Supporting IPv6 in PickPacket

A Thesis Submitted
in Partial Fulfillment of the Requirements
for the Degree of

Master of Technology

by
Devendar Bureddy

to the

Department of Computer Science & Engineering

Indian Institute of Technology, Kanpur

May, 2006

Certificate

This is to certify that the work contained in the thesis entitled “Supporting IPv6
in PickPacket”, by Devendar Bureddy, has been carried out under my supervision and

that this work has not been submitted elsewhere for a degree.

Our, M
May, 2006 (Dr. Dheeraj{Sa.nglgi)
Department of Computer Science & Engineering,

Indian Institute of Technology,

Kanpur.

Abstract

Over the years, Internet has become a popular medium for communication. At
the same time its use in illegal activities is also increasing. Therefore, there is a
need to monitor network traffic. However, this monitoring should not compromise
the privacy of individuals who are using the Internet for legal purposes. PickPacket
- a network monitoring tool developed at IIT Kanpur, can handle the conflicting
issues of network monitoring and privacy through its judicious use. It is a passive
tool in the sense that it neither injects any packet into the network nor delays any
packet. PickPacket comprises of four components — the Configuration File Genera-
tor helps the users in specifying the filtering parameters, Filter captures the packets
from the network, Post-Processor analyzes the captured data and Data Viewer ren-
ders the captured sessions interactively. PickPacket has support for HTTP, FTP,
SMTP, POP, IMAP, Telnet, IRC and Yahoo-messenger protocols. It can filter traffic
belonging to these protocols, reconstruct the sessions and display it to the user.

IPv6 is the next generation protocol designed by the IETF to replace the current
version Internet Protocol, IPv4. Most of today’s internet uses IPv4, which is now
more than twenty years old. The amount of IPv6 traffic is going to increase day by
day. This thesis discusses an extension to PickPacket to support monitoring of IPv6
traffic. The work involved changing all components of the tool to support the new
protocol. Various tests were conducted to verify the correctness of the tool and to
measure its performance.

We have extended PickPacket in another way.The amount of compressed HTTP
traffic in Internet traffic is also growing, since it saves the network bandwidth and
speeds up the response time. This thesis also discusses on the fly decompression
of compressed HI'TP traffic and performing searching of strings searching in com-
pressed data.This has been implemented both for IPv4 and IPv6.

Acknowledgments

I take this opportunity to express my sincere gratitude toward my thesis super-
visor Dr.Dheeraj Sanghi for his invaluable guidance throughout my thesis work. It
would have never been possible for me to take this project to completion without
his innovative ideas and encouragement. I also thank whole heartily to Dr. Deepak
Gupta for his valuable suggestions even though he was not available here. The
thesis is for a project that is financially supported by Ministry of Communications
and Information Technology, Government of India. The support of the Ministry of
Communications and Information Technology is duly acknowledged.

I also thank the other team members involved with the development of Pick-
Packet for their cooperation, especially Sudheer and Ananth who helped me initially
while understanding the Architecture of PickPacket. I also thank my project part-
ner, Vinaya, for her cooperation and innovative suggestions regarding the project.
I also wish to thank whole heartily all the faculty members of the Department of
Computer Science and Engineering, II'T Kanpur for enhancing my knowledge. I also
wish to thank Navpreet Singh for his help in sniffing on the CC network. I would like
to thank all my classmates for the moments I shared with them. Mtech2004 batch is
one that I never forget in my life. T would also like to thank everyone in the Prabhu
Goel Research Center for providing a nice and challenging work environment.

Finally, I would like to thank my family encouraging me at all times and taking

me to this stage in life.

Contents

1 Introduction

1.1 Network Monitoring Tools
1.2 PickPacketo
1.3 Organization of the Report

2 PickPacket: Architecture and Design

2.1 Architecture
2.2 Design e
2.2.1 PickPacket Configuration File Generator
2.2.2 The PickPacket Filter
2.2.3 PickPacket Post-Processor
2.2.4 PickPacket Data Viewer

3 Implementation of IPv6 in PickPacket

3.1 IPv6 Protocol Overview
3.1.1 IPv6 header
3.2 Upgrading Configuration File Generator
3.3 Upgrading Filter o
3.3.1 Initialization
3.3.2 The IPv6 Demultiplexer
3.3.3 Connection Manager
3.3.4 Application Protocol Filters
3.3.0 HTTP Filter
3.3.6 Unmodified Components

i

3.4 Upgrading PostProcessor
3.5 Upgrading DataViewer

4 Correctness Verification and Performance Evaluation
4.1 Correctness Verification
4.1.1 IPv6 Filtering L

4.2 Performance Evaluation

5 Conclusions and Future Work
5.1 Future Work

Bibliography

A Sample Configuration Files
A.1 Configuration File with Filtering Criteria (.pcfg)
A.2 Configuration File with Buffer Sizes(.bcfg)

B GZIP File format
B.1 File format o
B.2 Member format

iii

29
29
29
30

32
33

34

37
37
47

List of Tables

3.1 TCP Connection Manager’s Memory

3.2 TCP Connection Information

v

List of Figures

2.1
2.2
2.3
24

3.1
3.2

Architecture of PickPacket 6
Filtering Levels oo 9
Basic Design of the PickPacket Filter 10
Post-Processing Design 0oL 12
IPv6 header L 16
New Design of the PickPacket Filter 19

Chapter 1
Introduction

Internet has become a major medium of communication all over the world. But
Internet can also be and has been used for unlawful activities by terrorists and
criminals to communicate information. Thus, There is a need for tools to monitor
network traffic in order to prevent such illegal activities. Not just law enforcement
agencies, but even companies need these tools to prevent their valuable data from
falling into hands of their competitors. However, monitoring and analysis of Internet
traffic may violate the privacy of individuals whose network communication is being
monitored. PickPacket - a Network Monitoring Tool, can address the conflicting
issues of networking monitoring and privacy through its judicious use.

PickPacket is a tool that monitors network traffic and captures those packets
that the user is interested in. It provides a very powerful set of criteria for filtering
the packets. It has support for many application protocols such as SMTP, HTTP,
FTP, Telnet,POP,IMAP IRC and Yahoo-Messenger.

The previous version of PickPacket worked with the assumption that all network
traffic uses IPv4. However, use of IPv6 is growing vary rapidly in the Internet.
It is likely to become the dominant Internet Protocol in 3-5 years, replacing IPv4.
Applications need to adapt to both IP versions. In this thesis, we describe the
incorporation of support for IPv6 traffic handling in PickPacket.

Another problem we discussed in thesis is handling compressed HTTP traffic.

Now a days most of the web servers are serving data in compressed form to improve

the web performance. If the HT'TP traffic is in compress form, then it is difficult to
apply string search algorithms to the compressed data. This violates the entire goal
of PickPacket. We described the solution to decompress HI'TP packets on the fly.

1.1 Network Monitoring Tools

Network monitoring tools are also called sniffers. Network sniffers are named after
a product called Sniffer Network Analyzer, introduced in 1988 by Network General
Corporation. These tools are used to monitor and analyze data flowing across the
network. They capture the network traffic based on some rules specified by the user.
Network monitoring tools usually contain some protocol analysis capabilities that
allow users to decode the captured data and analyze it.

Generally sniffers work by putting the Network Interface Card into promiscuous
mode. In this mode the Ethernet Card listens to "all the traffic which is coming
in". If the Network Interface card is not in Promiscuous mode, it ignore all traffic
which is not intended for it.

Filtering can be done in two modes, on-line filtering and off-line filtering. On-
line filtering is implemented in kernel while capturing the traffic. Off-line filtering
is done after the captured data is stored on a disk. Both approaches have their own
advantages and disadvantages. On-line filtering needs machines with more memory
and processing, but helps in reducing the storage requirements. Also, memory and
processing power are not a strict limitation for today’s computer systems. On the
other hand, if off-line filtering is done at high speeds, a lot of disk space would
soon get used up. Hence, on-line filtering is preferred. The sniffers should not copy
the whole traffic which is appearing in the network. In such cases the sniffer also
dumps data belonging to untargeted users who happens to access and transfer data
through the network during the sniffing time. This violates the privacy of untargeted
individuals. Another problem with whole traffic capture is that, it needs a huge disk
space and analysis of such huge dumps consumes considerable amount of resources.

Sniffers filter packets based on various levels of criteria. The first level of filtering

is based on parameters like IP address range, port number range and protocol present

in the packet. This level of can be done on-line at kernel level. BPF [14] (Berkeley
Packet Filter) is an in-kernel packet filter that filters packets based on network
parameters like IP addresses, port numbers, protocol types and other information
at fixed location in a packet. The next level of filtering is based on application
specific criteria like email-id, URL, host name, etc. The final level of filtering is
based on keyword (string) match in application payload. Most sniffers also support
post-capture analysis and provide processing tools which retrieve useful information
from stored data and present it in an interactive manner.

Many sniffers are available commercially and publicly. They come with different
capabilities, and for different operating systems. Tecpdump [10] is a UNIX based
sniffer that uses lipcap[9] library. This tool captures the packets based on Network
parameters like IP address and port numbers. Also, it allows user to make some sta-
tistical analysis on captured data. It has limited filtering capabilities. WinDump [2]
is a version of TcpDump for Windows. Ethereal [4] is a UNIX based sniffer. It has a
rich set of protocol analysis capabilities. However, It has limited filtering capabilities
compared to TepDump. It provides GUI for viewing captured data. Etherpeek [5] is
a tool mainly used to troubleshoot networks problems. It also decodes some applica-
tion level protocols off-line. It works only in Ethernet networks. Carnivore [6, 7, 20]
is a packet capturing system developed by FBI. This tool monitors the traffic based
on wide range of application specific filtering criteria. It is also capable of monitoring
dynamic IP address based networks.

These monitoring tools mainly focus on network management and trouble shoot-
ing aspects. Though they have good protocol analysis capabilities, they have limited

on-line packet filtering capabilities.

1.2 PickPacket

PickPacket is a network monitoring tool developed at Indian Institute of Technology
Kanpur. PickPacket is passive tool which means it doesn’t inject any new packets
into network and doesn’t delay any packet to its destination. PickPacket can store

selected packets from network traffic for further analysis. The filtering criterion

can be specified at several layers of network protocol stack. PickPacket can filter
packets based on IP address in Network Layer, Port numbers in Transport Layer and
application-level parameters like email-ids, user names, URLs, and search strings.

PickPacket has support for application layer protocols like SMTP[12], Telnet-
Neeraj2002, HTTP[16], FTP[16], RADIUS[11], IMAP|21]|, POP|21], IRC[13], Ya-
hoo chat and Instant messages|13|. Users can specify criteria for each application
protocol separately.

PickPacket can capture the packets in two modes. The two modes of operation
are called “PEN” and “FULL”. The Full mode of operation stores the whole connec-
tion, while in PEN mode a minimal amount of information about the connection is
stored. Using these features judiciously will protect the privacy of users. The data
stored on the disk is analyzed by the off-line component of PickPacket called Post-
Processor and it is made available to the user with separate files for each connection.
The Web based tool called DataViewer shows a summary of all connections as well

as provides the capability to view the details of each connection

1.3 Organization of the Report

This report describes the extension of PickPacket to support Internet Protocol Ver-
sion 6 and compressed HTTP. Chapter 2 discusses the architecture and design of
PickPacket. Chapter 3 discusses the brief overview of IPv6 and implementation
details of IPv6 support in PickPacket. Chapter 4 discusses testing and performance

results. The final chapter concludes the thesis with suggestions on future work.

Chapter 2

PickPacket: Architecture and Design

This chapter discusses the architecture and design of PickPacket. The design of each
component is described briefly. Design and implementation issues are discussed in
detail in References [1, 11, 12, 13, 16, 21]

2.1 Architecture

PickPacket can be logically viewed as aggregate of four components working in

pipeline. These components are as follows.

o PickPacket Configuration File Generator is a JAVA based GUI for creating
the configuration file. It can run either on a Windows or a Linux machine.
The user can specify different filtering criteria for filtering the data which is
subsequently written to configuration files in a format that is understood by
the filter.

o PickPacket Filter is deployed on a Linux machine. It takes the configuration
file as input. It reads packets from the network and stores those packets which
match the criteria specified in the configuration file. Filtering is done at dif-
ferent levels based on criteria like IP addresses, port numbers and application

layer information.

e PickPacket Post-Processor runs on a Linux machine. It processes the packets
stored on the disk, and retrieves the meta-information from them and creates

a directory structure which is used by the Data Viewer.

o PickPacket Data Viewer is a web based GUI. It can be deployed on the same
machine where the post-processor is running. It takes the directory created
by the post-processor as input and displays the data in an interactive manner.

The user can access the captured data through a web server.

An architectural view of PickPacket is shown in Figure 2.1 in which each of

these components along with data-flow is shown.

Configuration file PickPacket Filter Pick Packet PostProcessor
generator GUI

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

= >

— 5 1
— 1

.

sdlect dump

! Data Viewer w

Web Server

Web Broser

Figure 2.1: Architecture of PickPacket

2.2 Design

This section describes the design of each of the four components in PickPacket.

2.2.1 PickPacket Configuration File Generator

The PickPacket Configuration File Generator is a JAVA based graphical user in-
terface. This helps the user to specify the criteria for filtering packets . This will
generate two files, one containing the various levels of filtering rules given by the
user and the other containing the configuration parameters. Both of these files have
the same base name with a different extension. The format of these files is similar
to XML. Sample configuration files are given in Appendiz A.

The first file with an extension .pcfg contains parameters for filtering and output,

and can be set by any normal user. It has three sections:

e The first section contains the details of output dump files generate by Pick-
Packet Filter. It contains the output file prefix name. File-Prefix is suffixed
with a time stamp at which the file is generated. The output file is changed
periodically, so that the old output files can be transferred for further process-
ing. The change of output file can be controlled either by specifying time or

maximum size of the file.

e The second section contains criteria for filtering packets based on source and
destination IP addresses, transport layer protocol, and source and destination
port numbers. The application layer protocol that handles packets that match
the specified criteria is also indicated. This information is used to filter based
on network and transport layer information, and demultiplex packets among

different application layer filters.

e The third section is divided into multiple subsections, each of which contains
criteria corresponding to an application layer protocol. Based on these criteria
the application layer content of the packets is analyzed. Here, the criteria
for SMTP, HTTP, FTP, Telnet, IRC, IMAP, POP, YAHOO-chat and instant

messenger protocols can be given. Each subsection contains application layer

protocol parameters like e-mail ids, URLs etc. The strings which will be
matched in the payload of all packets and mode of operation of the filter,
either PEN or FULL, is also mentioned for each application.

The second file with the extension .bcfg contains system related parameters to
be set by an expert. It has two sections. The first section contains the number
of simultaneous connections that can be monitored by the application filter. The
second section contains the maximum number of packets that can be stored before
the criteria matches. These values are used for the allocation of buffers by the
PickPacket Filter. The default value is set to 500 for each application protocol. A
very large value may cause the system to run out of memory. A small value may
cause some connections to be dropped and not monitored. This value should be

chosen based on filtering system capabilities.

2.2.2 The PickPacket Filter

PickPacket Filter reads packets from network and processes them to find whether
they match the criteria specified by the user or not. Filter maintains the state for
each connection until a criterion matches. Once a packet matches any criteria, it
saves all the packets belonging to that connection. On the whole, filter stores the
connections which match the criteria instead of individual packets. This section
briefly describes the design of PickPacket Filter.

The PickPacket can filter packets at various levels.

e Basic filtering on network parameters (IP addresses, port numbers).

e Application level filtering based on criteria like host names, user names, etc.
e Filtering based on content present in the application payload.

The first level filtering is efficiently carried out by using in-kernel filters[14]. The
in-kernel filter copies packets which match the network parameters from the kernel
space to user space. Since the content of application can be best deciphered by the
application itself, the second and third levels of filtering are combined. Figure 2.2

illustrates various levels of filtering.

. Application Specific Criteria
Basic Criteria and Text Strings

'

Figure 2.2: Filtering Levels

Packet

Application Layer Filter

St or age

Net wor k

We have a separate software module for each application protocol. This design
has the advantage that it is easy to add modules for new application protocols. In
this design, a demultiplexer exists between the in-kernel basic filter and application
level filters. Its main job is to direct the in-kernel filtered packets to one of the
application level filters for further processing. This decision is made based on the
rules present in the configuration file.

Application specific filtering extracts the application specific parameters from the
packets and checks for matches. Keywords are matched in the application payload of
packets. In case of communication over connection oriented protocol, this text search
should handles situations where the desired text is split across two or more packets.
The Filter also handles the case of out of order reception of packets. TCP Connection
manager module exists between demultiplexer and application filter. This module
handles out of order packets as well as deals with packet loss. Application layer
filter can alert the Connection manager to maintain the sequence information for
connections it in interested in.

Figure 2.3 shows the major modules in the PickPacket Filter.

The module Initialize is used for initialization of all the modules before filtering
based on input configuration file. The Qutput File Manager module is responsible
for storing packets on the disk. The Filter Generator module is used for generating
the in-kernel BPF code based on network parameters present in configuration file.

Application filters can call the functions to generate the filter code on-the-fly based

Configuration file

Connection
M

Application layer Protocol
Specific Criteria

Layer Filter

Output File Options

Connection
Manager

Connection
Information

Packet

Application
Layer Filter

(2

Output File

Output Initialize
File Options ;
IPand Ty
Transport 3
Layer Protocol | £ BPF code
Options] Socket
Application '%
layer protocol | S '\ '
Specific =
Criteria 3)
Q- Filter Generator
3
=¥
=g
g
[=X
O
9,
g
=
D,
! Y
s Basic Filter
Demultiplexer
Legend:
— Control flow
---> Dataflow
> Components

Figure 2.3: Basic Design of the PickPacket Filter

10

on changing parameters. For example in FTP during "PASSIVE" mode of file
transfer, FTP filter[16] changes the BPF code. The Demultiplezer can also call the
Output File Manager directly so that the filter can directly store packets without
sending them to any application filter, if necessary. For example, if only IP addresses
and port numbers are specified. The Connection manager can also directly store
packets to the disk. This is needed if a criteria has already matched for a connection.
More details of these modules can be found in [12]

The output file manager stores the output packets in pcap [9] file format. The
packets stored in pcap file format can also be viewed using utilities like tcpdump.
This standard format allows a user to use other tools for analysis of captured data.

The PickPacket Filter contains a text string search library. Application filters
use this library for string matching in application payload. This library uses the

Boyer-Moore|17| string matching algorithm.

2.2.3 PickPacket Post-Processor

PickPacket Post-Processor is an off-line component. It processes the packets stored
by filter in output files. It separates the packets in output file into different con-
nections. It extracts application protocol specific information from connections to

display in data viewer. Post-Processor has to meet the following objectives.

e A connection is identified by 4-tuple. With the same 4-tuple there can exist
more than one connection at different time intervals. Filter output file contains
packets belonging to several sessions. Before attempting to extract any data

from these files, sessions need to be separated.

e Information should be extracted from each connection. This information in-
cludes meta data from application payload. Meta data includes important
fields and entities present in the data content belonging to an application
layer protocol. For example Email-ids from SMTP, POP, IMAP and user

name, filename from FTP connections.

PickPacket Post-Processor has three modules: the Connection Breaker, the Ses-

sion Breaker and the Meta Information Gatherer. These are shown in Figure 2.4.

11

Intermediate Files

| Meta
. Metai nformatl on
C i
A

| - Data flow
3 > Module
Configuration file [] Datafiles

Figure 2.4: Post-Processing Design

Connection Breaker module reads packets from output file and separates them
into different files based on the 4-tuple. The Connection breaker generates set of
files with name as the 4-tuple, i.e., source and destination IP addresses and port
numbers.

The Session Breaker module takes each file produced by Connection Breaker
and splits it into multiple files, if it contains multiple sessions with the same 4-tuple.
It then writes the packets in sorted order based on time stamp value, i.e., the time
at which the packets were read from the network. Packets with same time stamps
are sorted by their sequence number.

The Meta Information Gather module contains one meta data extractor for each
application layer protocol. This module creates a separate directory for each con-
nection. The connection directory contains several file with meta-information about
connection. File named "tcpipinfo" contains the summary information about the

session that includes IP addresses, port numbers, application level protocol and

N

matched keywords in the connection and count of each keyword. File named "ap-
pinfo" contains the meta data of the session that is specific to its application pro-
tocol. Example of this information includes host names and URL in case of HTTP

connections.

2.2.4 PickPacket Data Viewer

PickPacket Data Viewer is a web based application used to show the PostProcessed
information in interactive manner. This module is designed using PHP[8]. It is
deployed on a web server. Web server accesses the data through PHP scripts and
serve the user requests. Data viewer can be deployed either on the same machine
where post-processing is done or on a different machine.

Data viewer is provided with an authentication screen. The user can login in two
modes “ADMIN mode” and “User mode”. Admin can add users, delete users and
change their passwords. Users can only change their passwords. Post Processor out-
put directory is placed in a fixed path that is known to Data Viewer. After a user has
logged in, DataViewer lists all the directories present in that path. For any output
directory selected by user, it lists summery of all the connections, including MAC
addresses, IP addresses, port numbers, Transport Protocol, Application Protocol,
RADIUS User and keywords matched from the output of Post-Processor. Connec-
tion list can be sorted on any of these fields. User can change his configuration to
show or remove some of these fields.

User can search among the captured connections. The search criteria include
network parameters, application parameters and keywords. User can search on all
the fields that he specified in the configuration file. When a user sets a connection
filter for displaying the connection only those connections that match the criteria
will be displayed. User can get back all the connection by setting the connection
filter to null.

On selecting a connection from the list of connections, the details of the connec-
tion are shown. The details include network parameters and application parameters.
The Data Viewer provides user with facilities like viewing captured e-mails, web

pages accessed, etc. The dialogue between communicating hosts can also be seen in

13

a dialogue window. The configuration file used for the filtering can also be viewed.

14

Chapter 3

Implementation of IPv6 in
PickPacket

This chapter discusses the design and implementation of the IPv6 traffic handling
in PickPacket. First, a brief overview of the IPv6 protocol is given, with a focus on
those features that are important for designing and implementing the filter. Then

the modification in different PickPacket components to support IPv6 are discussed.

3.1 1IPv6 Protocol Overview

IPv6 [19], also referred to as IP Next Generation, is designed as the successor of
IPv4 [3]. IPv4 was designed more than twenty five years ago. During this period,
Internet has grown beyond anyone’s expectations and the requirements of users have
changed. To satisfy increased demand for IP addresses and newer user requirements,
in 1990, Internet Engineering Task Force (IETF) started to work on a new version
of IP. The idea was to design a protocol which would never run out of addresses,
would solve several other problems, and be more flexible and efficient. The major
changes from IPv4 to IPv6 are expanded addressing capabilities (128 bit address

size), simplified header structure, better support for options, QoS and security.

15

Version |ITr;tffilc cllassl| " " 'Flow Label
PayLoad Length |I Néxt IHea;derI I | IH(I)leimi;

Source Address

+—+—+—+—+—+—+—+—+—+—+

Figure 3.1: IPv6 header

3.1.1 IPv6 header

The basic header used in all IPv6 packets is shown in Figure 3.1. The following are

the main features of IPv6:

e Fixed 40 bytes header size - whereas the IPv4 header-length is variable, but

is at least 20 bytes without extra options.

e Source and destination addresses are 128-bit compared to 32-bit addresses in

version 4.
e Six fields in IPv6 header compared to ten fields in IPv4 header.
e No checksum
e 64-bit aligned fields

IPv6 header structure is very flexible because it can include extra essential in-

formation very easily. When more information is needed another header is linked

16

through the next header field as an extension header. Currently there are six types
of extension headers defined, but more can very easily be added in the future. The
size of all extension headers must be integer multiple of 8 bytes long, so alignment
is optimal for most platforms.

The interested reader who need more detail can find it in the IPv6 specification,
[19] and the documents that describe transmission of IPv6 packets across diverse

network technologies [15].

3.2 Upgrading Configuration File Generator

The configuration file is a text which contains the rules specified by the user in a
fixed format. The details of configuration file are explained in Section 2.2.1. To
specify IPv6 criteria a new section has been added to this file. A sample file with
new section is given in Appendiz-A.

This new section contains rules for filtering packets based on source and desti-
nation IPv6 addresses, transport layer protocol , and port numbers. These rules
are referred to as basic_criteria_ 6 in the rest of this report. Every rule in ba-
sic_ criteria_ 6 also specifies the application layer protocol to which the packets
belongs. Configuration file has support for multiple such IPv6 rule tuples for differ-
ent application layer protocols in the same configuration file so as to simultaneously
filter packets belonging to these protocols.

IPv6 addresses can be either specified as individual addresses, or as a prefix.
In case of individual addresses, user can use any legal format of IPv6 addresses
representation. In case of IPv6 address prefix a length is also to be provided by the

user.

3.3 Upgrading Filter

PickPacket Filter has to capture IPv6 packets which are flowing across the network
according to user specified IPv6 criteria. Provision has been made in the Configura-

tion File Generator to specify proper IPv6 criteria which include network parameters

17

like IPv6 address prefix and port numbers. Filter will monitor IPv6 traffic based on
this criteria.

Presently a very small portion of network traffic uses IPv6. In the network
both TPv6 and IPv4 traffic will appear. PickPickat should handle both these pro-
tocols simultaneously. The application layer protocols won’t change in IPv6 traffic.
Application filters designed in PickPacket for IPv4, can be directly used for IPv6
communication with little modifications.

The upgraded PickPacket filter can read both IPv4 and IPv6 traffic and matches
them against the user specified criteria. The modified architecture of PickPacket
Filter is shown in Figure 3.2

During initialization phase IPv6 criteria are passed to other modules of the
system. filter generator is responsible for generating BPF filter code and passing it
to the kernel for in-kernel filtering.

In-kernel packet filtering for IPv4 traffic using network parameters is simple
because generating BPF expressions for IPv4 traffic is very easy. IPv4 packets have
their network parameters values at fixed byte offset in the packets. These data

values can be extracted from packet by using following syntax
proto [expr : size |

proto can be one of IP,TCP,UDP or Ether and indicates the protocol layer for the
index operation. Expressions involving TCP and UDP and other upper-layer proto-
cols can not be applied to IPv6 because of uncertainty in its packet structure. There
is a chance of having extension headers in between IPv6 header and TCP or UDP
header. TCP, UDP or upper-layer protocol information cannot be extracted easily
because of this uncertainty. Because of this reason, in the newly designed architec-
ture, basic filtering of IPv6 traffic is shifted to user level. The demultiplexer6 reads
IPv6 packets transmitted on the network and passes them to application protocol
filter. The behavior of application protocol filter is same for both IPv4 and IPv6
connections.

When a packet is received, based on the type of packet it is either passed to
demultiplezer or to IPv6 demultiplexer(IPv4) i.e demultiplezer6(IPv6). The Pick-
Packet filter supports filtering of packets belonging to different IP versions and

18

Configurationfile Output file options

Output |
File Options | "al"
Piesc @ 777777777777777777777777777 ilcolge pied
e | SuifcOiteia
L) |
IvBasc | 7 BPFoode
Oieia | 8
a
Lo _|‘ !
Aplicion | =1
e oo | 5 \
paifcCreia ’é Filter Cenery
5 Application
: Layer Filte
7
g
Q
0
Q

P demutplever ket +
Connection
Info

Layer Filte
)

T

IPV6 Packet

Figure 3.2: New Design of the PickPacket Filter

19

different application protocols simultaneously. Based on IPv6 information present
in the configuration file, the demultiplerer6 determines the application protocol to
which this packet belongs and passes it to the connection manager corresponding to
the transport protocol header present in the packet.

The rest of the section provides a detail description of changes made to existing

modules, newly created modules and their roles in filtering IPv6 packets.

3.3.1 Initialization

During initialization the packet filter reads the configuration file and initializes the
various modules of the system. At this time basic_ criteria_ 6 are read from the con-
figuration file. Based on the application protocol name specified in these criteria,
initialization functions of corresponding application protocols are called if they have
not already been initialized by IPv4 criteria. For example, if a user specifies HTTP
protocol criteria for both TPv4 and TPv6, then initialization functions of HTTP are
executed at the time IPv4 basic criteria is read. If any application protocol rule
is specified in IPv6 and not specified in IPv4 rules then that application protocol
functions are called at IPv6 initialization time. These functions allocate memory re-
quired for maintaining state information about the connections of interest. Also, the
initialization functions of the connection managers corresponding to the transport
layer protocol specified in the basic_criteria_6 are called. These functions allocate
memory required for maintaining connection information for connections that are
of interest to application protocol filter. After this initialization, the IPv6 addresses
and prefixes, transport layer protocol name and port number range is passed to
IPv6 demultiplexer, i.e., demultiplexer6. The Demultiplexer6 saves this information

by making an entry into its table.

3.3.2 The IPv6 Demultiplexer

Packets after being copied from the network are checked for their version of inter-
net protocol. Based on its version, packet is sent to either IPv4 demultiplexer or

IPv6 demultiplexer. These demultiplexers determine application protocol the packet

20

belongs to and pass it to the respective filtering modules.

For demultiplexing IPv6 packets the demultiplexer maintains a table of tuples
containing the IPv6 basic criteria specified in the configuration file. If any processing
of data content is desired (for example, keyword search) then the packet is passed
to connection manager routine for the corresponding transport layer protocol. Oth-
erwise packets are directly written to disk by passing them to output file manager.
IPv6 demultiplexer checks every packet against the entries in the table. Packet which
do not match any of these criteria are discarded by it. In IPv6 case, entire basic
filtering is being done at IPv6 demultiplexer, whereas in IPv4 some part of basic
filtering is done as in-kernel filtering and other part of filtering at demultiplexer.

After reading the packet from the network, it is saved in a My Packet structure.
The size of packet in bytes and time at which packet was received is also saved
in this structure. Based on the Type value in the Ethernet header, the packet is
sent to one of the demultiplexer. If type value is equal to 0x0800 (packet belongs to
Internet Protocol version 4), then packet is sent to IPv4 demultiplexer. If type value
equals 0x86dd (packet belongs to Internet Protocol version 6), then packet is sent
to IPv6 demultiplexer. IPv6 demultiplexer maintains a table of tuples in structure
dmplx_table6. Every tuple comprises of the following fields - 128-bit source and
destination IP addresses, port numbers, transport layer protocol name, a reference
to a connection manager’s function, and a reference to the memory allocated to the
application protocol filter. This table is maintained in two parts, static_ table and
dynamic_ table. The static_ table stores the IPv6 basic criteria specified in the
configuration file. The dynamic_table stores those IPv6 basic criteria which may
be added by other modules while filtering.

When IPv6 demultiplexer receives a packet, it retrieves 128-bit source and des-
tination IP addresses and port numbers from packet. In IPv6 packet 128-bit source
and destination addresses are available at fixed location from the beginning of packet.
The demultiplexer searches for a matching tuple in its static and dynamic tables.
A match occurs if source and destination IP addresses and port number present in
the packet lie in the corresponding ranges present in the tuple, with transport layer

protocol being the same. A reverse check is also made for capturing packets sent by

21

either of the communication hosts. On successful match, the packet is either passed
to the TCP connection manager or is passed to the default output file manager
based on application protocol name specified in the configuration file.

The IPv6 demultiplexer also allows addition and removal of filtering tuples from
its dynamic table through the dmplx_add_to_dynamic_table6 and dmplec _rem
from__ dynamic_table6 functions. These function can be called from other modules
when they require modifications to basic IPv6 filtering.

The IPv6 packet filter processes transport layer protocol headers of two protocols-
TCP and UDP. The connection manager for TCP has been modified to handle IPv6
packets. Packets belonging to UDP are written to disk by the demultiplexer in either

Pen or Full mode.

3.3.3 Connection Manager

The functionality of Connection manager of IPv6 connections is similar to Con-
nection manager of IPv4 connections. This Connection manager maintains state
specific to the transport layer protocol of the currently monitored connections . The
packet filter can filter packets belonging to two transport layer protocols - TCP and
UDP. UDP is a connection-less protocol hence no connection information needs to
be maintained for packets belonging to it. Thus a connection manager for UDP
has not been implemented. State information for connections belonging to TCP
needs to be maintained as it is a connection oriented protocol. We have modified
the connection manager for handling IPv6 and TCP packets are filtered based on
application layer data content present in them.

The TCP connection manager is modified to check for out of sequence IPv6 pack-
ets and pass this information to the application protocol filters. For this, it maintains
connection information similar to IPv4 connections in memory. The reference to this
memory is received from demultiplexer. Each application layer protocol has separate
memory area as shown in table 3.1. Each of these areas consists of the following
fields - a pointer to application filter function, a pointer to write-packet function,
a pointer to free function which removes connection information, a pointer to ac-

tive list which points to connection information of different connections, a pointer

22

to free_list which points list of free connection information nodes, a variable called

last flush time to store the time of when flush function was last called.

filter func
write packet
freefunc
last _flush _time
active _list
free list

Table 3.1: TCP Connection Manager’s Memory

Connection manager retrieves this information when packet belonging to this
connection is received. Connection manager releases connection information when
FIN packet is received or when the timer expires. Every connection information
node has a last_used variable to remember time when the packet belonging to this
connection was read by the packet filter. Connection information contains some
other information as shown in table 3.2. This information includes 128-bit source and
destination addresses, source and destination port numbers, source and destination
sequence numbers of the source and destination packets of last received, connection
state, application protocol state information, and dump flag.

The dump_flag value is set or unset by application layer filters. If this value
is set by any application layer filter, then packet is sent to output file manager
by calling the function pointed to by write packet. When application layer filter
needs to monitor the connection then it alerts the connection manager by calling
functions tcp_alert current and tcp alert mnew. Similarly, if the application layer
filter determines that connection information for the connection should be released
then the functions tcp forget current or tcp forget conn provided by Connection

manager is called.

3.3.4 Application Protocol Filters

There are a few changes common to all application protocol filters. In these filters

small changes are made where there is a need to store source and destination IP

23

128-bit, source IP address
128-bit destination IP address
source port number
destination port number
source sequence number
destination sequence number
highest source
sequence number
highest destination
sequence number
connection state
last _used
Application layer
protocol filter
state information
dump_flag

Table 3.2: TCP Connection Information

addresses. In all application protocol filters there is need to find the application
data offset and source and destination sequence number in the packets. Basically
packets are processed to find data offset and TCP headers by skipping any extension
headers if present.

While analysing IPv6 HTTP traffic we found that almost all the traffic is com-
pressed. Use of compression in IPv4 is also increasing. Hence we modified the
HTTP filter to handle compressed HT'TP for both IPv4 and IPv6. The following

subsection describes changes made to filter to handle compression.

3.3.5 HTTP Filter

g What is HTTP Compression

The volume of data on the web is increasing very rapidly because of increasing func-
tionality in web-pages. With greater quantities of Images, Java script and DHTML
than ever, the HTML Payload per-page is growing significantly. Data and content

24

will remain the largest percentage of web traffic and majority of this information is
dynamic so it one can’t use conventional caching technologies. Compression is now
being used on HTML to address this and is implemented by encoding the Body of
the HTTP message. This is supported by HTTP 1.1 [18] but not HTTP 1.0[22].

The main use of introducing HT'TP compression is to improve web performance
by having the server send compressed files to clients and having the browser un-
compress before displaying. The compressed data at server can be generated in two
ways, dynamically and pre-compressed. Dynamic Content Accelerator compresses
the data on the fly (useful for database-driven sites, etc). Pre-compressed text data
is pre-generated and stored on the server (.html.gz files, etc.,).

Since a majority of network traffic these days is HT'TP, compressed files in HT'TP
improves usage of network bandwidth and user ends up seeing the document very
fast as compared to sending uncompressed HTML.

HTTP compression uses standard gzip and deflate compression algorithms to
compress XHTML, CSS, and JavaScript to speed up web page downloads and save
bandwidth. HT'TP compression, also known as content encoding, is a publicly de-
fined way to compress the content transfered from web servers to web browsers.
HTTP 1.1 protocol is well designed with standard methods to deliver the com-
pressed content from web server to browser. The modern browsers that support
HTTP 1.1 can decompress compressed files automatically

Browsers and servers have a brief conversation before actual transfer of com-
pressed data. This conversation is done using HT'TP headers. The following HTTP
request header message shows how a compression-aware browser informs server that

it prefers to receive compressed content.

25

GET / HTTP/1.1

Host: www.cricinfo.com

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.5)
Gecko/20031007 Firebird /0.7

Accept: text/xmlapplication/xml application /xhtml+xml text /html;q=0.9,
text/plain;q=0.8,video/x-mng,image /png,image/jpeg,image/gif;q=0.2,* /*;q=0.1

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Connection: keep-alive

In the above header, the header Accept-Encoding: gzip,deflate tells the server
about the browser’s preference and capability about the compressed data.

When web server receives request header with Accept-Encoding : gzip, it delivers
the requested document with the encoding accepted by the client. The following is

a sample response header message for the compressed content.

HTTP/1.1 200 OK

Date: Thu, 04 Dec 2003 16:15:12 GMT
Server: Apache/2.0

Vary: Accept-Encoding

Content-Encoding: gzip

Cache-Control: max-age=300

Expires: Thu, 04 Dec 2003 16:20:12 GMT
Content-Length: 533

Content-Type: text/html; charset=ISO-8859-1

Now the client knows that the server supports gzip content encoding by the
header line Content-Encoding: gzip and it also knows the size of the file content-

length . The client downloads the compressed file, decompresses it, and displays the

page.

26

Any text string search algorithm will works only on the uncompressed document.
One solution to this problem is to store all the packets into a buffer until the whole
file is captured. We can then decompress this file by using standard decompression
or unzip tools and then apply the string searching algorithms on decompressed data.
This method is inefficient and not compatible with architecture of PickPacket.

PickPacket needs an efficient solution which decompresses the packets on the fly
and is able to perform string search in decompressed content.

We now describe the implementation details of compressed HI'TP handling.

HTTP application layer filter parses the response and request headers sepa-
rately. When it comes to parsing of response header, it first checks whether there
is any Transfer-Encoding = chunked header in the response header. If it exists then
PickPacket calls parse_ transfer encoding to unchunk the chunked data. Otherwise
directly goes to parse_ content_encode

In parse_ content _encoding it checks whether Accept-Encoding : gzip header
field is present. If this header field is found, it initializes the current HTTP con-
nection’s gzF'ile structure object by calling gzopenstr method with first packet’s
compressed content. For every packet in the connection it calls gzreadstr methods
with the compressed content as parameter. This function takes part of compressed
data and its length as input parameters and returns equivalent uncompressed data
and its length. It remembers the data structures to decompress next part of file
coming in next consecutive packet. It successfully decompresses packet only if they
are received in order. It fails to decompress a packet if packets before it have been
lost.

gzopenstr method is invoked only for the first part of compressed content re-
ceived. This method initializes the data structure with default values and checks
for gzip file header values. It check the presence of header values one after another
and finds offset of compressed data block. Appendiz-B shows sample gzip file header
content.

On successful decompression of compressed HI'TP data, PickPacket sends un-
compressed data to string search methods to match user specified keywords. If a

match occurs, then the packet is stored to disk for further analysis.

27

3.3.6 Unmodified Components

Filter Generator module generates the in-kernel BPF filter code for basic criteria
and attach this code to socket. In case of IPv6, the whole basic filtering is done by
the demultiplexer. There are no changes in filter generator module. The same set
of Application layer protocol filters handles both IPv4 and IPv6 traffic. The Output

File Manager module writes packets to disk in pcap format.

3.4 Upgrading PostProcessor

PickPacket PostProcessor is modified to group the IPv6 packets into connections. It
also collects the IPv6 meta information like 128 bit address and stores it in metafile
which is understandable to PickPacket DataViewer. It also finds any data loss
occurred in an IPv6 connection by using sequence number information.
PostProcessor also needs to handle compressed HI'TP data. Dataviewer need
some meta-information to show the connection data along with criteria because of
which connection is selected. If that criteria is keyword, then it displays that key-
word and frequency of that keyword in the connection. In order to get keyword and
to find its frequency in compressed HT'TP data. PostProcessor has to uncompress
the packet data and apply string search algorithm. Finally after processing of com-
pressed HTTP data, PickPacket stores it in compressed form only. In Web based
DataViewer, When we request that content, browser will get that from the disk and

uncompress it and displays it to the user.

3.5 Upgrading DataViewer

There are no changes to this component of PickPacket. In case of IPv6 connec-
tions, the PostProcessor writes 128 bit address into the meta information file. Since
DataViewer treats addresses as strings, no changes are needed to display IPv6 con-
nections. For compressed HT'TP, since the PostProcesor stores uncompressed ver-

sion of compressed content, the DataViewer remains unaffected.

28

Chapter 4

Correctness Verification and

Performance Evaluation

In this chapter we discuss the experiments conducted to test the PickPacket after
adding supporting for IPv6 traffic and for handling compressed HTTP. In the per-
formance evaluation we have tested whether the software is able to handle traffic at
line speed on 100 Mbps Ethernet.

4.1 Correctness Verification

The main aim of this experiment is to test whether the filter and other components
are working correctly. That is, the packets stored on the disk must correspond to
a session which has matched a criteria mentioned in the configuration file, and one

should be able to post-process and view such connections.

4.1.1 1IPv6 Filtering

In testing for IPv6 monitoring, we first verified that the filter captures IPv6 pack-
ets according to the criteria specified in the configuration file and then, the whole
software was tested for the correctness.

In initial phase, we tested IPv6 filter by specifying various criteria for filtering

IPv6 connections. These criteria includes various IPv6 address prefix values and

29

application specific criteria. To test IPv6 filter, we have taken IPv6 connection
traces from traffic using IITK IPv6 Proxy server. The test setup in the lab included
two machines. One machine ran PickPacket Filter, and the other machine generated
IPv6 traffic by replaying packets taken at II'TK IPv6 Proxy server. We ran the filter
with each of the configuration files for the same traffic. For each configuration, we
knew what connections match the criteria and thus should be stored. We found
that the filter was storing the expected data in each test. In the next phase, we
tested PickPacket with combined traffic of both IPv4 and IPv6 to check whether
it is filtering both types of packets simultaneously or not. The behavior of filter
on combined traffic with the specified configuration was as expected. From this we
concluded that PickPacket filter is working properly. Post-processor is tested to
ensure that the reconstruction of IPv6 connection and meta data extraction is done
correctly.

HTTP module is tested after adding the module that handles compressed HTTP
traffic. To test this, on one machine we installed a web server with gzip-enabled op-
tion. From another machine, we requested compressed content from web server.
We captured these packets and displayed the uncompressed content of each connec-
tion. We then collected two kinds of keywords from the uncompressed page. In
one case, the keywords appeared in one packet and in the other case, the keywords
were split across consecutive packets. We again ran the above test with these key-
words as criteria. We found that HTTP compression module is working correctly by
dumping only those connections which have the given keywords in compressed form.
This means that it is able to perform on the fly uncompress and string searching in

uncompressed content.

4.2 Performance Evaluation

The experiments conducted for performance evaluation are similar to experiments
described in [12, 21|. PickPacket filter is run on two machines simultaneously on
the same network. First one simply counts the number of packets and second one

filters based on the user specified criteria. Two instances of PickPacket filter were

30

run on two identical machines. The configuration of both PCs was: Intel Pentium
3.6 G Hz CPU, 2GB RAM , Red hat Linux 9 with 2.4.20-8 kernel and connected to
100Mbps Ethernet port. On one machine, PickPacket was run without any appli-
cation filtering criteria. It simply wrote the packets to /dev/null. This is referred
to as counter sniffer. On second machine we ran PickPacket with configuration file
containing filtering criteria. This is referred to as filtering sniffer. On this machine
PickPacket was configured to write packets to disk, if a criteria is matched.

The filtering sniffer was run with configuration criteria for all protocol supported
by PickPacket and basic IPv6 criteria. Traffic containing all protocols was generated
and significant portion of the traffic included compressed data. Almost all IPv6
HTTP traffic is compressed traffic. Both the sniffers were started manually and run
for some time. In our experiment, we observed that the number of packets captured
by the two sniffers differed by a small value. This small difference in number of
packets is due to delay while starting the sniffers manually. In this way, we verified
that the modified PickPacket Filter was able to capture traffic at 100 Mbps Ethernet
speed.

31

Chapter 5
Conclusions and Future Work

PickPacket is a useful tool that can capture packets flowing across the network
and store some of the packets which match the user specified criteria. The criteria
for filtering of packets ranges from network parameters like IP addresses and port
numbers to application level parameters like User names, Email-Ids, URLs, etc. The
design of tool is modular, flexible, and efficient. Judicious use of PickPacket can help
protect the privacy of individuals by capturing only the packets which match the
user-specified criteria. The storage format of packets is standard pcap format which
is used by many freely and commercially available tools. This adds the flexibility of
using other processing and rendering tools.

This thesis discusses the filtering of IPv6 packets flowing across the network by
PickPacket with a special focus on IPv6 traffic. PickPacket allows the filtering of
packets on the basis of criteria specified by the user both at the network and the
application level of the protocol stack.

Also discussed is the need of handling compressed HTTP traffic in PickPacket
and the solution, which is to decompress the compressed data on the fly to do string
matching, is described.

Experiments are conducted to check the performance of IPv6 filter of the Pick-
Packet. These experiments show that IPv6 filter successfully captures and filters

packets on the basis of user specified criteria. We have also conducted experiments

32

on HTTP filter with compressed packets. PickPacket software, after incorporat-
ing all these extensions, have been shown to perform at line speed using 100Mbps
Ethernet.

5.1 Future Work

PickPacket currently supports SMTP, POP, IMAP, IRC, Yahoo, HTTP, FTP and
Telnet application level protocol. There is always scope for extending PickPacket
to support other application level protocols. Presently VoIP is also used for illegal
activities. Current PickPacket does not support VoIP interception.

Currently PickPacket does in-kernel filtering for IPv4 traffic, while IPv6 basic
filtering is implemented in demultiplexer. Moving basic filtering of IPv6 to kernel

will improve the performance of PickPacket.

33

Bibliography

[1] ApiTya, S. P. “Pickpacket: ~ Design and Implementation of the
HTTP postprocessor and MIME parser-decoder”, Dec 2002. BTP
Department of Computer Science and Engineering, II'T Kanpur,
http://www.cse.iitk.ac.in /research /btp2003/98316.html.

Y

[2] DEGIOANNI, L., Risso, F.; AND VIANO, P. “Windump”. http://netgroup-

serv.polito.it/windump.

[3] DoD. “Internet Protocol Specification”. Tech. rep., 1980.
http://www.ietf.org/rfc/rfc760.txt.

[4] ET AL., G. C. “Ethereal”. Available at http://www.ethereal.com.
[5] “Etherpeek nx”. http://www.wildpackets.com.

[6] GRAHAM, R. “carnivore faq”. http://www.robertgraham.com/pubs/carnivore-
faq.html.

[7] “How Carnivore Works”. http://www.howstuffworks.com/carnivore.htm.
[8] “PHP:Hypertext Preprocesor”. http://www.php.net.

[9] JACOBSON., LERES, AND MCCANNE. “pcap - Packet Capture Library”, 2001.

Unix man page.

[10] JacoBsoN, V., LERES, C., AND MCCANNE, S. “tcpdump : A Network
Monitoring and Packet Capturing Tool”. Available via anonymous FTP from

ftp://ftp.ee.lbl.gov and www.tcpdump.org.

34

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

JAIN, S. K. “Implementation of RADIUS Support in Pickpacket”. Master’s
thesis, Department of Computer Science and Engineering, IIT Kanpur, Apr
2003. http://www.cse.iitk.ac.in/research /mtech2001,/Y111122.html.

KAPOOR, N. “Design and Implementation of a Network Monitoring Tool”.
Master’s thesis, Department of Computer Science and Engineering, II'T Kanpur,
Apr 2002. http://www.cse.iitk.ac.in/research /mtech2000/Y011111.html.

KIRAN, A. “Supporting Chat Protocols YAHOO ,IRC in PickPacket”. Master’s
thesis, Department of Computer Science and Engineering, [IT Kanpur, June
2004.

MCCANNE, S., AND JACOBSON, V. “The BSD Packet Filter: A New Ar-
chitecture for User-level Packet Capture”. In Proceedings of USENIX Winter
Conference (San Diego, California, Jan 1993), pp. 259-269.

M.CRAWFORD. “Transmission of IPv6 Packets Over Ethernet Networks”. Tech.
rep., 1998. http://www.ietf.org/rfc/rfc2464.txt.

PANDE, B. “Design and Implementation of a Network Monitoring Tool”. Mas-
ter’s thesis, Department of Computer Science and Engineering, IIT Kanpur,
Sep 2002. http://www.cse.iitk.ac.in/research/mtech2000/Y011104.html.

R., B., AND MOORE, J. “A fast string searching algorithm”. In Comm. ACM
20 (1977), pp. 762-772.

R.FIELDING, IRVINE, G. M., AND FRYSTYK. “Hypertext Transfer Protocol -
HTTP/1.1”. Tech. rep., 1999. http://www.ietf.org/rfc/rfc2616.txt.

S.DEERING. “Internet Protocol, Version 6 (IPv6) Specification”. Tech. rep.,
1998. http://www.ietf.org/rfc/rfc2460.txt.

SMmiTH, S. P., Jr., H. P., KrReENT, H., MENCIK, S., CRIDER, J. A.,
SHYONG, M., AND REYNOLDS, L. L. “Independent Technical Review
of the Carnivore System”. Tech. rep., II'T Research Institute, Nov 2000.
http://www.usdoj.gov/jmd/publications/carniv_ entry.htm.

35

[21] SUDHEER, V. “Supporing Mail Protocols POP , IMAP in PickPacket”. Master’s
thesis, Department of Computer Science and Engineering, IIT Kanpur, June
2004.

[22] T.BERNERS-LEE, R.FIELDING, 1., AND FRYSTYK. “Hypertext Transfer Pro-
tocol - HTTP/1.0”. Tech. rep., 1996. http://www.ietf.org/rfc/rfc1945.txt.

36

Appendix A

Sample Configuration Files

A.1 Configuration File with Filtering Criteria (.pcfg)

This is a sample configuration file with filtering criteria

A hash(#) is used for comments

This file has several sections

Sections start and end with tags similar to HTML.

Tags within sections can start and end subsections or can be tag-value pairs.

A1l the tags that are recognized appear in this file.

First Section specifies the sizes and names of the dump files

The Second Section specifies the source and destination IP ranges

the source and destination ports, the protocol and the application

that should handle these IPs and ports

The third Section specifies the IPv6 basic criteria, source and destination
IPv6 address prefix values,port numbers,tcp and application layer protocols

The next sections describe the application specific

H OHF H O H O HF H OH O HF O H OH O HF H R

input criteria.

FhkokokokokokokokkokkokkkFI11rSt SeCt i omkskskok sk ok sk ok sk ok ok ok ok ok ok sk sk ok ok ok ok ok sk ok ok >k %k %k

<0utput_File_Manager_Settings>

37

<Default_Output_File_manager_Settings>
File_Prefix is the name used to generate the dump filename suffixed with
the time stamp at which the file is created
File_Prefix=livedump
If the dump file has to be changed based on size then this field is having
value yes
Size_Based=yes
This field exists when the Size_Based is yes this tell the size of dump
file in Mega Bytes
File_Size=100
Time_Based attribute tells if the change of dump file is based on time also
Time_Based=yes
This field exists when the Time_Based is yes this tell the time period in
minutes
Time_Period=60
</Default_Output_File_manager_Settings>
</Output_File_Manager_Settings>

fhkckskokkokkokkkkkkkEnd of First Sectiomkkskskskksksksksksk ok ok sk ok okk ok ok k ok ok kk ok

FkkrkkkokkkkkkkSecond Sectionkkskkskskokskskskskskskskok ok kkkokokok ok ok sk k k
The basic criteria here are for the Device and
SrcIP1:SrcIP2:DestIP1:DestIP2:SrcP1:SrcP2:DestP1:DestP2:ProtoA:App

<Basic_Criteria>

DEVICE=ethO

Num_0f_Criteria=9

Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:25-25:TCP: SMTP
Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:20-20:TCP:FTP
Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:21-21:TCP:FTP
Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:23-23:TCP: TELNET
Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:80-80:TCP:HTTP

38

Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:110-110:TCP:POP
Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:143-143:TCP: IMAP
Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:5050-5050:TCP:YAHOO
Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:6667-6667 : TCP: IRC
</Basic_Criteria>

#xkxxkkkkk*End of Second Sectiomkskskskskskskskskskskkkkkkkokokokokk ok ok k kK k>

HrkoookkokkkkkThird Sect iomkskkskkskskkkskskokokokokok sk k ok kokokok ok ok ok
The IPv6 basic criteria here are in the form
SrcIP1:SrcIP2:DestIP1:DestIP2:5rcP1:SrcP2:DestP1:DestP2:ProtoA:App

<Basic_Criteria6>

Num_0f _Criteria=9
Criteria=::/0;::/0;1024-65535;25-25;TCP ; SMTP
Criteria=::/0;::/0;1024-65535;23-23;TCP; TELNET
Criteria=::/0;::/0;1024-65535;80-80;TCP;HTTP
Criteria=::/0;::/0;1024-65535;3128-3128;TCP;HTTP
Criteria=::/0;::/0;1024-65535;110-110;TCP;POP
Criteria=::/0;::/0;1024-65535;143-143;TCP; IMAP
Criteria=::/0;::/0;1024-65535;5050-5050; TCP;YAHQOO
Criteria=::/0;::/0;1024-65535;6667-6667;TCP;IRC
Criteria=::/0;::/0;1024-65535;1111-1111;TCP;IRC
</Basic_Criteria6>

fkkkokkkkkkkEnd of Third Sectiomkkkskskkskkokkkskskskk k ok %k ok kk ok ok k %k kk k>

#HrkrokkokokkkkkkkApplication Specific Specificationsikkkksk
Here the criteria corresponding to different application level

protocols are specified

Hkokkokokkokskkkokkkk TMAP Specifications******

39

<IMAP_Criteria>

NUM_of_Criteria=2
<Usernames>
Num_of_Usernames=1
Case-Sensitive=no
Username=sudheerv
</Usernames>
<Search_Email _ID>
Num_of_email_id=2
Case-Sensitive=yes
E-mail_TID=ananth
E-mail_ID=deshaw
</Search_Email_ID>
<Search_Text_Strings>
Num_of_Strings=0
</Search_Text_Strings>
<Usernames>
Num_of_Usernames=1
Case-Sensitive=no
Username=sudheer
</Usernames>
<Search_Email_ID>
Num_of_email_id=1
Case-Sensitive=yes
E-mail_ID=deepak
</Search_Email_ID>
<Search_Text_Strings>
Num_of_Strings=2
Case-Sensitive=no
String=pickpacket
String=IMAP

40

</Search_Text_Strings>
</IMAP_Criteria>

#rkookokokokokkkkEND of IMAP Specificationsokkkkx

#r ok okkkckkkkokkPOP Specifications¥kkkkk
<POP_Criteria>
NUM_of_Criteria=2
<Usernames>
Num_of_Usernames=1
Case-Sensitive=no
Username=ananth
</Usernames>
<Search_Email_ID>
Num_of_email_id=2
Case-Sensitive=yes
E-mail_ID=sudheer
E-mail_ID=sybase
</Search_Email_ID>
<Search_Text_Strings>
Num_of_Strings=0
</Search_Text_Strings>
<Usernames>
Num_of_Usernames=1
Case-Sensitive=no
Username=jainbk
</Usernames>
<Search_Email_ID>
Num_of_email_id=1
Case-Sensitive=yes
E-mail_ID=dheeraj
</Search_Email_ID>

41

<Search_Text_Strings>
Num_of_Strings=2
Case-Sensitive=no
String=sachet
String=P0OP
</Search_Text_Strings>
</POP_Criteria>

#rrrrokkokokokkkokkEND of POP Specificationskkkkxkx

ok xkkrckkkkokkkkSMTP Specificationskxkkkx
<SMTP_Configuration>
<SMTP_Criteria>

NUM_of _Criteria=2

<Search_Email_ID>
Num_of_email_id=1
Case-Sensitive=yes
E-mail_ID=sudheerv@cse.iitk.ac.in

</Search_Email_ID>

<Search_Text_Strings>
Num_of_Strings=1
Case-Sensitive=yes
String=PickPacket

</Search_Text_Strings>

<Search_Email_ID>
Num_of_email_id=2
Case-Sensitive=yes
E-mail_ID=ananth@iitk.ac.in
E-mail_ID=jainbk@hotmail.com

</Search_Email_ID>

<Search_Text_Strings>

Num_of_Strings=0

42

</Search_Text_Strings>
</SMTP_Criteria>
Mode_0f_Operation=full
</SMTP_Configuration>

rkkkokokokokokkEND of SMTP Specificationsskkkxk

#HrkrokokokokkFTP Specificationskokkkkx
<FTP_Configuration>
<FTP_Criteria>
NUM_of_Criteria=1
<Usernames>
Num_0f _Usernames=2
Case-Sensitive=no
Username=puneetk
Username=jainbk
</Usernames>
<Filenames>
Num_0f _Filenames=1
Case-Sensitive=no
Filename=test.txt
</Filenames>
<Search_Text_Strings>
Num_0f _Strings=1
Case-Sensitive=yes
String=book secret
</Search_Text_Strings>
</FTP_Criteria>
Monitor_FTP_Data=yes
Mode_of_Operation=full
</FTP_Configuration>

#rxxkkokkkkEND of FTP Specificationskkskkksk

43

#kkkokkokkokkkHTTP Specifications*kkkkk
<HTTP_Configuration>
<HTTP_Criteria>
NUM_of _Criteria=1
<Host>
Num_0f _Hosts=1
Case-Sensitive=no
HOST=http://www.rediff.com
</Host>
<Path>
Num_0Of_Paths=1
Case-Sensitive=yes
PATH=cricket
</Path>
<Search_Text_Strings>
Num_of_Strings=1
Case-Sensitive=no
String=neutral venu
</Search_Text_Strings>
</HTTP_Criteria>
<Port_List>
Num_of_Ports=1
HTTP_Server_Port=80
</Port_List><Port_List6>
Num_of_Ports=2
HTTP_Server_Port=80
H TTP_Server_Port=3128
</Port_List6>

Mode_0f_Operation=full

44

</HTTP_Configuration>

#rkokkokokokkkEND of HTTP Specificationskkkkksk

kool TELNET Specificationskokkkkx
<TELNET_Configuration>
<Usernames>
Num_of_Usernames=1
Case-Sensitive=yes
Username=ankanand
</Usernames>
Mode_0f_Operation=full
</TELNET_Configuration>
#xxxx*xEND of TELNET Specifications*kxx*x*
#xxkxk TRC Specification skkskkkkkkkkkkkk
<IRC_Configuration>
<IRC_Criteria>
NUM_of_Criteria=0
</IRC_Criteria>
<Port_List>
Num_of_Ports=1
IRC_Server_Port=6667
</Port_List>
<Port_List6>
Num_of_Ports=2
IRC_Server_Port=6667
IRC_Server_Port=1111
</Port_List6>
Mode_0f _Operation=full
</IRC_Configuration>

#xxxxx End of IRC Configuration ki

45

#rkkkokokokokkkEnd Application Specific Specifications*kx

46

A.2 Configuration File with Buffer Sizes(.bcfg)

The file contains the number of connections to open simultaneously
for some applications

and the number of packets to be stored per connection before a match
occurs

<NUM_CONNECTIONS>
NUM_CONNECTIONS=10
NUM_SMTP_CONNECTIONS=500
NUM_FTP_CONNECTIONS=500
NUM_HTTP_CONNECTIONS=500
NUM_TELNET_CONNECTIONS=500
NUM_TEXT_CONNECTIONS=500
NUM_RADIUS_CONNECTIONS=500
NUM_POP_CONNECTIONS=500
NUM_IMAP_CONNECTIONS=500
NUM_IRC_CONNECTIONS=500
NUM_YAHOO_CONNECTIONS=100
</NUM_CONNECTIONS>

Num_of _SMTP_Stored_Packets=0
Num_of _FTP_Stored_Packets=0
Num_of _HTTP_Stored_Packets=0
Num_of _POP_Stored_Packets=0
Num_of _IMAP_Stored_Packets=0
Num_of _YAHOO_Stored_Packets=0
Num_of _IRC_Stored_Packets=0
Num_of_IRC_Channels=10

47

Appendix B

GZIP File format

B.1 File format

A gzip file consists of a series of "‘members" (compressed data sets).

The format of each member is specified in the following section.

The members simply appear one after another in the file

information before, between, or after them.

B.2 Member format

Each member has the following structure:
+---t-—+t-—tt+-t-—t+-—t -t -t -——+

|ID1|ID2|CM |FLG]| MTIME [XFLIOS | (more-->)

B ittt e S e o e e s R Rl o

(if FLG.FEXTRA set)

Feet 4= === +
| XLEN |...XLEN bytes of "extra field"...| (more-->)
[S SR === +

48

with no additional

(if FLG.FNAME set)

+ +

|...original file name, zero-terminated...| (more-->)

+ === +

(if FLG.FCOMMENT set)

+ === +

|...file comment, zero-terminated...| (more-->)

+ === ==+

(if FLG.FHCRC set)

NS
| CRC16 |

oo

+ === +
|...compressed blocks...| (more-->)
+ === +

o 1 2 3 4 5 6 7

S S S S S S S

I CRC32 | ISIZE I

o+

49

