
Num_0f _Usernames=2
Case-Sensitive=no
Username=puneetk
Username=jainbk
</Usernames>
<Filenames>
Num_0f_Filenames=1
Case-Sensitive=no
Filename=test.txt
</Filenames>
<Search_Text_Strings>
Num_0f_Strings=1
Case-Sensitive=yes

String=book secret

52

</Search_Text_Strings>
</FTP_Criteria>
Monitor_FTP_Data=yes
Mode_of_Operation=full
</FTP_Configuration>

#xkkxxkkkkkEND of FTP Specificationskkkkxx

#rrkrkkkokkkHTTP Specifications*kxkkx
<HTTP_Configuration>
<HTTP_Criteria>
NUM_of_Criteria=1
<Host>
Num_0Of _Hosts=1
Case-Sensitive=no
HOST=http://www.rediff.com
</Host>
<Path>
Num_0f_Paths=1
Case-Sensitive=yes
PATH=cricket
</Path>
<Search_Text_Strings>
Num_of_Strings=1
Case-Sensitive=no
String=neutral venu
</Search_Text_Strings>
</HTTP_Criteria>
<Port_List>
Num_of_Ports=1
HTTP_Server_Port=80
</Port_List>

93

Mode_0f _Operation=full
</HTTP_Configuration>

#kkkkkkkkEND of HTTP Specificationskskkx

#rrrkorko0oTELNET Specificationsskokskskskk
<TELNET_Configuration>
<Usernames>
Num_of_Usernames=1
Case-Sensitive=yes
Username=ankanand
</Usernames>
Mode_0f _Operation=full
</TELNET_Configuration>
#xxxxxEND of TELNET Specifications*kxkxx
#rxxrkokokokkTEXT SEARCH Specificationskokkkx
<TEXT_Configuration>
<Search_Text_Strings>
Num_of_Strings=1
Case-Sensitive=no
String=timesofindia
</Search_Text_Strings>
Mode_0f _Operation=pen
</TEXT_Configuration>
#xxxxxEND of TEXT SEARCH Specificationskkxxx

#xkkkxkkkkkEnd Application Specific Specifications*kkk

o4

A.2 Configuration File with Buffer Sizes(.bcfq)

The file contains the number of connections to open simultaneously
for some applications
and the number of packets to be stored per connection before a match occurs
<NUM_CONNECTIONS>
NUM_CONNECTIONS=10
NUM_SMTP_CONNECTIONS=500
NUM_FTP_CONNECTIONS=500
NUM_HTTP_CONNECTIONS=500
NUM_TELNET _CONNECTIONS=500
NUM_TEXT_CONNECTIONS=500
NUM_RADIUS_CONNECTIONS=500
NUM_POP_CONNECTIONS=500
NUM_IMAP_CONNECTIONS=500
NUM_IRC_CONNECTIONS=500
NUM_YAHOO_CONNECTIONS=500
</NUM_CONNECTIONS>
Num_of_IMAP_Stored_Packets=100
Num_of_POP_Stored_Packets=100
Num_of _IRC_Stored_Packets=100
Num_of _IRC_Channels=10
Num_of_YAHOO_Stored_Packets=100
Num_of_SMTP_Stored_Packets=100
Num_of _FTP_Stored_Packets=100
Num_of _HTTP_Stored_Packets=100
Num_of_TEXT_Stored_Packets=100

95

